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Abstract

In this paper, we present a novel approach for the
automatic extraction of roads from very low-resolution
satellite imagery, such as images found in the SPOT
data set. First, the input image is preprocessed to am-
plify possible road regions, while suppressing the low
spatial frequency areas. Then, the road features, which
are chosen to be curvilinear structures, are found by
evaluating the local responses from a set of nonlinear
directional line �lters. A mapping from the line do-
main to the vector domain (LVT) was devised to com-
pute the line strength and orientation for each image
point. This transformation enables us to combine the
multi-channel data into a single aggregated response.
From the line orientations and strengths, the candidate
road points are traced and linked in a recursive man-
ner. The iterative process consists of �nding the road
segments, passing them through the directional line �l-
ter set and computing new strengths and orientations,
and then fusing these values with those obtained in the
previous iteration. The tracing results are updated at
each iteration, and the process continues until there
are no further changes in the roads extracted. Ex-
perimental results obtained by processing panchromatic
satellite images from the SPOT data set, demonstrate
the success of the proposed algorithm.

1 Introduction

Unsupervised extraction of roads eliminates the need
for human operators to perform the time consuming
and expensive process of mapping roads from satellite
imagery. As increasing volumes of imagery become
available, fully automatic methods are required to in-
terpret the visible features such as roads, railroads,
drainage, and other meaningful curvilinear structures.
There exists an even greater need for a mechanism
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that handles very low resolution images. The essence
of detecting curvilinear elements is also related to the
problem of deriving anatomical structures in medical
imaging as well as locating material defects in quality
control systems, and other geomorphologic and carto-
graphic applications.

Typical road extraction algorithms consist of two
stages: the detection of road points, and the con-
catenation of those points into road segments. The
detection step is supported by a priori information
based on the topological constraints, e.g., o�setting
water bodies, limiting extraction within the same iso-
bar. Radiometric road primitives such as maximum
curvature, constant width, intensity smoothness, pro-
vide additional rules for the concatenation step. Many
approaches combine a local criterion based on radiom-
etry within some small neighborhood to discriminate
roads from the surrounding background, and a global
criterion to introduce priori information about the
structures. Detection is often performed by an edge
or line operator [1], di�erential geometry [2], or an
analysis of the road pro�le [3]. In the simplest case, a
straightforward connection of the detected line pixels
is used to describe the road. Dynamic programming as
in [4] can be used to minimize a global cost function,
and heuristics included to the minimum cost path es-
timation framework [6], Hough transform based curve
detection approaches, parametric curve models such
as snakes and B-splines, and Bayesian networks [5] are
used to aggregate low-level road pixel detection into
road segment estimates.

Most of the proposed road detection algorithms
were designed to extract roads from high-resolution
images and often require user assistance to mark both
starting and ending points of road segments. By using
various road features as con�dence measures, a mini-
mum cost path is derived between the start and end
nodes. Due to the noise sensitivity, asymmetry of the
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Figure 1: Flow diagram.

contrast at the both sides of the edges, and the diÆ-
culty of obtaining precise edge directions, edge based
methods are inadequate for very low-resolution im-
agery.

We propose an unsupervised detection algorithm
that �nds road con�dences as well as associated ori-
entations by using the responses from nonlinear direc-
tional line �lters. Section II discusses the deriving of
the road con�dences, and the line-to-vector transfor-
mation process. In Section III, the tracing algorithm,
feedback loop, and post processing operations are ex-
plained. Finally, the later section presents experimen-
tal results obtained from images in the SPOT data
set.

2 Derivation of Road Con�dences
In this section, we discuss the preprocessing of the

input image, and the automatic extraction of curvilin-
ear structures that are used as road features for tracing
the road segments, and for assigning road con�dence
measures to the image points. A general 
ow diagram
of the algorithm is shown in Fig. 1.

2.1 Preprocessing

Although the orbit of the SPOT satellite is syn-
chronous with the sun so that the lighting of each
image is supposed to be identical, we still found that
the panchromatic band of the images are substantially

di�erent from each other. Our aim is to develop an
unsupervised road extraction scheme that is adaptive
to the input images. Thus, a preprocessing stage was
necessary to equalize the intensity variations of the
input images acquired at di�erent illuminations con-
ditions before proceeding with the extraction of roads.

The input images are �rst intensity normalized such
that the spectrum of each input image covers the max-
imum intensity levels that is 2n levels for n-bits coded
imagery. Normalization helps to compensate possible
illuminance di�erences between the various images.
After normalization, we enhance the images. One im-
portant observation on the nature of the road points is
that such points tend to have a higher intensity value
than the surrounding region in the panchromatic chan-
nel of the SPOT data set. Thus, the feature extrac-
tion stage is adapted to detect high intensity linear
structures. In contrast, water bodies exhibit a darker
appearance. In order to detect water streams instead
of roads, we simply modify the preprocessing stage to
re
ect the desired contrast we wish to �nd. The detec-
tion of water bodies would require that the normalized
image be inverted in intensity. To segment roads, we
iteratively increase the intensity value of a pixel if its
value is much higher than fmean the average intensity
value within a circular window around the pixel, and
still less than fmax the maximum in the window. The
constraint on fmax is included to prevent ampli�cation
of the noise. Thus, the intensity di�erence between
a road point and an immediate adjacent background
point is ampli�ed as well as any noise, which is �ltered
in the later stages. Let f(x; y) be the normalized in-
tensity function of an image. Then the enhancing is
done as

fn =

�
fn�1 + " fmax � fn�1 > fmean

fn�1 otherwise
(1)

where n is the current iteration index, (xk ; yk) is a
point in the window, and " is used as convergence
step size. The results of preprocessing are shown in
Fig. 5,a-b.

2.2 Directional Line Filters

A line segment can be characterized as an elongated
rectangular region having a homogeneous intensity
level that is bounded on both its longer sides by ho-
mogeneous regions having a di�erent intensity level.
The assumption that road segments will have the same
contrast on both sides is rarely true for real images.
Therefore, a semi-linear structure that �nds step edges
on the either side of the line, was devised as inspired
by Vanderburg [8]. An adequate line detector should
also be able to detect very narrow lines (1-2 pixels),
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Figure 2: Line detection by nonlinear directional �l-
ters.

as well as wider ones (5-6 pixels). Unlike speckles and
edges, a line point is generally bordered by other ad-
joining line points located on opposite sides. Hence,
to �lter out image noise and avoid detecting sparks
as road points, we use a �lter which produces higher
scores for the longer line structures. The �lter tem-
plate is stretched along its detecting orientation. How-
ever, using only two of such templates, as done by or-
thogonal pairs in edge detection, limits the accuracy
of line detection especially for lines that are diagonally
oriented. This is accomplished by extending the �lter
template on the direction perpendicular to its detec-
tion orientation to include the distant points from the
line center. However, such an extension neglects the
continuity property of the lines and introduces false
errors especially in presence of speckle noise. To pre-
vent errors, i.e. catching sparks as road points, the
�lter template is stretched along its detecting orienta-
tion. Yet, using only two of such templates, as done
by orthogonal pairs in the edge detection, limits the
accuracy of the line detection especially for lines that
are diagonally oriented. Therefore, we employ a com-
pass type directional �lter set containing multiple line
�lters tuned at the di�erent orientations. Here, com-
pass means each separate �lter in the bank operates
at a di�erent orientation �i and the entire set covers

the full orientation spectrum [0; �]. The basic �lter
gi consists of two zero-padded Gabor �lter type half
templates gai ; g

b
i to detect the step edges on the either

side of the line. The basic �lter is shaped as a Ga-
bor �lter to give more weight to the center pixels, to
achieve the scalability for di�erent line widths, and to
simplify design of each directional �lter.

gi = cos (c1(x cos �i + y sin �i))e
�

x2+y2

c2 : (2)

The constants c1; c2 determine the shape and width of
the matching template. From half template responses,
a strength si at each pixel position is calculated for
each direction �i as

si =

�
gai + gbi gai + gbi � 0

0 gai + gbi < 0
(3)

2.3 Line-to-Vector Transform

A problem of fusing all of the above line strengths
immediately arises. One cannot directly sum up and
average the orientation angles because of the ambigu-
ity at the limits of the angular spectrum [0; �). For
example, two lines with orientation angles � � � and
� lie in similar directions, however averaging their ori-
entation angles gives �

2 which is almost perpendicular
to both lines. Essentially, having relatively signi�cant
strengths for any orthogonal �lter pair is an ambiguity.

To eliminate incompatible �lter outcomes, and to
fuse any number of line strengths, a novel line-to-
vector transform (LVT) was developed. LVT is a map-
ping from 1 1

2 -D direction domain to 2-D vector domain
such that the perpendicular line contrasts become re-
ciprocal to each other. As a line orientation becomes
more similar to a directional �lter, its response from
the perpendicular �lter should attenuate. This prop-
erty can be exploited to �nd the orientation of the
lines which lie between compass �lter orientations in-
stead of just selecting the direction of the �lter having
the maximum magnitude. If the �lter directions are
represented such that perpendicular responses cancel
each other's e�ect out, then it is possible to fuse all
the �lter responses to derive an aggregated line orien-
tation and strength. Thus, the angular spectrum of
orientation is extended from [0; �) to [0; 2�) and

si(�i)
LV T
! ~si(!i) = sie

j2�i (4)

where !i=2�i, si is the response and direction for the
ith directional template.

Thus, perpendicular �lter pairs are converted to in-
verse directions, and likewise non-perpendicular ones
are correlated. By adding the transformed vectors, we



subtract the responses of the perpendicular �lters and
amplify those of non-parallel �lters

~s =

N�1X
i=0

~si(!i) (5)

The resulting vector is transformed to a line by halving
the phase component.

LVT also enables us to fuse �lter responses for
multi-spectral channels in a similar way. Let M is
the number of the multi-spectral band, i.e. the red,
green, near infrared images. If ~si;j is the LVT for the
ith �lter in the jth image of the multi-spectral image
set, then the resulting response is going to be

~sM;N =

MX
j=1

N�1X
i=0

~si;j : (6)

2.4 Consistency Evaluation

Obtaining line strengths as explained in the previous
section can be corrupted by extreme responses that
cause a global attenuation of the correct line strengths.
Moreover, the small valued line strengths mix up and
divert the tracing algorithm. Therefore, a histogram
based thresholding �lter was applied to the strength
and orientation data. First, the histogram of the line
strength is calculated on a linear scale. The strength
values of the points larger than an upper threshold is
recti�ed to the upper threshold value. The strength
values smaller than the lower threshold are zeroed.
The lower and upper thresholds are the values of the
histogram variant such that the sum of the histogram
values up to those points are equal to the certain per-
centages of the total number of the image points.

The above analysis provides point-wise evaluation
of the line likelihood. To achieve local consistency,
LVT is performed again within a window, preferably
circular, at each pixel position. Application of the
LVT attenuates the line strengths if the computed line
orientations within the window exhibit a high vari-
ance. After normalization to unity, the con�dence of
being a road point and the line orientation becomes
as

p[x; y] =
j~s(x; y)j

j~smaxj
; �(x; y) =

6 ~s(x; y)

2
: (7)

The initial line strengths and orientations computed
are presented in Fig. 5 (c-d).

3 Tracking and linking
3.1 Tracking

Given the con�dences, the road points that have a
relatively higher probability are linked into curvilinear

segments. The road tracing algorithm is designed such
that it can recursively link line points possessing sim-
ilar characteristics. Even when the road con�dences
are not spatially continuous, the tracing algorithm can
overcome this problem, and �ll in gaps when a con-
sistent link exists in the constrained neighborhood.
First, a road point is chosen if its con�dence value
is high enough to initialize a new road segment. Each
line segment is characterized by its end-to-end global
direction, local tangential direction, total length, aver-
age curvature, and the variation of its global direction.
A point in the window that produces the highest simi-
larity score is chosen as a valid connector, and the seg-
ment descriptors are updated with each included ex-
tension to the segment. The search window is shaped
as a folium-like quadratic, and is approximated by a
polygon. The parameters a, b of the adaptive window
are determined by the descriptors of the segment. For
long segments the search window length parameter a
is larger. The window width is inversely proportional
to the parameter b, and is reciprocal to the segment
length, and directly proportional to the global direc-
tion variance. Both the local and global directions of
the segment determine the orientation of the search
region. The span angle � depends on both a and b.
To simplify indexing, the search region is mapped to
a unit shape as in Fig. 3.
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Figure 3: Tracing search window.

The point that gives the maximum similarity score
is selected as the next connector point. Closer a point
in the search window to the current point, its simi-
larity score becomes larger. For each possible road
point, the LVT calculates a magnitude by using the
con�dences and orientations of the current and the
candidate points, and a third term which has the ori-



entation of the line connecting the spatial positions of
the current and the candidate points. The magnitude
of the last term is the average of the magnitudes of
the �rst two points. Let the ~mcur, ~mcan and ~mspa

stand for the LVT transformed values of the current,
candidate and spatial terms such that ~mcur is

j~mcurj = p[mcur(x; y)]
6 ~mcur = 2�(mcur(x; y));

(8)

~mcan is

j~mcanj = p[mcan(x; y)]
6 ~mcan = 2�(mcan(x; y));

(9)

and ~mspa is de�ned as

j~mspaj =
p[mcur(x;y)]+p[mcan(x;y)]

2
6 ~mspa = tan�1(mcan(y)�mcur(y)

mcan(x)�mcur(x)
):

(10)

Given the transformed values for each point within
the search window, we determine a similarity score
�dir that is equal to the magnitude of the sum of three
vectors:

�dir =
1

3
j(~mcan + ~mcur + ~mspa)j: (11)

A second similarity term �line is derived by accumu-
lating the con�dences of the points on the line Nline

connecting the gap and the connector points:

�line =
1

M

X
(i;j)2Nline

p[i; j] (12)

where M is the number of points on the Nline.

Thus, the similarity score is the weighted average
of the three values

�(i; j) = c1�dir + c2�line + �dist: (13)

If c1 is assigned larger than c2, the tracing algorithm
will choose points such that their line orientations are
consistent with the gap point regardless of the con�-
dences of the points between them. Therefore, points
forming a discontinuous road segment but are still spa-
tially separated, will be neglected if they have noisy
direction estimates. On the other hand, by select-
ing c2 larger, the road segment will be matched with
the underlying road points even if the orientations of
points are not consistent as in the case of no roads
present. The third term �dist is a linear weight that
is proportional to the distance from the center point.
The tracing process outputs a binary road map.
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Figure 4: Tracing stage 
ow diagram.

3.2 Irregularity Removal

The road maps generated by tracing process con-
tain topological irregularities such as singular points,
spurs, loops and blobs. Before feeding back the output
road map to the directional �lter set, these deviations
are removed by morphological and contextual opera-
tors. First very small loops are �lled, then a connected
component labeling algorithm is used to calculate the
areas of non-road regions bounded by the road seg-
ments. The algorithm uses recursion to give the same
label to the non-road points in 8-neighborhood of each
other's. If any of the labeled regions has a small area
that physically cannot correspond to separate roads, it
is assigned as a road. Thinning of road segments is re-
quired, since the tracing stage may produce wide road
segments, and the removal of very small loops may
causes blobs. A morphological operator using the hit-
and-miss transform [7] is utilized to accomplish the
thinning of the road map.

3.3 Feedback

The initial tracing is done without using any priori
information to validate the accuracy of the obtained
segments. Any additional road information supplied
to the feature detection stage, which is the directional
�lter set in our case, evidently improves the quality of
the estimation of road con�dences and thus the trac-
ing results. Unlike the initial image, the extracted
road segments are clean, e.g., do not contain speckle
type of noise or similar spatial impurities, which cause
excessive spurs and diversions. For that reason, the
orientation values computed by using the extracted
road segments will be more accurate. Since the trac-
ing stage overcomes road discontinuities in the input



Image set A Image set B

DR TR DR TR

5� 5 Proposed %95.26 %83.68 %97.65 %89.42

5� 5 Steger's %85.01 %43.22 %78.31 %46.28

3� 3 Proposed %92.17 %79.08 %93.39 %86.47

3� 3 Steger's %77.72 %42.29 %72.29 % 40.58

Table 1:

image by �lling in the gaps in the road con�dence map
as explained before, the new line strengths and as a
result the new road con�dences will have less discon-
tinuities. Also, using the extracted road segments as
a feedback can restrain the con�dence values of the
background points.

Hence, the initial road map is used as an input to
the directional line �lters, and new road con�dences
and orientations are computed. The processed in-
tensity road map provides a better estimate of the
road orientations and con�dences. However, at the
both ends of the road segments, fuzzy road regions
are produced. Employing LVT once again in a neigh-
borhood and comparing the LVT result to the orien-
tation value of the target point �lters such fuzzy re-
gions. The points that have nonnegative con�dences
and not in the previous road map, are compared with
the LVT orientation result. If the di�erence is small,
they are kept, otherwise they are accepted as outliers.
As a result, new con�dence and orientation maps are
obtained. These maps are fused with the previous
maps. At an image point, linear weighting blends the
new and the previous con�dence values, and applying
the LVT accordingly gives the orientation value. The
progress of the feedback stage is presented in Fig. 5,
d-f.

4 Results and Conclusion

We tested our road extraction algorithm on panchro-
matic images of the SPOT data set. The input images
are presented in Fig. 5-a and Fig. 6-d. In these very-
low resolution satellite images, the average road width
corresponds to 1-5 pixels, and both of the images are
slightly distorted by speckle noise. The input images
were �rst normalized to extend the gray level distribu-
tion of image intensity to the entire visible spectrum,
in our case 28 levels. The enhanced images are shown
in Fig. 5-b. We used 8 pair-wise orthogonal direc-
tional �lters to extract line segments. The intermedi-
ate results of the feedback loop are shown in Fig. 5,
d-f. The �nal results are shown in Fig. 6, c-f.

We compared our results to Steger's [2] curvilin-

ear structure extraction algorithm. We optimized the
parameters of his algorithm so that it can derive the
maximum number of road segments without introduc-
ing spurious segments. Two metrics were devised to
compute their accuracy, the �rst metric is the ratio of
the detected points that are ground truth to the to-
tal number of ground truth points. The second is the
percentage of the ground truth points that were de-
tected to the total number of the detected points. The
ground truth points were annotated by hand. Because
both of the algorithms output a skeleton of detected
roads, the percentages were calculated in a search win-
dow around the pixels rather than using the exact lo-
cation for comparison. As visible in Table. 1, our un-
supervised method acquires more road points than the
user optimized algorithm by Steger, and the amount
of erroneous points is much less.
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Figure 5: The original gray level image (a), intensity enhanced result (b), and line �lter orientation response
(c). Because orientation spectrum is cyclic, red and blue represents similar angles, blue-0 and red-�. The initial
con�dence (d), road con�dence after 2rd iteration of the feedback loop (e), and after 5th iteration(f).
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Figure 6: Extraction results; the initial tracing road map (a), Steger's results (b), the �nal road maps after spur
removal (c). A second set of results for a di�erent input image (d-f).


