
Towards Practical Evaluation of Pedestrian
Detectors

Mohamed Hussein
Department of Computer Science

University of Maryland
College Park, Maryland 20742
Email: mhussein@cs.umd.edu

Fatih Porikli
Mitsubishi Electric Research Labs

Cambridge, MA 02139
Email: fatih@merl.com

Larry Davis
Department of Computer Science

University of Maryland
College Park, Maryland 20742

Email: lsd@cs.umd.edu

Abstract—Despite recent significant advancement in the area
of pedestrian detection in images, little effort has been devoted to
algorithm evaluation for practical purposes. Typically, detectors
are evaluated only on color images. It is not clear how the
performance would be affected if other modalities are used,
e.g. thermal or near infrared. Also, detectors are evaluated on
cropped images that have the same size as training images.
However, in practice, detectors are applied to large imageswith
multiple pedestrians in different locations and sizes. To apply
a single size pedestrian detector, the input image is, typically,
scanned several times with different window sizes. It is not
clear how the detection performance would be affected by such
multiple-size scanning technique. Moreover, to implementsuch
a technique, one is faced with a multitude of design choices,
each of which potentially affects the performance of the detector.
The contribution of this paper is to assess and reason about
the differences in detection performance of two state of theart
detectors across changes in modality (visible or near infrared),
evaluation method (on cropped or whole images), the effect of
different design choices (resizing features or images, smoothing
or not).

Index Terms—Human Detection, Performance Evaluation,
Near Infrared.

I. I NTRODUCTION

Pedestrian detection is one of the most challenging tasks in
computer vision with a long list of fundamental applications
from intelligent vehicles and video surveillance to interactive
environments.

Pedestrian detection methods can be categorized into two
groups based on the camera setup. For static camera setups,
object motion is considered as the distinctive feature. A
motion detector, either a background subtraction or image
segmentation method, is applied to the input video to extract
the moving regions and their motion statistics. A real time
moving human detection algorithm that uses Haar wavelet
descriptors extracted from space-time image differences was
described in [1]. Using AdaBoost, the most discriminative
frame difference features were selected, and multiple features
were combined to form a strong classifier. A rejection cascade
that is constructed by strong classifiers to efficiently reject
negative examples is adopted to improve the detection speed.
A shortcoming of the motion based algorithms is that they fail
to detect stationary pedestrians. In addition, such methods are
highly sensitive to view-point and illumination changes.

The second category of methods is based on detecting
human appearance and silhouette, either applying a classifier
at all possible subwindows in the given image, or assem-
bling local human parts [2]–[6] according to geometric con-
straints to form the final human model. A popular appearance
based method is the principal component analysis (PCA)
that projects given images onto a compact subspace. While
providing visually coherent representations, PCA tends tobe
easily affected by the variations in pose and illumination
conditions. To make the representation more adaptive to
changes, local receptive fields (LRF) features are extracted
from silhouettes using multi-layer perceptrons by means of
their hidden layer [7], and then are provided to a support
vector machine (SVM). In [8], a polynomial SVM was learned
using Haar wavelets as human descriptors. Later, the work was
extended to multiple classifiers trained to detect human parts,
and the responses inside the detection window are combined
to give the final decision [9]. In [10], an SVM classifier, that
was shown to have false positive rates of at least one-two
orders of magnitude lower at the same detection rates than the
conventional approaches, was trained using densely sampled
histograms of oriented gradients (HOG) inside the detection
window. In a similar approach [11], near real time detection
performances were achieved by training a cascade model.

Despite the abundant work in pedestrian detection, little
effort has been devoted to algorithm evaluation for practical
purposes. Typically, detectors are evaluated on color images
that are cropped to have the same size as the images used
to train the detector. However, in practice, the input of the
pedestrian detection algorithm is a video frame with possibly
multiple pedestrians in different spatial locations and different
sizes, which requires different scanning techniques. Besides,
other imaging modalities such as thermal IR may be of
interest in certain applications. It is not clear how the detection
performance is affected by the adopted scanning strategy or
the image modality.

Here, we aim to assess and discuss the differences in
detection performance of two state of the art appearance-based
detectors [11], [12] across changes in modality (visible ornear
infrared), evaluation method (on cropped or whole images),the
effect of different design choices (resizing features or images,
smoothing or not). We experiment on two different datasets:

one dataset consisting of color and another of near infrared
images.

The paper is organized as follows. In Section II, we briefly
describe the two pedestrian detectors that we analyzed. In
Section III, we discuss the datasets, the training and testing
parameters, evaluation methods and metrics, and give a de-
tailed comparison. Finally, we present our main conclusions
in section IV.

II. EVALUATED DETECTORS

The two human detectors which we used for evaluation
are based on a rejection cascade of boosted feature regions.
They differ in how they describe the feature regions and in
how the boosting algorithm works. One detector uses Region
Covariance to describe feature regions and uses boosting on
manifolds for classification [12]. We refer to this detector
as RCM, for Region Covariance on Manifolds. The other
detector uses Histograms of Oriented Gradients (HOG) to
describe feature regions and uses conventional boosting for
classification [11]. We refer to this detector as HOG. For the
sake of completeness, we briefly describe here the notion of
a rejection cascade of boosted feature regions, as well as the
descriptors used by the two classifiers. The reader is referred
to the original papers for details.

A. Rejection Cascade of Boosted Feature Regions

Rejection cascades of boosted feature regions were popular-
ized by their success in the area of face detection [13]. They
are based on two main concepts: boosted feature regions, and
rejection cascades.

Boosting [14] works by combining weak classifiers to build
a strong classifier. Boosting feature regions can be understood
as combining simple feature regions to build a strong rep-
resentation of the object which is a representation that can
be used to best discriminate between positive and negative
training examples. Feature regions in our case are rectangular
subregions from feature maps of input images.

A rejection cascade is built of a number of classification
layers. A test pattern is examined by layers of the cascade
one after another until it is rejected by one of them, or untilit
is accepted by the final layer, in which case it is classified
as a positive example. During training of the cascade, the
first layer is trained on all positive examples and a random
sample of negative examples. Each subsequent layer is trained
on all positive examples and only negative examples that are
wrongly classified as positives by the preceding layers. In this
way, each layer handles harder negative examples than all the
preceding layers. The benefit of this mechanism is two fold.
One is the possibility of usage of a huge number of negative
examples in training the classifier, which is not possible in
training a traditional single layer classifier. The other isthat,
during testing, most negative examples are rejected quickly
by the initial layers of the cascade and only hard ones are
handled by later layers. Since, in our applications, most of
the examined patterns are negative, the rejection cascade is
computationally very efficient since it quickly rejects easy

negative examples while spending more time on hard negative
or positive examples. In our implementation, each cascade
layer is trained using the Logit Boost algorithm [14]. In the
case of Region Covariance, we use the variant that supports
manifolds [12].

B. Region Covariances

Region covariances were first introduced as descriptors in
[15] and then used for human detection [12], which outper-
formed other state of the art classifiers. LetI be aW × H

one-dimensional intensity or a three-dimensional color image,
andF be aW × H × d dimensional feature image extracted
from I

F (x, y) = Φ(I, x, y) (1)

where the functionΦ can be any mapping such as intensity,
color, gradients, filter responses, etc. For a given rectangular
region R ⊂ F , let {zi}i=1..S be thed-dimensional feature
points insideR. The regionR is represented with thed × d

covariance matrix of the feature points.
For the human detection problem, the mappingΦ(I, x, y)

is defined as
[

x y |Ix| |Iy |
√

I2
x + I2

y |Ixx| |Iyy| arctan
|Ix|

|Iy |

]T

(2)

wherex andy represent pixel location,Ix, Ixx, .. are intensity
derivatives, and the last term is the edge orientation. With
the defined mapping the input image is mapped to ad =
8 dimensional feature image. The covariance descriptor of a
region is an8×8 matrix and due to symmetry only the upper
triangular part is stored, which has only 36 different values.
The descriptor encodes information of the variances of the
defined features inside the region, their correlations witheach
other. These variances and correlations, in turn, encode the
spatial layout of the region.

Region covariances can be computed efficiently, inO(d2)
computations, regardless of the region size, using integral
histograms [16] [15]. Covariance matrices, and hence re-
gion covariance descriptors, do not form an Euclidean vector
space, which necessitates modifications to conventional ma-
chine learning techniques. But, since covariance matricesare
positive definite matrices, they lie on a connected Reimannian
manifold. Therefore, instead of using a conventional boosting
algorithm, boosting on manifolds is used [12].

C. Histograms of Oriented Gradients

Histograms of Oriented Gradients were first applied to
human detection in [10], which achieved a significant im-
provement over other features used for human detection at
that time. Histograms of Oriented Gradients were used in a
rejection cascade of boosted feature regions framework in [11]
to deliver comparable performance to [10] but at a much higher
speed.

To compute the Histogram of Oriented Gradients descriptor
of a region, the region is divided into4 cells, in a2 layout. A9
bin histogram is built for each cell. Histogram bins correspond

to different gradient orientation directions. Instead of just
counting the number of pixels in each bin, gradient magnitudes
at the designated pixels are accumulated. The four histograms
are then concatenated to make a36-dimensional feature vector,
which is then normalized. In our implementation, we useL2

normalization for HOG features.
Like Region Covariance descriptors, HOG descriptors can

be computed fast using integral histograms. The number of
integrals needed for HOG is equal to the number of orienation
bins, which is typically fewer than integrals needed for Region
Covariance. In our experiments, we found that constructing
integrals for the HOG descriptors takes around 36% of the
time needed to construct integrals for the Region Covariance
descriptors, when 9 orientation bins are used.

III. E XPERIMENTAL EVALUATION

We start by describing the two datasets we used and the
differences between them. Then, we list the parameters usedin
training and testing the two classifiers. Afterwards, we explain
the two evaluation methods: evaluation on cropped windows
and evaluation on whole images. Then, we explain the metrics
we compute in each evaluation method. Finally, we present the
evaluation results.

A. Datasets

We evaluated the detectors on two different datasets, INRIA-
Person and MERL-NIR. The INRIA dataset was introduced
in [10], and subsequently used to evaluate several human
classifiers, e.g. [11] and [12]. It consists of close to 2600
images, around 900 of which contain full-body human sub-
jects. The remaining images are background images. Images
are progressive scan color images of different sizes and aspect
ratios. Images containing humans are of different people and
locations. Some people appear in multiple images, but, mostof
them appear only once. In total, the INRIA dataset contains
around 1800 different human images. Human images range
from 48 to 832 pixels high. Sample whole images and cropped
human images, that are resized so that the human’s height is
96 pixels, are shown in figure 1.

The MERL-NIR dataset consists of around 60000 frames
from a long video sequence. The video is shot from a vehicle
touring an Asian city. The video is a near infrared video
with interlaced scanning. Close to 10000 frames of the video
contain annotated full-body human subjects. In total, the
sequence contains close to 12000 human images. Because it
is a video sequence, the same person can appear in many
consecutive frames. Human subjects in the video compose
285 different tracks. Sample whole images and cropped human
images, that are resized so that the human’s height is 36 pixels,
are shown in figure 2.

B. Training and Testing Parameters

Each dataset is divided into two portions, one for testing and
one for training. For the INRIA dataset, we use the standard
training and testing portions that come with the dataset. Images
that contain humans are divided as 614 for training and 287 for

Fig. 1. Sample whole and cropped pedestrian images from INRIA dataset.

Fig. 2. Sample whole and cropped pedestrian images from MERL-NIR
dataset.

testing. Background images are divided as 1218 for training
and 453 for testing. Training is performed on positive samples
cropped from images. Each positive example is resized so that
the height of the human subject is 96 pixels. Then, a margin is
added from background pixels to make the windows 128 pixels
high. The width is set to half of that value, i.e. 64 pixels. The
bottom row of figure 1 shows examples of these images.

For the MERL-NIR dataset, we excluded parts of the
sequence that are too dark for a human inspector to locate
people. These constituted roughly the last 15000 frames of
the sequence. The other part is divided as 35000 frames
for training and 10000 frames for testing. From the training
portion, 5435 frames contained annotated humans. From the
testing portion, 2818 frames contained annotated humans.
Since consecutive frames are similar to one another, we
sampled 1250 frames from each group to use in training

and testing the classifiers. Annotated human subjects in the
sampled frames are cropped and resized so that the human
subject’s height is 36 pixels. Then, a margin is added from
background pixels to make the windows 48 pixels high. The
width is set to 24 pixels. Due to a shortage of large human
subjects in the dataset, we could not use the same size as in
INRIA dataset. The bottom row of figure 2 shows examples
of these images.

For each cropped positive window, in both datasets, another
copy is made by flipping the window around its central
vertical axis. Negative samples for training are created by
scanning background images with different window sizes. We
use 9000 negative samples in training each layer of the cascade
classifier. The target detection rate for each layer of the cascade
was set to0.998. The target overall false alarm rate was set
to 10−6. The target layer false alarm rate and the number of
layers was not the same for the two datasets. For the INRIA
dataset, the number of layers was set to 30 and the target layer
false alarm rate was set to0.65. For the MERL-NIR dataset,
the number of layers was set to 50 and the target layer false
alarm rate was set to0.75. The difference between the two
settings is in the level of control over operating point selection
and should have no effect of the detection results.

C. Evaluation Method

We evaluated the classifiers on both cropped windows and
whole images.

1) Evaluation on Cropped Windows:Positive examples are
the cropped and resized windows around human subjects.
Negative examples are windows of any size that are cropped
from any location of background images.

2) Evaluation on Whole Images:We use the testing images
that contain humans subjects. Each image is scanned with
9 different window sizes. In the case of the INRIA dataset,
the smallest scanning window size is48 × 96. In the case of
the MERL-NIR dataset, the smallest scanning window size is
24×48. Subsequent window sizes are generated by multiplying
the smallest sizes by powers of1.25 in the case of the INRIA
dataset, and1.7 in the case of the MERL-NIR dataset. The
scanning step is set to 5% of the scanning windows side
length. When we evaluate on whole images, the same test
image contains both negative and positive examples.

Since we train each classifier on single size images, in
the case of whole images which contain humans of possibly
different sizes, we have two options. One is to resize the
images so that our scanning window size becomes the same
as the training size and then scan the resized image with the
training size. For example, if we want to scan a640 × 480
image with a window of size128×256, while the classifier is
trained on size64×128, then we resize the image to320×240
and then scan with the training size. We will refer to this
technique asresizing images. The other option is to resize
the features selected by the classifier while maintaining their
relative sizes to the scan window. For example, if a feature
of size 8 × 8 at location(4, 4) was selected by the classifier
when trained on a window of size64, then, if we scan an

image with a window of size128 × 256, the same feature is
computed at location8 × 8 with size 16 × 16. We will refer
to this technique asresizing features.

Resizing features is generally faster since gradients and
integral histograms need to be computed only once, while
in resizing images, these computations need to be repeated
for each size. But, as we will see in section III-E2, resizing
features is less accurate.

D. Evaluation Metrics

To evaluate the two classifiers, we use the DET (Detection
Error Tradeoff) curves as in [10]. The DET curves relate the
miss rateto the false alarm rateon a log scale for both axes.

In the case of evaluation on cropped windows, the positive
and negative examples are well defined. All positive examples
contain a human subject that is centered in the window, and
the size of the window is adjusted to be the same as training
examples. Also, all negative examples do not contain any
part of a human since they are all cropped from background
images. Therefore, in the case of evaluation on cropped
windows, computing the miss rate and false alarm rate is
straight forward.

On the other hand, in the case of evaluation on whole
images, the situation is different. An image, that can contain
any number of humans in random locations and sizes, is
entirely scanned several times, each time with a different
window size. Scanned windows are not all perfect positive or
negative examples. A scanned window may contain a human
but the relative size of the human with respect to the window
size is not the same as the relative size used for training, or
it may contain a human that is not centered. In either case,
the classifier may make a wrong decision because the relative
locations of features are not exactly the same as learned during
training. From a practical point of view, in many applications,
detections are acceptable even if slightly shifted, or slightly
smaller or larger than the subject. Therefore, we should not
consider such windows as negative examples and penalize the
classifier if it classifies them as positives. However, if we
consider all scanned windows that are close to a human subject
as positive examples, we will be penalizing the classifier ifit
misses any of them, although detecting just one of them is
good enough in practice.

Based on these considerations, in the case of evaluation
on whole images, we need a different measure for what is
a missed detection and what is a false alarm. We consider any
scanned window that is ”significantly” (see below) far from all
annotated human subjects in the image as a negative example,
and hence count a positive classification of it as a false alarm.
A missed detection is counted if an annotated human subject is
”significantly” far from all scanned windows that are classified
as positive by the classifier.

We now define how to determine whether a scanned window
is significantly close to or far from an annotated human
subject. We require a distance measure that is minimum when
the scanned window is perfectly aligned with an annotated
human subject, and is maximum when there is no overlapping

at all between them. One measure that has this property is the
overlap distance. Let |R| be the area of a regionR. Consider
two regionsR1 andR2. The overlap distance betweenR1 and
R2 is defined as

OLD(R1, R2) =
|R1 ∪ R2|

|R1 ∩ R2|
. (3)

This is the ratio between the area of the union to the area
of the intersection of the two regions. Given this definition,
the overlap distance takes the minimum value of 1, when the
two regions are perfectly aligned, and takes the value∞ when
there is no overlap at all between them.

In our evaluation, we consider a scan window negative if
its overlap distance to the closest annotated human subjectis
above 16. We count a miss detection if all scanned windows
within overlap distance of 2 around an annotated human
subject are all classified as negatives.

E. Evaluation Results

We first present the baseline performance of the two clas-
sifiers on the two datasets. The baseline performance is the
performance under the default parameters, which are the best
parameters. Then, we will introduce a number of changes to
the default parameters and describe how performance differs.
Whenever a change is introduced, curves of the default param-
eters are reprinted besides the new curves to make comparisons
easier.

1) Performance Using Default Configurations:Besides the
difference between the two datasets in training and testing
parameters mentioned in sections III-C and III-D, in the case
of evaluation on whole images, the default setting for the
INRIA dataset is to smooth the image after resizing it. But,
the default for the MERL-NIR is to resize without smoothing
afterwards. The reason will be clear in section III-E3.

Figure 3 compares the performance of the two classifiers
on the two datasets. The top row shows performance on
cropped windows. The bottom row shows performance on
whole images. The left column shows performance on INRIA
dataset. The right column shows performance on MERL-NIR
dataset.

In comparing the two classifiers, RCM is almost always
performing better than HOG on the two datasets and with the
two methods of evaluation. That is consistent with the results
reported in [12]. However, in the case of evaluation on whole
images, HOG is able to reach levels of false alarm rate that
are not reached by RCM. That comes at the cost of higher
miss rate.

In comparing the two datasets, performance on the INRIA
dataset is consistently better than performance on the MERL-
NIR dataset for the two classifiers and for the two methods
of evaluations. That is expected because of the difference
between the two datasets. One important difference is the
difference in size of training windows. A training window of
size24×48 is used for the MERL-NIR dataset while a training
window of 64 × 128 is used for the INRIA dataset. That
means in training for the MERL-NIR dataset, the classifier

has less information about the object it trains on. Another
important difference between the two datasets is image quality.
The MERL-NIR dataset suffers from interlacing, motion blur,
and poor focus. Another difference between the two datasetsis
the variability within the training dataset. The INRIA dataset
has more variability in terms of number of people appearing
in the dataset, and the places they appear.

To understand the difference between performance on
cropped windows and whole images, we need to consider the
difference between the miss rates and false alarm rates. For
the false alarm rate, the negative windows used differ in the
two evaluation methods. When evaluating on cropped images,
we use cropped windows from background images that do
not contain any human. When evaluating on whole images,
we use images that contain humans and avoid the areas close
to existing humans. Therefore, the results are not perfectly
comparable in the case of false alarm rate. But, we can see
from figure 3 that the false alarm rate is generally higher in the
case of evaluation on whole images than cropped windows.
The reason for that is probably lack of annotation of some
human subjects. This occurs in some images of the INRIA
dataset when there are many people in the background. It also
occurs in the MERL-NIR dataset when people are partially
occluded and not annotated as human subjects.

In the case of miss rate, there are two factors that explain
the difference between the two methods. One factor is that
for cropped images, the positive images are perfectly aligned
around a human subject whose size is adjusted to make the
relative size of the human subject inside the windows the
same as the training size. On the other hand, in evaluation
on whole images, we use fixed size windows and scan the
image with a fixed step. Therefore, it is unlikely that we obtain
windows that are perfectly aligned and resized as for cropped
windows. That results in a higher miss rate in the evaluation
on whole images. The second factor is, in the evaluation on
cropped images, each annotated human subject has exactly two
cropped positive windows, one in the original position and one
that is flipped around its central vertical axis. Each of these
two images are dealt with independently so that missing any
of them counts towards the miss rate. On the other hand, in
the case of evaluation on whole images, each human subject
can have many windows surrounding it that are all evaluated.
But they are not all dealt with independently. Missing all of
them counts as one missed detection. But, detecting at least
one of them counts as a true detection. Therefore, a single
human subject has more chances to get detected than in the
case of cropped windows. That results in lower miss rate in
the case of evaluation on whole images. Hence, we have two
conflicting factors: one can increase the miss rate and one can
decrease it in each evaluation method. This probably explains
the discrepancy in our results. In figure 3, we find that in
general the miss rate is higher in evaluation on whole images.
But, we can see that the HOG classifier has actually a lower
miss rate when evaluated on whole images in the case of the
MERL-NIR dataset.

For running times, on the MERL-NIR dataset, the RCM

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

HOG
RCM

(a) Performance on cropped INRIA dataset images

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

HOG
RCM

(b) Performance on cropped MERL-NIR dataset images

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

RCM
HOG

(c) Performance on whole INRIA dataset images

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

RCM
HOG

(d) Performance on whole MERL-NIR dataset images

Fig. 3. Detection performance of the two classifiers, using default parameters for each, on both INRIA and MERL-NIR datasets.

classifier takes around22.14 seconds per frame while HOG
takes around2.16 seconds. For the INRIA dataset, RCM takes
around5.9 seconds per image, while HOG takes around0.8
seconds. Therefore, RCM is around 10 times slower than
HOG. The times are different from the INRIA dataset to the
MERL-NIR dataset due to the larger number of false alarms in
the MERL-NIR dataset, which means more scanning windows
are examined by all layers of the cascade.

2) Effect of Resizing Features vs Resizing Images:As
explained in section III-C, when we evaluate on whole images,
we have one of two options: resizing images or resizing
features.

Figure 4 compares the performance of the two classifiers on
the two datasets when resizing images versus resizing features.
The top row plots show performance when resizing images.
The bottom show performance when resizing features. It is
clear that the miss rate is significantly higher for resizing
features than for resizing images, for the two classifiers on
the two datasets. That is understandable since when we resize
the features, we use the classifier for feature sizes that differ
from the sizes used during training. On the other hand, we
can observe that the false alarm rate slightly decreases in the
case of resizing features than in the case of resizing images.

The two classifiers have similar behavior whether we resize
features or images. While RCM typically outperforms HOG,
when resizing features, it became very close to or even worse
than HOG. This is possibly due to the strong normalization

used in computing HOG features, which can make the effect
of changed feature size less severe.

For timing, with resizing features, RCM takes around19.4
seconds per frame on the MERL-NIR dataset, and4.43
seconds per image on the INRIA dataset. The HOG classifier
takes around1.87 seconds per frame on the MERL-NIR
dataset, and0.46 second per image on the INRIA dataset.

3) Effect of Smoothing:In the case of evaluation on whole
images with resizing images, we found that whether to smooth
images after resizing or not is an important factor. In all
cases, we use bi-cubic interpolation to resize images, using
the function provided with the OpenCV library [17]. When
we use smoothing, we use a3×3 Gaussian smoothing kernel,
with standard deviation of0.8. From our experiments, with
results shown in figure 5, the effect of smoothing is not the
same for the two datasets or the two classifiers.

In the case of the INRIA dataset, not smoothing increases
the miss rate of the two classifiers. However, the RCM
classifier is much more affected than HOG although when
we use smoothing the miss rate of HOG is always higher.
In the case of the MERL-NIR dataset, we make the same
observation. The miss rate increases when smoothing is not
used. But, in this case RCM has a lower miss rate than
HOG even without smoothing. The differences between the
two datasets are possibly the reason for the difference in
classifiers’ behavior. The INRIA dataset has detailed images
with a wide range of sizes. When using bi-cubic interpolation

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

RCM
HOG

(a) Performance on whole INRIA dataset images with resizing
images.

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

RCM
HOG

(b) Performance on whole MERL-NIR dataset images with resizing
images.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

RCM
HOG

(c) Performance on whole INRIA dataset images with resizing
features.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

RCM
HOG

(d) Performance on whole MERL-NIR dataset images with resizing
features.

Fig. 4. Comparing resizing images versus resizing features.

without following it by smoothing, some artifacts emerge in
the images, which affects the computed gradients and result
in a higher miss rate. However, in the case of the MERL-
NIR dataset, images are blurred and with poor focus, and
the range of sizes is not as wide as the INRIA dataset. That
reduces the artifacts resulting from resizing the images and
hence reduces the benefit of smoothing. The reason why the
effect of smoothing is not as severe in the case of HOG as it
is in the case of RCM is probably the strong normalization in
constructing HOG features.

For the false alarm rate, smoothing results in increasing the
false alarm rate. That is because lack of smoothing results
in artifacts. These artifacts are likely to result in rejection of
positive examples. Therefore, it is not unexpected to result in
rejection of the negative examples as well. But, the increase in
false alarm rate in the case of RCM is much more than in the
case of HOG. That is probably due to the fact that smoothing
tends to reduce the correlation between gradient magnitude
of pixels in a region and their relative positions. To see that,
consider the extreme case of smoothing when all the pixels
become the same value. In this case there is no correlation
between gradient magnitude and relative position. In the case
of the MERL-NIR dataset, where the effect of smoothing
in reducing artifacts is not really important, the effect of
smoothing in reducing correlation between pixel positionsand
gradient magnitudes becomes much more visible. Hence, we

get the results shown in figure 5b.

IV. CONCLUSION

We presented an evaluation of two state of the art pedestrian
detectors. The goal of our study was to evaluate the detec-
tors in practical scenarios. Our evaluation was conducted on
two datasets with different imaging modalities, human size
distribution, and other factors. We conducted our evaluation
on whole images as well as cropped windows. We studied
effects of two parameter settings: resize images vs. resizing
features, and smoothing images after resizing. Our study
is distinguished by its focus on effect of change in image
modality, and on evaluation on whole images and the effect
of different parameters associated with it.

Although the practical application of pedestrian detection
is on whole images, most evaluations focused on cropped
images. Unfortunately, detection performance on cropped im-
ages is sometimes illusive and does not reveal the actual
classification performance on practical applications. In our
experiments, we observed up to one order of magnitude
increase in false alarm rate and 25% increase in miss rate when
evaluating on whole images instead of cropped windows

When evaluating on whole images, an image is typically
scanned with multiple window sizes using a classifier that is
trained on a single size. This is accomplished by either resizing
features or resizing images. In our experiments, we found

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

RCM
HOG

(a) Whole INRIA dataset imageswith smoothing of images after
resizing.

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

RCM
HOG

(b) Whole MERL-NIR dataset imageswith smoothing of images
after resizing.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

RCM
HOG

(c) Whole INRIA dataset imageswithout smoothing of images
after resizing.

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

False Alarm Rate

M
is

s
R

at
e

RCM
HOG

(d) Whole MERL-NIR dataset imageswithout smoothing of im-
ages after resizing.

Fig. 5. Effect of smoothing images after resizing them on detection performance.

that resizing feature can result in a significant deterioration
in detection performance than resizing images. That suggests
one of two techniques: either to always resize images so that
scanning window size is the same as the classifier’s training
window size, or to train multiple classifiers for multiple sizes.

Implementation details make a difference in detection per-
formance. In our experiments, we found that smoothing
an image, after resizing, an important factor in detection
performance, especially in the case of the RCM classifier,
where features are more sensitive to resizing artifacts. Inour
experiments, for color images, smoothing was important to
obtain the best performance. But, for near infrared images,
smoothing resulted in worse performance.

REFERENCES

[1] P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using patterns
of motion and appearance,” inProc. IEEE Conf. on Computer Vision
and Pattern Recognition,New York, NY, vol. 1, 2003, pp. 734–741.

[2] P. Felzenszwalb and D. Huttenlocher, “Pictorial structures for object
recognition,” in Intl. J. of Computer Vision, vol. 61, no. 1, 2005.

[3] S. Ioffe and D. A. Forsyth, “Probabilistic methods for finding people,”
Intl. J. of Computer Vision, vol. 43, no. 1, pp. 45–68, 2001.

[4] R. Ronfard, C. Schmid, and B. Triggs, “Learning to parse pictures
of people,” in Proc. European Conf. on Computer Vision,Copehagen,
Denmark, vol. 4, 2002, pp. 700–714.

[5] K. Mikolajczyk, B. Leibe, and B. Schiele, “Multiple object class
detection with a generative model,” inProc. IEEE Conf. on Computer
Vision and Pattern Recognition,New York, NY, vol. 1, 2006, pp. 26–36.

[6] A. Opelt, A. Pinz, and A. Zisserman, “Incremental learning of object
detectors using a visual shape alphabet,” inProc. IEEE Conf. on
Computer Vision and Pattern Recognition,New York, NY, vol. 1, 2006,
pp. 3–10.

[7] D. Gavrila and V. Philomin, “Real-time object detectionfor smart vehi-
cles,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
Fort Collins, CO, 1999, pp. 87–93.

[8] P. Papageorgiou and T. Poggio, “A trainable system for object detection,”
Intl. J. of Computer Vision, vol. 38, no. 1, pp. 15–33, 2000.

[9] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object
detection in images by components,”IEEE Trans. Pattern Anal. Machine
Intell., vol. 23, no. 4, pp. 349–360, 2001.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” inIEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2005.

[11] Q. Zhu, S. Avidan, M.-C. Yeh, and K.-T. Cheng, “Fast human detection
using a cascade of histograms of oriented gradients,” inIEEE Computer
Society Conference on Computer Vision and Pattern Recognition, New
York, June 2006.

[12] O. Tuzel, F. Porikli, and P. Meer, “Human detection via classification
on riemannian manifolds,” inIEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2007.

[13] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” inIEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2001.

[14] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
A statistical view of boosting,”Annals of Statistics, vol. 28, 2000.

[15] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: Afast descriptor
for detection and classification,” inEuropean Conference on Computer
Vision (ECCV), 2006.

[16] F. Porikli, “Integral histogram: A fast way to extract histogram features,”
in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2005.

[17] Open Source Computer Vision Library.

