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Abstract

We develop an event detection framework that has two sig-
nificant advantages over past work. First, we introduce an
extended set of time-wise and object-wise statistical fea-
tures including not only the trajectory coordinates but also
the histograms and HMM based representations of object’s
speed, orientation, location, size, and aspect ratio. These
features enable detection of events that cannot be detected
with the existing trajectory features reported so far. Second,
we introduce a spectral clustering algorithm that can auto-
matically estimate the optimal number of clusters. First,
we construct feature-wise affinity matrices from the pair-
wise similarity scores of objects using the extended set of
features. To determine the usual events, we apply eigen-
vector decomposition and obtain object clusters. We show
that the number of eigenvectors used in the decomposition is
proportional to the optimal number of clusters. Unlike the
conventional approaches that try to fit predefined models to
events, we analyze the conformity of objects using affinity
matrices to find the unusual events. We improve the fea-
ture selection process by incorporating feature variances.
We prove that the clustering stage is not adversely affected
by high dimensionality of data space. Our simulations with
synthetic and real data reveal that the proposed detection
methods accurately detect usual and unusual events.

1. Introduction

Event detection requires interpretation of the “semantically
meaningful object actions” [3]. To achieve this task, the gap
between the numerical features of objects and the symbolic
description of the meaningful activities needs to be bridged.

Past work on event detection has mostly consisted of
extraction of trajectories followed by a supervised learn-
ing. For example, an activity recognition method that is
based on view-depended template matching was developed
in [1]. Action is represented by a temporal template, which
is computed from the accumulative motion properties at
each pixel. Davis [2] represents simple periodic events (e.g.,
walking) by constructing dynamic models of periodic pat-
tern of people’s movements. Hogg [6] clusters the distri-

butions of object trajectories. Stauffer [16] estimates a hi-
erarchy of similar distributions of activity based using co-
occurrence feature clustering. Zelnik [18] defines events as
temporal stochastic processes and targets a temporal seg-
mentation of video. Their dissimilarity measure is based on
the sum of 2 divergences of empirical distributions, which
requires off-line training. The number of clusters is pre-
set in event detection. Starner[15] uses a Hidden Markov
Model (HMM) to represent a simple event and recognize
this event by computing the probability that the model pro-
duce the visual observation sequence. In [8], HMM is used
for intrusion detection. Existing HMM'’s based approaches
require off-line training of events. However, it is not viable
to foresee every possible event. Besides, the nature of event
varies depending on the application, thus event modeling
becomes even more challenging.

There are related praiseworthy work on spectral cluster-
ing by Ng [12] and Meila [11]. We can extend this list to
Marx [9], Kamvar [7], even back to Fiedler [4]. However,
these methods address different issues. For instance, Ng
uses k-means clustering. Unlike us, they do not investigate
the relation between the optimal number of clusters and the
number of largest eigenvectors. Meila extends Ng to gener-
alized eigenvalue representation. Although they use multi-
ple eigenvectors, the number of eigenvectors is fixed. Kam-
var addresses supervisory information, which we do not re-
quire. Marx develops coupled-clustering with fixed number
of clusters. One main disadvantage of these approaches is
that they are all limited to the equal duration trajectories
since they depend on the coordinate correspondences.

Although the extraction of trajectories is well studied,
little investigation on the secondary outputs of a tracker has
been done. Medioni [10] uses eight constant features which
include height, width, speed, motion direction, and the dis-
tance to a reference object. Visual features were also ad-
dressed by Zelnik [18] and Stauffer [16]. Zelnik uses spa-
tiotemporal intensity gradients at different temporal scales.
Stauffer uses co-occurrence statistics of coordinate, speed
and size.

Since existing trajectory-based features are insufficiently
expressive, they cannot be used to identify certain events.
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We are thus motivated to develop more expressive features
that we then employ to detect events we were not able to de-
tect with conventional features. In addition to trajectory, we
introduce statistical features including the histograms and
parameter representations of tracked objects and frames.
We find however that our proposed features have high di-
mensionality. Since conventional learning methods are ad-
versely affected by high dimensionality, we are motivated
to develop a new approach to clustering that is much more
robust to increase in the dimensionality of the feature space
and has lower complexity than the conventional approaches.

Unlike the past work cited above, we employ an unsuper-
vised learning method. It is based on eigenvector decompo-
sition of the feature similarity matrices. We show that the
number of clusters governs the number of eigenvectors used
to span the feature similarity space. We are thus able to au-
tomatically compute the optimal number of clusters.

Our method does not require definition of what is usual
and what is not. We define usual as the high recurrence of
events that are similar. As a result, unusual is the group of
events that are not similar to the rest. This enables as to
detect multiple unusual events.

The rest of the paper is organized as follows. In the Sec-
tion 2, the tracking features are introduced. Section 3 ex-
plains the formation of affinity matrices and the clustering
algorithm. Section 4 discusses the simulations.

2. Trajectories to Features

Types of the events and their indicative features vary de-
pending on the applications. However, the features that we
propose below characterize most of the available low-level
properties of objects. All features are presented here are
acquired automatically using an object tracker presented in
[14]. Although we extensively make use of 2D trajectories,
the same analogy can be extended for 3D trajectories and
higher dimensions, e.g. a sequence of multi-dimensional
vectors, etc.

A trajectory is a time series of coordinates represent-
ing the motion path of an object over the duration (life-
time), i.e. number of frames that object exists. These co-
ordinates correspond to marked positions of object shape in
consecutive frames. A marked position often indicates ei-
ther the center-of-mass, the intersection of main diagonals
(for ellipsoid model), or the average of minimum and max-
imum on perpendicular axes (for bounding box model) of
object region. We adopt the following notation 7" : {p,} :
{(z1,y1,t1), (T2, Y2, t2), ..., (xN, YN, tn)} where N is the
duration (number of constituting samples) of the trajectory.

We propose tracking features that can be classified into
two groups as depicted in Fig.1. The first set of features
describes the properties of individual objects such as mo-
tion, color, shape, etc. The second set of features represents
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Figure 1: Object tracker provides object and frame features.

frame-wise attributes such as the number of objects, aggre-
gated speed, orientation, etc. of objects existing in those
frames.

Certain object properties are dynamic and change their
values from frame to frame during the tracking process, e.g.
the speed of an object. Instead of depending only on the in-
stantaneous values, using normalized histograms as features
enables to capture the history of these dynamic features.
A histogram in fact corresponds to the probability density
distribution, thus it sustains statistical characteristics such
as mean, variance and other higher order moments. How-
ever, since histograms discard temporal ordering for time-
sequences, we develop temporal model based representa-
tions. The model based representations are more expres-
sive than the histograms in case the relation between the
consecutive values of time-series (coordinate, orientation,
speed) possess important discriminating information. Fur-
thermore, since most higher level analysis require features
to have equal dimensions, the model based representations,
such as HMM’s, enable transferring of the variable length
features into a common parameter space.

2.1. Object Based Features

There are several scalar features that describe an object.
In spite of its simplicity, the duration (lifetime) is one of
the distinctive features. For instance, in a surveillance set-
ting the suspicious event may be a left behind unattended
bag, which can be easily detected using the duration fea-
ture since other objects do not usually stay for extended
periods of time. The total length of the trajectory is de-
fined as Y Ap,|. Note that, this is slightly different from
the total displacement of the object, which is defined as
|p1 —pn|. Depending on the camera setup, the length based
descriptors may be used to differentiate different paths. The
length/duration ratio gives the average speed. A general ori-
entation descriptor records the direction of the object be-
tween its first and last appearance. Figure 2 illustrates some
of the object features.
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Figure 2: Object based features.

The probability densities of the dynamic properties, such
as orientation, aspect ratio, slant (angle between a reference
axis and the main diagonal of object), size, instantaneous
speed, location, and color, are approximated by histograms.
The location histogram keeps track of the image coordinates
of the object trajectory and it can be used for zone monitor-
ing. Using the size histogram, we can distinguish an object
moves along the camera focal direction (size will get larger)
from another object that moves parallel. Often, an object
moves at different speeds during its lifetime.

The speed histogram gains more importance in such sce-
narios that motion properties is the main source of infor-
mation. This histogram can interpret the regularity of the
movement to detect the erratically moving objects. A vehi-
cle involved in a crash accident can be distinguished since
its speed histogram will have dual modalities at the very
high and very low speeds rather than being distributed uni-
formly or having a single peak. The orientation histogram
makes it possible to distinguish objects moving on certain
paths. We can find a vehicle that first backs up on a wrong
lane and continues in the right direction, which may not be
detected using only an ordinary orientation representation.
The aspect ratio is a good descriptor to differentiate human
objects and vehicles. The aspect ratio histogram can be ef-
fectively used to determine the gait of a person.

The color properties may be represented by a conven-
tional histogram or by a few number of dominant colors
with an additional computational cost. For low-resolution
scenarios such that sufficiently large faces (for human ob-
jects) and license plates (for vehicles) are difficult to extract,
the color histogram remains as the only choice to identify
objects. For instance, the person who gets dressed in a dif-
ferent color from the rest of the workers may be the object
of interest at a factory surveillance setting.

Since histograms fall short of capturing the temporal
properties of time-sequences, we also use temporal model
based representations. Certain detection tasks require sim-
ilarity measurements based on the form of the trajectories
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Figure 3: Top: a sample coordinate sequence consists of
40 points. Bottom: corresponding speed and orientation se-
quences computed from the coordinate sequence. It is more
effective to understand (thus to evaluate computationally)
acceleration of an object from the speed sequence, and di-
rection changes from the orientation sequence.

independent of the coordinate values and initial time. In ad-
dition to the conventional time-coordinate sequence repre-
sentation, we define two sequences using the instantaneous
orientation and speed values as illustrated in Fig. 3. These
sequences can evaluate the trajectory form similarity even
if there is spatial and temporal translation between the tra-
jectories.

2.2. Frame Based Features

On the other hand, frame-wise features specify the charac-
teristics of objects existing within the same frame. These
features become more distinctive as the number of the visi-
ble objects in the frame increases. We use frame-wise fea-
tures to determine the instances of the events as opposed to
finding the particular objects.

The number of objects detected at the current frame is
one frame-wise feature. This feature may give important
clues about the ambiguous situations, e.g. an unexpectedly
high number of people in a room in case the room is usually
empty. The total size of the objects is another feature that
indicates the density of objects. An aggregated location his-
togram shows where objects stay with respect to the image
plane. The dominant orientation measures the aggregated
orientation of all objects in the frame. The histogram of the
instantaneous orientations captures the distribution of orien-
tation within the frame. This feature can detect the changes
of the motion flow direction. For instance, it may indicate
which team is on attack at a soccer game. The speed his-
togram of the objects also defines the magnitude distribu-
tion of the motion in the current frame. This feature can
distinguish frames in where an object has different speed
from the rest. The frame-wise histograms of the aspect ra-
tios and size are defined similarly.
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2.3. HMM Representations

We transfer the coordinate, orientation, and speed se-
quences into a parameter space A that is characterized by
a set of HMM parameters.

An HMM is a probabilistic model composed of a number
of interconnected states in a directed graph, each of which
emits an observable output. Each state is characterized by
two probability distributions: the transition distribution over
states and the emission distribution over the output symbols.
A random source described by such a model generates a se-
quence of output symbols. Since the activity of the source
is observed indirectly, through the sequence of output sym-
bols, and the sequence of states is not directly observable,
the states are said to be hidden.

We replace the trajectory information as the emitted ob-
servable output of the above directed graph. The hidden
states then capture the transitive properties of the consecu-
tive coordinates of the spatiotemporal trajectory. The state
sequence that maximizes the probability becomes the cor-
responding model for the given trajectory.

A simple specification of an K-state {S1, Sa2,..., Sk}
continuous HMM with a Gaussian observation is given by:

1. A set of prior probabilities # = {m;} where m; =

2. A set of state transition probabilities B = {b;; }, where
bij = P(qt_,_l = Sj|qt = Sl) and 1 S i,j S K.

3. Mean, variance and weights of mixture models
N(Oy; pj, 0;) where pj and 3, are the mean and co-
variance of the state j.

Above, ¢; and O, are the state and observation at time ¢.
For each trajectory 7', we fit an H-mixture HMM \ =
(m, B, i, ¥) that has left-to-right topology using the Baum-
Welch algorithm. We chose the left-to-right topology since
it can efficiently describe continuous processes. We train a
HMM model using the trajectory as the training data. As a
result, each trajectory is assigned to a separate model.

The optimum number of states and mixtures depend on
the complexity and duration of the trajectories. To pro-
vide sufficient evidence to every Gaussian of every state
in the training stage, the lifetime of the trajectory should
be much larger than the number of models in the mixture
times the number of states N > H x K. On the other
hand, a state can be viewed as a basic pattern of the tra-
jectory, thus depending the trajectory the number of states
should be large enough to conveniently characterize distinct
patterns but small enough to prevent from overfitting.

3. Features to Events

An event is defined as “something that happens at a given
place and time”. We detect two types of events using the
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°
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Figure 4: Usual events is detected using affinity matrices.
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above features: 1) object domain events, 2) frame domain
events. An object domain event is obtained by evaluat-
ing the mutual similarities (unusual) and clustering objects
(usual) using their properties. Similarly, a frame domain
event is derived from the frame features and it corresponds
to a particular time instance. Therefore we define events
as either as clusters of parameter space components (usual
events) or outliers (unusual events). We present two meth-
ods to detect unusual and usual events. An unusual event is
associated with the distinctness of the activity. For instance,
a running person where everybody walks is interpreted as
unusual as well as a walking person where the rest run. A
usual event indicates the comnonality, e.g. a path that most
people walks. Flow diagrams of the detection process for
usual and unusual events are given in Figures 4 and 6.

To detect the usual events, we find object clusters by an-
alyzing the affinity matrices. For each feature, an affinity
matrix is computed using the pair-wise object similarities.
Then, matrices are added and normalized to obtain an ag-
gregated matrix. We apply eigenvector decomposition to
find the optimal number of clusters. We use the decom-
posed matrix and then thresholded values to assign objects
in the clusters. We associate feature weights, which can be
adapted to specific applications using priori information.

To determine the unusual events, we analyze each affin-
ity matrix. Objects are ordered with respect to their con-
formity scores. These scores are multiplied by the weights
to inject the priori information. Finally, the objects are re-
ordered with respect to the total conformity scores, and the
objects that have low scores are identified as unusual events.
The same analogy is valid for the frame domain events.

Thus, we define an unusual event in relation to other
observed behavior, which can be done either incorporating
only the simultaneously existing objects (group of frames)
or all detected objects (all frames) in the history.
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Why Spectral Clustering?

Note that, it is possible to compute pair-wise distances for
unequal duration trajectories, which are very common for
object tracking applications, but it is not possible to map all
the trajectories into a uniform data space where the vector
dimension is constant. Therefore, the ordinary clustering
methods that require uniform feature size are not applicable
for this purpose. Thus, we developed the following spectral
clustering based method.

3.1. Affinity Matrix

For each feature, an affinity matrix A is constructed. The
elements a;; of this matrix are equal to the similarity of
the corresponding objects ¢ and j, 7,7 = 1,..., M. The
similarity is defined as a;; = e~49/29"  where d(i, j)
is distance, and o2 is a constant scaler. Note that matrix
A € R™™ is a real semi-positive symmetric matrix, thus
AT = A
In case of the HMM parameter based features, the dis-
tance d(i, j) is measured using a mutual fitness score of the
models and input features. We define the distance between
two trajectories in terms of their HMM parameterizations as
d(T*, T = |L(T*\*) + L(T";\")
—L(T%A") = L(T* 0| (1)

which corresponds the cross-fitness of the trajectories to
each other’s models. A detailed analysis of HMM distance
measures can be found in [13].

The L(T% \,), L(T?; \y) terms indicate the likelihood
of the trajectories to their own fitted model, i.e. we obtain
the maximum likelihood response for the models. The cross
terms L(T% \y), L(T% \,) reveal the likelihood of a tra-
jectory generated by the other trajectories model. In other
words, if two trajectories are identical, the cross terms will
have a maximum value, thus eq. 1 will be equal to zero. On
the other hand, if trajectories are different, their likelihood
of being generated from each others model will be small,
thus the distance will be high.

3.2. Detection of Usual Events

First, the affinity matrices are decomposed using a certain
number of the largest eigenvectors.

Eigenvector Decomposition

The decomposition of a square matrix into eigenvalues and
eigenvectors is known as eigenvector decomposition.
Although spectral clustering [5], [17], [12], [11] is ad-
dressed before in the literature, to our knowledge no one has
established the relationship between the optimal clustering
of the data distribution and the number of eigenvectors that

should be used for spanning. Here we show that the number
of eigenvectors is proportional to the number of clusters.
Let V. = [vyi va .. v)y] be a matrix formed by the
columns of the eigenvectors. Let D be a diagonal matrix
diag[A1, .., Apr]. Lets also assume eigenvalues are A; >
A2 > ...Ap. Then the generalized eigenvalue problem is

(A—I)V = [AVl . AV]W] = [/\1V1 . /\MVM]D =VD (2)

and A = VDV !, Since A is symmetric, the eigenvectors
corresponding to distinct eigenvalues are real and orthogo-
nal VVT = VTV = I, which implies A = VDVT,

Let a matrix P be a matrix in a subspace K that is
spanned by the columns of V' such as P, = [vy va .. v, 0]
where V is the orthogonal basis satisfies A = VDV,
Now, we define vectors p,, as the rows of the truncated ma-
trix Py as

pP1 vy o vy 0
P, = : = : : 3

PM UM1 vpmg 0

We normalize each row of matrix P, by p;; <«

Dij /A /E;C p3;- Then a correlation matrix is computed us-

ing the normalized rows by Cy, = P Pg . For a given Py,
the value of p;; indicates the degree of similarity between
the object 7 and object 5. Values close to one correspond
to a match whereas negative values and values close to zero
suggest that objects are different. Let € be a threshold that
transfers values of matrix C' to the binary quantized values
of an association matrix Wy, as

o 1 Cij26
wu—{ 0 o <e )

where € =~ 0.5. The clustering is then becomes grouping the
objects that have association values equal to one w;; = 1.

To explain why this works, remember that eigenvec-
tors are the solution of the classical extremal problem
max v’ Av constrained by v/'v = 1. That is, find the
linear combination of variables having the largest variance,
with the restriction that the sum of the squared weights is
1. Minimizing the usual Lagrangian expression v’ Av —
A(vTv — 1) implies that (I — A)v = Av. Thus, v is the
eigenvector with the largest eigenvalue.

As a result, when we project the affinity matrix columns
on the eigenvector v with the largest eigenvalue and span
KC1, the distribution of the a;; will have the maximum vari-
ance therefore the maximum separation. Keep in mind that
a threshold operation will perform best if the separation is
high. To this end, if the distribution of values have only two
distinct classes then a balanced threshold passing through
the center will divide the points into two separate clusters.
With the same reasoning, the eigenvector v, with the sec-
ond largest eigenvalue, we will obtain the basis vector that

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’04)
1063-6919/04 $ 20.00 IEEE



gives the best separation after normalizing the projected
space using the vy since vi L vo. Thus, we deduct the
following lemma:

Cluster & Eigenvector Lemma: The number of largest
eigenvalues (in absolute value) to span subspace is one less
than the number of clusters.

As opposed to using only the largest or first and second
largest eigenvectors (also the generalized second minimum
which is the ratio of the first and the second depending the
definition of affinity), the correct number of eigenvectors
should be selected with respect to the target cluster num-
ber. Using only one or two does fail for multiple clusters
scenarios.

The values of the thresholds should still be computed.
We obtained projections that gives us the maximum sep-
aration but we did not determine the degree of separation
i.e. maximum and minimum values of projected values on
the basis vectors. For convenience, we normalize the pro-
jections i.e. the rows of current projection matrix (V) as
p”'p = 1 and then compute the correlation VkTVk. Correla-
tion will make rows that their projections are similar to get
values close to 1 (equal values will give exactly 1), and dis-
similar values to 0. By maximizing the separation (distance)
between the points in different clusters on an orthonormal
basis, we pushed for the orthogonality of points depending
their clusters; p;p; ~ 1 if they are in the same cluster, and
p:;p; ~ 0 if they are not.

Estimating the Number of Clusters - Ad Hoc Method

After each eigenvalue computation of matrix A, we com-
pute a validity score oy, using the clustering results as

k
ak:ZML Z Dij (5)

€ i,j€Ze

where Z. is set of objects included in the cluster ¢, M, num-
ber of objects in Z.. The validity score gets higher values
for the better fits. Thus, by evaluating the first local maxi-
mum of this score, we determine the correct cluster number
automatically. Figure5 demonstrates the assessment of the
proposed score with well-defined clusters. As shown, the
validity score accurately chooses the the optimal number of
clusters at each time. Thus, we answer the natural question
of clustering; ”what should be the total cluster number?”

As a summary, the clustering for a given maximum clus-
ter number £* includes

1. Compute A, approximate eigenvectors using Ritz val-
ues A\ ~ 0, find eigenvectors vy, for k = 1, .., k*,

2. Find P, = ViV and Qy for k = 1, .., k*,

3. Determine clusters and calculate ay,
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Figure 5: Performance evaluation of the validity score. As
visible, the validity score reaches its maximum value at the
optimal cluster number at each case.

4. Compute o/ = da/dk and find local maxima.

The maximum cluster number k* does not affect the deter-
mination of the fittest cluster; it is only an upper limit.

Comparison with K-means

A question arise that why we preferred the eigenvector clus-
tering to the ordinary k-means?

Most importantly, a ‘mean’ or a ‘center’ vector cannot
be defined for trajectories that have different durations. We
only have pair-wise distances. In eigenvector decompo-
sition, mutual inter-feature distance as opposed to center-
distance is used.

Ordinary k-means may oscillate between cluster centers,
and different initial values may cause completely dissimi-
lar clusters. Besides, k-means can stuck to local optima.
Therefore, k-means based cluster number estimation is not
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Figure 6: Unusual events is found using conformity scores.

always accurate. Furthermore, the computational complex-
ity of k-means increases with the larger sizes of the fea-
ture vectors. Although the eigenvector decomposition is
O(3M?® + $kM?), it is not exponentially proportional to
the size of feature vector s. (Note that we do not claim the
eigenvector computation cannot be done more efficiently
than O(M?), e.g. for m eigenvectors, the complexity re-
duces to O(mM?)). In case the s ~ M, k-means algorithm,
which has complexity of O((klog M)* + Jk* M) becomes
much more demanding than eigenvector decomposition (J
is the required iterations necessary for convergence).

3.3. Detection of Unusual Events

Using the affinity matrices, conformity scores of the ob-
jects are computed. The conformity score of an object ¢
for a given feature f is the sum of the corresponding row
(or column) of the affinity matrix that belong that feature
B(i) = >, ain. To fuse the responses of different fea-
tures, we propose a simple weighted sum approach. We
obtain a total conformity score for an object as

80) = 32 3wy By, ©
!

where wy = 1 for equivalently important features. Then,
we order each object with respect to its total conformity
score. The object that has the minimum score corresponds
to most different, thus most unusual event.

One distinct advantage of the conformity score is that it
does not assert unusuality in case all events are similar. Fig-
ure 7 demonstrates the conformity scores for two different
cases: (7-a) data consists of well-defined clusters where all
points are similar and no significant variance exists, and Fig.
(7-b) same data with two additional outlier points. Figure
7-c shows the conformity scores of the points within first
well-defined data. As visible, the scores are close to each
other. However, for the second data set where two outlier
points exists, the conformity of the outlier points are signif-
icantly lower as given in Fig.7-d. Furthermore, more a point
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Figure 7: (a) Data that consists of two clusters. As visi-
ble, all points belong to one of the clusters. (b) Same data
with two additional points that are located significantly far
away from the main clusters. (c) Corresponding conformity
scores of the points in a. (d) Conformity scores of the points
in b. Note that, the conformity scores decreases as the points
become more disimilar.

becomes dissimilar to the rest of the points, lower its score
becomes. This shows that the proposed conformity score
effectively determines the degree of the ambiguity as well
as it distinguishes the unusual event from the ordinary.

Feature Selection and Adaptive Weighting

It is also possible to select most discriminating features be-
fore the clustering stage. However feature selection requires
priori knowledge about the application and understanding
of the nature of events. Thus, we preferred to let the clus-
tering module to determine the prominent features instead
of a preselection of such features. Moreover, we will show
that truncation of the eigenbasis amplifies unevenness in the
distribution of features by causing features of high affinity
to move towards each other and other to move apart.

Our simulations show that the feature variance is an ef-
fective way to select the above feature weights w;. The fea-
ture variance is calculated from the corresponding affinity
matrix. In case the feature supplies distinctive information
the variance will have a higher value. The opposite is also
true. Thus, we assign the fusion weights as

wy = ,n_lg Z Z(aij — pg)? (7
i g

where a;; is an element of the affinity matrix A for the
feature f. This enables emphasizing important features.
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Figure 8: (a) Set of trajectories, (b) corresponding affinity
matrix, (c) validity score, (d)result of automatic clustering.
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4. Experiments

We conducted experiments using both synthetic and real
data. For HMM representation of the coordinate, speed, and
orientation. We used the same number of models and num-
ber of states. To make the simulations more challenging we
contaminated the trajectories with noise.

Fig.11 shows three different simulated scenarios for de-
tection of unusual events: 1) an object moving in opposite
direction to the rest, 2) a waiting object where other objects
moves, 3) a fast moving object. All of these scenarios may
corresponds real unusual suspicious events, for instance the
first scenario corresponds to a wrong-lane entry, the sec-
ond scenario is a browsing or stalking activity, and the third
scenario may be a running person in an airport where ev-
erybody walk. The trajectories for each case are depicted
in Fig.11-a. The second column (Fig.11-b) shows the fused
affinity matrices using the weights wy. We compute the
conformity scores 3(¢) from the affinity matrices, which are
given Fig.11-d. As visible, the conformity score is found the
most unusual event accurately at each time (Fig.11-e).

We can also find a list of most unusual events using the
conformity scores as shown in Fig.10 where the most un-
usual events were 1) a person moving across an highway,
2) a car backing up on the shoulder, 3) a person getting out
of the car and leaving the scene, and a car slowing down in
the shoulder. We can extent this list. Note that, we didn’t
adapt the weights or define models, the algorithm found the
events automatically.

We simulated usual event detection using the trajectories
given in Fig.8-a. In this set, there are 5 distinct pathways

orientation histogram

1000 1500 2000
frame no
——m = —

(e)

Figure 9: (a-b) Traffic lanes are learned using the HMM’s
for the object-wise coordinate and orientation sequences.
(c-d) The team on attack is accurately determined using
the frame-wise orientation histogram. (e) Orientation his-
togram and clustering results (marked under the horizontal
axis) Black frames show group of frames in which the red
team is on attack, blue shows indicate the white team is on
attack, and gray indicates neutral situation.
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Figure 10: Automatic unusual event detection results: (a)
frame shows the most unusual object who is crossing over
the highway, (b) other 124 trajectories and unusual objects.
No priori information is used.

exist. Fig.8-b shows the aggregated affinity matrix. We de-
termined the optimal number of clusters using the validity
score « as shown in Fig.8-c. The maximum validity score is
obtained for £ = 5 which is same as the ground truth. The
clustered trajectories are given in Fig.8-d. As visible, the
proposed method successfully found the correct clusters.

We applied the usual event detection to real data and
used HMM’s of coordinate and orientation sequences. As
depicted in Fig. 9-a,b, we obtained the usual events as the
different traffic lanes. We used frame-wise orientation his-
togram features for soccer video. We observed that the pro-
posed algorithm automatically detected the usual events as
the team on the attack. In Fig.9-c.d two frames that corre-
spond to the two different usual events are shown.

Since the extended set of features are more expressive,
we are able to detect events that cannot be detected using
the features that have been reported so far. Our technique
thus offers substantial improvement over the existing tech-
niques in both computational simplicity and enhanced func-
tionality. Our experiments also prove the proposed methods
are stable.

5. Discussion

We proposed a new set of more expressive features that en-
able detection of events that could not be detected using
conventional descriptors. We developed an unsupervised
clustering framework based on the above and successfully
applied it to event detection. This framework is not ad-
versely affected by increases in feature dimensionality.

We achieve clustering of variable length trajectories by
pair-wise affinities as opposed to unstable interpolation
based approaches. We described a feature selection criteria
to amplify the contribution of discriminative features. We
also showed that the number of largest eigenvalues (in ab-
solute value) to span subspace is one less than the number
of clusters.
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Figure 11: Unusual event detection: (a) input trajectories, (b) affinity matrices, (c) conformity scores (lowest score shows
the most unusual), (d) detected most unusual trajectory (red), and (e) results in spatiotemporal space. First row simulates the
wrong lane entry, second row simulates waiting, third row simulates running.
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