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Abstract—Despite recent significant advancement in the area  The second category of methods is based on detecting
of pedestrian detection in images, little effort has been deted to huyman appearance and silhouette, either applying a ctassifi

algorithm evaluation for practhal purposes. Typically, detectors at all possible subwindows in the given image, or assem-
are evaluated only on color images. It is not clear how the bling | I h ts [21-[6 ding t i
performance would be affected if other modalities are used, ing local human parts [2]-[6] according to geometric con-

e.g. thermal or near infrared. Also, detectors are evaluaté on Straints to form the final human model. A popular appearance
cropped images that have the same size as training images.based method is the principal component analysis (PCA)
However, in practice, detectors are applied to large imagewith  that projects given images onto a compact subspace. While
multiple pedestrians in different locations and sizes. To pply providing visually coherent representations, PCA tendbeo

a single size pedestrian detector, the input image is, typédly, . o . . L
scanned several times with different window sizes. It is not easily affected by the variations in pose and illumination

clear how the detection performance would be affected by sic  conditions. To make the representation more adaptive to
multiple-size scanning technique. Moreover, to implemensuch changes, local receptive fields (LRF) features are eximacte
a technique, one is faced with a multitude of design choices, from silhouettes using multi-layer perceptrons by means of
each of whlch_ potentlal_ly affects _the performance of the dector. their hidden layer [7], and then are provided to a support
The contribution of this paper is to assess and reason about . .
the differences in detection performance of two state of thert vef:tor machine (SVM). In [8], a polyn_omlal SVM was learned
detectors across changes in modality (visible or near infred), USing Haar wavelets as human descriptors. Later, the wosk wa
evaluation method (on cropped or whole images), the effectfo extended to multiple classifiers trained to detect humatspar
different design choices (resizing features or images, smthing and the responses inside the detection window are combined
or not). . _ to give the final decision [9]. In [10], an SVM classifier, that
Index Terms—Human Detection, Performance Evaluation, L
Near Infrared. was shown to have false positive rates of at least one-two
orders of magnitude lower at the same detection rates tkean th
conventional approaches, was trained using densely sdmple
histograms of oriented gradients (HOG) inside the detactio
Pedestrian detection is one of the most challenging taskswindow. In a similar approach [11], near real time detection
computer vision with a long list of fundamental applicasonperformances were achieved by training a cascade model.
from intelligent vehicles and video surveillance to intgiee Despite the abundant work in pedestrian detection, little
environments. effort has been devoted to algorithm evaluation for prattic
Pedestrian detection methods can be categorized into tpurposes. Typically, detectors are evaluated on color @nag
groups based on the camera setup. For static camera settifad, are cropped to have the same size as the images used
object motion is considered as the distinctive feature. ¥ train the detector. However, in practice, the input of the
motion detector, either a background subtraction or imagedestrian detection algorithm is a video frame with pdgsib
segmentation method, is applied to the input video to ektranoultiple pedestrians in different spatial locations anffedént
the moving regions and their motion statistics. A real timsizes, which requires different scanning techniques. d&ssi
moving human detection algorithm that uses Haar wavelgther imaging modalities such as thermal IR may be of
descriptors extracted from space-time image differencas wnterest in certain applications. It is not clear how the=dgbn
described in [1]. Using AdaBoost, the most discriminativperformance is affected by the adopted scanning strategy or
frame difference features were selected, and multiplaifeat the image modality.
were combined to form a strong classifier. A rejection cascad Here, we aim to assess and discuss the differences in
that is constructed by strong classifiers to efficiently aejedetection performance of two state of the art appearansecba
negative examples is adopted to improve the detection spegetectors [11], [12] across changes in modality (visiblaear
A shortcoming of the motion based algorithms is that thely fanfrared), evaluation method (on cropped or whole imaghs),
to detect stationary pedestrians. In addition, such metlaoe effect of different design choices (resizing features oages,
highly sensitive to view-point and illumination changes. smoothing or not). We experiment on two different datasets:

I. INTRODUCTION



one dataset consisting of color and another of near infraredgative examples while spending more time on hard negative

images. or positive examples. In our implementation, each cascade
The paper is organized as follows. In Section II, we briefllayer is trained using the Logit Boost algorithm [14]. In the

describe the two pedestrian detectors that we analyzed.chse of Region Covariance, we use the variant that supports

Section 1ll, we discuss the datasets, the training andnigstimanifolds [12].

parameters, evaluation methods and metrics, and give a ge—

. . ) . . Region Covariances
tailed comparison. Finally, we present our main conclusion ) . o . ]
in section IV. Region covariances were first introduced as descriptors in

[15] and then used for human detection [12], which outper-
Il. EVALUATED DETECTORS formed other state of the art classifiers. lebe alV x H

The two human detectors which we used for evaluatidifie-dimensional intensity or a three-dimensional colaage
are based on a rejection cascade of boosted feature regiGhél /' be alV’ x H x d dimensional feature image extracted
They differ in how they describe the feature regions and from 1
how the boosting algorithm works. One detector uses Region
Covariance to describe feature regions and uses boosting on F(z,y) = (I, z,y) 1)

manifolds for classification [12]. We refer to this detector \,here the functiord can be any mapping such as intensity
as RCM, for Region Covariance on Manifolds. The oth&lor gradients, filter responses, etc. For a given rectiang
detector uses Histograms of Oriented Gradients (HOG) FQgionR C F, let {z;};_,.s be thed-dimensional feature

describe feature regions and uses conventional boosting ys%ints insideR. The regionR is represented with the x d
classification [11]. We refer to this detector as HOG. For the),ariance matrix of the feature points.

sake of completeness, we briefly describe here the notion o, the human detection problem, the mappib, z, y)

a rejection cascade of boosted feature regions, as welleas ith yefined as

descriptors used by the two classifiers. The reader is sxferr T

to the original papers for details. {I y L) L] 1212 |L| |y arctan% @)

wherez andy represent pixel location,, I, .. are intensity
Rejection cascades of boosted feature regions were pepUlgtrivatives, and the last term is the edge orientation. With

ized by their success in the area of face detection [13]. Thg} defined mapping the input image is mapped td &

are based on two main concepts: boosted feature regions, gifimensional feature image. The covariance descriptor of a

rejection cascades. region is ar8 x 8 matrix and due to symmetry only the upper
Boosting [14] works by combining weak classifiers to builgriangular part is stored, which has only 36 different value

a strong classifier. Boosting feature regions can be urmtefst The descriptor encodes information of the variances of the

as combining simple feature regions to build a strong regefined features inside the region, their correlations witbh

resentation of the object which is a representation that cgther, These variances and correlations, in turn, encoee th

be used to best discriminate between positive and nega@@tim layout of the region.

training examples. Feature regions in our case are redangu Region covariances can be computed efficientlypifi?)

subregions from feature maps of input images. computations, regardless of the region size, using integra
A rejection cascade is built of a humber of classificatiomstograms [16] [15]. Covariance matrices, and hence re-

layers. A test pattern is examined by layers of the cascagign covariance descriptors, do not form an Euclidean vecto

one after another until it is rejected by one of them, or util space, which necessitates modifications to conventional ma

is accepted by the final layer, in which case it is ClaSSiﬁ%ﬁine learning techniques. But, since covariance mataces

as a positive example. During training of the cascade, tigsitive definite matrices, they lie on a connected Reingmni

first layer is trained on all positive examples and a randoganifold. Therefore, instead of using a conventional biagst

sample of negative examples. Each subsequent layer iedraig|gorithm, boosting on manifolds is used [12].
on all positive examples and only negative examples that are

wrongly classified as positives by the preceding layershis t C- Histograms of Oriented Gradients

way, each layer handles harder negative examples thaneall thHistograms of Oriented Gradients were first applied to
preceding layers. The benefit of this mechanism is two folduman detection in [10], which achieved a significant im-
One is the possibility of usage of a huge number of negatipeovement over other features used for human detection at
examples in training the classifier, which is not possible ithat time. Histograms of Oriented Gradients were used in a
training a traditional single layer classifier. The othethat, rejection cascade of boosted feature regions frameworklih [
during testing, most negative examples are rejected quickéd deliver comparable performance to [10] but at a much highe
by the initial layers of the cascade and only hard ones apeed.

handled by later layers. Since, in our applications, most of To compute the Histogram of Oriented Gradients descriptor
the examined patterns are negative, the rejection cassadefia region, the region is divided intbcells, in a2 layout. A9
computationally very efficient since it quickly rejects gasbin histogram is built for each cell. Histogram bins cor@sgp

A. Rejection Cascade of Boosted Feature Regions



to different gradient orientation directions. Instead abtj
counting the number of pixels in each bin, gradient magmeisud
at the designated pixels are accumulated. The four higtogra
are then concatenated to mak&tadimensional feature vector,
which is then normalized. In our implementation, we use
normalization for HOG features.

Like Region Covariance descriptors, HOG descriptors can
be computed fast using integral histograms. The number of
integrals needed for HOG is equal to the number of orienation
bins, which is typically fewer than integrals needed for Rag
Covariance. In our experiments, we found that constructing
integrals for the HOG descriptors takes around 36% of the
time needed to construct integrals for the Region Covaeianc
descriptors, when 9 orientation bins are used.

IIl. EXPERIMENTAL EVALUATION

We start by describing the two datasets we used and the
differences between them. Then, we list the parametersinsed
training and testing the two classifiers. Afterwards, welaixp Fig. 1. Sample whole and cropped pedestrian images fromANRIaset.
the two evaluation methods: evaluation on cropped windows
and evaluation on whole images. Then, we explain the metrics
we compute in each evaluation method. Finally, we present th
evaluation results.

A. Datasets

We evaluated the detectors on two different datasets, INRIA
Person and MERL-NIR. The INRIA dataset was introduced
in [10], and subsequently used to evaluate several human
classifiers, e.g. [11] and [12]. It consists of close to 2600
images, around 900 of which contain full-body human sub-
jects. The remaining images are background images. Images
are progressive scan color images of different sizes anecasp
ratios. Images containing humans are of different peopte an
locations. Some people appear in multiple images, but, ofost l l I
them appear only once. In total, the INRIA dataset contains
around 1800 different human images. Human images range
from 48 to 832 pixels high. Sample whole images and cropped
human images, that are resized so that the human’s heighg;%:ét
96 pixels, are shown in figure 1.

The MERL-NIR dataset consists of around 60000 frames
from a long video sequence. The video is shot from a vehidiesting. Background images are divided as 1218 for training
touring an Asian city. The video is a near infrared videand 453 for testing. Training is performed on positive sasapl
with interlaced scanning. Close to 10000 frames of the videoopped from images. Each positive example is resized go tha
contain annotated full-body human subjects. In total, tilthe height of the human subject is 96 pixels. Then, a margin is
seqguence contains close to 12000 human images. Becausalited from background pixels to make the windows 128 pixels
is a video sequence, the same person can appear in mhigy. The width is set to half of that value, i.e. 64 pixelseTh
consecutive frames. Human subjects in the video compdsattom row of figure 1 shows examples of these images.

285 different tracks. Sample whole images and cropped humarror the MERL-NIR dataset, we excluded parts of the
images, that are resized so that the human'’s height is 3&pixsequence that are too dark for a human inspector to locate
are shown in figure 2. people. These constituted roughly the last 15000 frames of
the sequence. The other part is divided as 35000 frames
for training and 10000 frames for testing. From the training

Each dataset is divided into two portions, one for testind) aportion, 5435 frames contained annotated humans. From the
one for training. For the INRIA dataset, we use the standarekting portion, 2818 frames contained annotated humans.
training and testing portions that come with the datasedges Since consecutive frames are similar to one another, we
that contain humans are divided as 614 for training and 287 fampled 1250 frames from each group to use in training

Sample whole and cropped pedestrian images from MERL

B. Training and Testing Parameters



and testing the classifiers. Annotated human subjects in fheage with a window of sizd 28 x 256, the same feature is
sampled frames are cropped and resized so that the hurnamputed at locatio x 8 with size 16 x 16. We will refer
subject’s height is 36 pixels. Then, a margin is added froto this technique agesizing features

background pixels to make the windows 48 pixels high. The Resizing features is generally faster since gradients and
width is set to 24 pixels. Due to a shortage of large humamtegral histograms need to be computed only once, while
subjects in the dataset, we could not use the same size amimesizing images, these computations need to be repeated
INRIA dataset. The bottom row of figure 2 shows examplder each size. But, as we will see in section IlI-E2, resizing
of these images. features is less accurate.

For each cropped positive window, in both datasets, another ) )
copy is made by flipping the window around its centrap: Evaluation Metrics
vertical axis. Negative samples for training are created byTo evaluate the two classifiers, we use the DET (Detection
scanning background images with different window sizes. Wgror Tradeoff) curves as in [10]. The DET curves relate the
use 9000 negative samples in training each layer of the dascaniss rateto thefalse alarm rateon a log scale for both axes.
classifier. The target detection rate for each layer of tseade  In the case of evaluation on cropped windows, the positive
was set t00.998. The target overall false alarm rate was setnd negative examples are well defined. All positive example
to 1075. The target layer false alarm rate and the number obntain a human subject that is centered in the window, and
layers was not the same for the two datasets. For the INRI#e size of the window is adjusted to be the same as training
dataset, the number of layers was set to 30 and the target lagamples. Also, all negative examples do not contain any
false alarm rate was set t65. For the MERL-NIR dataset, part of a human since they are all cropped from background
the number of layers was set to 50 and the target layer falsgages. Therefore, in the case of evaluation on cropped
alarm rate was set t6.75. The difference between the twowindows, computing the miss rate and false alarm rate is
settings is in the level of control over operating point séten  straight forward.
and should have no effect of the detection results. On the other hand, in the case of evaluation on whole
, images, the situation is different. An image, that can donta
C. Evaluation Method any number of humans in random locations and sizes, is

We evaluated the classifiers on both cropped windows aedtirely scanned several times, each time with a different
whole images. window size. Scanned windows are not all perfect positive or

1) Evaluation on Cropped Window$ositive examples are negative examples. A scanned window may contain a human
the cropped and resized windows around human subjedist the relative size of the human with respect to the window
Negative examples are windows of any size that are cropp&de is not the same as the relative size used for training, or
from any location of background images. it may contain a human that is not centered. In either case,

2) Evaluation on Whole Images\Ve use the testing imagesthe classifier may make a wrong decision because the relative
that contain humans subjects. Each image is scanned wibations of features are not exactly the same as learnéugdur
9 different window sizes. In the case of the INRIA datasetraining. From a practical point of view, in many applicais
the smallest scanning window size48 x 96. In the case of detections are acceptable even if slightly shifted, orhslg
the MERL-NIR dataset, the smallest scanning window size ssnaller or larger than the subject. Therefore, we should not
24x48. Subsequent window sizes are generated by multiplyiegnsider such windows as negative examples and penalize the
the smallest sizes by powers bR5 in the case of the INRIA classifier if it classifies them as positives. However, if we
dataset, and.7 in the case of the MERL-NIR dataset. Theconsider all scanned windows that are close to a human gubjec
scanning step is set to 5% of the scanning windows sids positive examples, we will be penalizing the classifiet if
length. When we evaluate on whole images, the same tessses any of them, although detecting just one of them is
image contains both negative and positive examples. good enough in practice.

Since we train each classifier on single size images, inBased on these considerations, in the case of evaluation
the case of whole images which contain humans of possilip whole images, we need a different measure for what is
different sizes, we have two options. One is to resize tlemissed detection and what is a false alarm. We consider any
images so that our scanning window size becomes the sasmanned window that is "significantly” (see below) far froth a
as the training size and then scan the resized image with #otated human subjects in the image as a negative example,
training size. For example, if we want to scar640 x 480 and hence count a positive classification of it as a falseralar
image with a window of siz& 28 x 256, while the classifier is A missed detection is counted if an annotated human sulgject i
trained on sizé4 x 128, then we resize the image 880 x 240  "significantly” far from all scanned windows that are cldies
and then scan with the training size. We will refer to thias positive by the classifier.
technique agesizing imagesThe other option is to resize We now define how to determine whether a scanned window
the features selected by the classifier while maintainimgy this significantly close to or far from an annotated human
relative sizes to the scan window. For example, if a featusebject. We require a distance measure that is minimum when
of size8 x 8 at location(4,4) was selected by the classifiethe scanned window is perfectly aligned with an annotated
when trained on a window of sizé4, then, if we scan an human subject, and is maximum when there is no overlapping



at all between them. One measure that has this property is Has less information about the object it trains on. Another
overlap distancelLet |R| be the area of a regioR. Consider important difference between the two datasets is imagétgual
two regionsRk; and R,. The overlap distance betweéh and The MERL-NIR dataset suffers from interlacing, motion blur
R, is defined as and poor focus. Another difference between the two datésets
the variability within the training dataset. The INRIA dagt
— M ) ©) has more variability in terms of number of people appearing
|1 N Ry in the dataset, and the places they appear.

This is the ratio between the area of the union to the arealo understand the difference between performance on
of the intersection of the two regions. Given this definitiorcropped windows and whole images, we need to consider the
the overlap distance takes the minimum value of 1, when tH#ference between the miss rates and false alarm rates. For
two regions are perfectly aligned, and takes the vatueshen the false alarm rate, the negative windows used differ in the
there is no overlap at all between them. two evaluation methods. When evaluating on cropped images,

In our evaluation, we consider a scan window negative \f¢ use cropped windows from background images that do
its overlap distance to the closest annotated human subjediot contain any human. When evaluating on whole images,
above 16. We count a miss detection if all scanned window#® use images that contain humans and avoid the areas close
within overlap distance of 2 around an annotated humé® existing humans. Therefore, the results are not peyfectl
subject are all classified as negatives. comparable in the case of false alarm rate. But, we can see
from figure 3 that the false alarm rate is generally higheha t
case of evaluation on whole images than cropped windows.

We first present the baseline performance of the two claBhe reason for that is probably lack of annotation of some
sifiers on the two datasets. The baseline performance is thenan subjects. This occurs in some images of the INRIA
performance under the default parameters, which are the bastaset when there are many people in the background. It also
parameters. Then, we will introduce a number of changesdocurs in the MERL-NIR dataset when people are partially
the default parameters and describe how performance gliffesccluded and not annotated as human subjects.

Whenever a change is introduced, curves of the default paramin the case of miss rate, there are two factors that explain
eters are reprinted besides the new curves to make comparighe difference between the two methods. One factor is that
easier. for cropped images, the positive images are perfectly atign

1) Performance Using Default ConfigurationBesides the around a human subject whose size is adjusted to make the
difference between the two datasets in training and testinglative size of the human subject inside the windows the
parameters mentioned in sections IlI-C and IlI-D, in theecasame as the training size. On the other hand, in evaluation
of evaluation on whole images, the default setting for then whole images, we use fixed size windows and scan the
INRIA dataset is to smooth the image after resizing it. Buimage with a fixed step. Therefore, it is unlikely that we albta
the default for the MERL-NIR is to resize without smoothingvindows that are perfectly aligned and resized as for crdppe
afterwards. The reason will be clear in section IlI-E3. windows. That results in a higher miss rate in the evaluation

Figure 3 compares the performance of the two classifiesa whole images. The second factor is, in the evaluation on
on the two datasets. The top row shows performance oroppedimages, each annotated human subject has exaatly tw
cropped windows. The bottom row shows performance amopped positive windows, one in the original position ané o
whole images. The left column shows performance on INRI#hat is flipped around its central vertical axis. Each of ¢hes
dataset. The right column shows performance on MERL-NIf0 images are dealt with independently so that missing any
dataset. of them counts towards the miss rate. On the other hand, in

In comparing the two classifiers, RCM is almost alwaythe case of evaluation on whole images, each human subject
performing better than HOG on the two datasets and with tkan have many windows surrounding it that are all evaluated.
two methods of evaluation. That is consistent with the tesuBut they are not all dealt with independently. Missing all of
reported in [12]. However, in the case of evaluation on whotiem counts as one missed detection. But, detecting at least
images, HOG is able to reach levels of false alarm rate thtate of them counts as a true detection. Therefore, a single
are not reached by RCM. That comes at the cost of highmuman subject has more chances to get detected than in the
miss rate. case of cropped windows. That results in lower miss rate in

In comparing the two datasets, performance on the INRIhe case of evaluation on whole images. Hence, we have two
dataset is consistently better than performance on the MERlonflicting factors: one can increase the miss rate and ome ca
NIR dataset for the two classifiers and for the two methodiecrease it in each evaluation method. This probably explai
of evaluations. That is expected because of the differente discrepancy in our results. In figure 3, we find that in
between the two datasets. One important difference is theneral the miss rate is higher in evaluation on whole images
difference in size of training windows. A training window ofBut, we can see that the HOG classifier has actually a lower
size24 x 48 is used for the MERL-NIR dataset while a trainingniss rate when evaluated on whole images in the case of the
window of 64 x 128 is used for the INRIA dataset. ThatMERL-NIR dataset.
means in training for the MERL-NIR dataset, the classifier For running times, on the MERL-NIR dataset, the RCM

OLD(Ry, R2)

E. Evaluation Results
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Fig. 3. Detection performance of the two classifiers, usiatpdt parameters for each, on both INRIA and MERL-NIR detsis

classifier takes aroun#2.14 seconds per frame while HOGused in computing HOG features, which can make the effect
takes aroun@.16 seconds. For the INRIA dataset, RCM takesf changed feature size less severe.
around5.9 seconds per image, while HOG takes arongl For timing, with resizing features, RCM takes arouirtd4
seconds. Therefore, RCM is around 10 times slower thgsconds per frame on the MERL-NIR dataset, ahd3
HOG. The times are different from the INRIA dataset to theeconds per image on the INRIA dataset. The HOG classifier
MERL-NIR dataset due to the larger number of false alarms fakes aroundl.87 seconds per frame on the MERL-NIR
the MERL-NIR dataset, which means more scanning windowiataset, an®.46 second per image on the INRIA dataset.
are examined by all layers of the cascade. 3) Effect of Smoothingtn the case of evaluation on whole
2) Effect of Resizing Features vs Resizing Imagés: images with resizing images, we found that whether to smooth
explained in section IlI-C, when we evaluate on whole imageisnages after resizing or not is an important factor. In all
we have one of two options: resizing images or resizingases, we use bi-cubic interpolation to resize imagesgusin
features. the function provided with the OpenCV library [17]. When
Figure 4 compares the performance of the two classifiers we use smoothing, we use3a« 3 Gaussian smoothing kernel,
the two datasets when resizing images versus resizingésatuwith standard deviation 0.8. From our experiments, with
The top row plots show performance when resizing imageagsults shown in figure 5, the effect of smoothing is not the
The bottom show performance when resizing features. It Same for the two datasets or the two classifiers.
clear that the miss rate is significantly higher for resizing In the case of the INRIA dataset, not smoothing increases
features than for resizing images, for the two classifiers ¢he miss rate of the two classifiers. However, the RCM
the two datasets. That is understandable since when wesresiassifier is much more affected than HOG although when
the features, we use the classifier for feature sizes thgrdifwe use smoothing the miss rate of HOG is always higher.
from the sizes used during training. On the other hand, we the case of the MERL-NIR dataset, we make the same
can observe that the false alarm rate slightly decreasdsin tbservation. The miss rate increases when smoothing is not
case of resizing features than in the case of resizing imagesed. But, in this case RCM has a lower miss rate than
The two classifiers have similar behavior whether we resitfOG even without smoothing. The differences between the
features or images. While RCM typically outperforms HOGwo datasets are possibly the reason for the difference in
when resizing features, it became very close to or even wodassifiers’ behavior. The INRIA dataset has detailed insage
than HOG. This is possibly due to the strong normalizatiomith a wide range of sizes. When using bi-cubic interpolatio
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Fig. 4. Comparing resizing images versus resizing features

without following it by smoothing, some artifacts emerge imget the results shown in figure 5b.
the images, which affects the computed gradients and result
in a higher miss rate. However, in the case of the MERL-
NIR dataset, images are blurred and with poor focus, andWe presented an evaluation of two state of the art pedestrian
the range of sizes is not as wide as the INRIA dataset. Thdstectors. The goal of our study was to evaluate the detec-
reduces the artifacts resulting from resizing the images$ ators in practical scenarios. Our evaluation was conducted o
hence reduces the benefit of smoothing. The reason why the datasets with different imaging modalities, human size
effect of smoothing is not as severe in the case of HOG adlistribution, and other factors. We conducted our evatumati
is in the case of RCM is probably the strong normalization ion whole images as well as cropped windows. We studied
constructing HOG features. effects of two parameter settings: resize images vs. rgpizi
For the false alarm rate, smoothing results in increasieg tfeatures, and smoothing images after resizing. Our study
false alarm rate. That is because lack of smoothing resulisdistinguished by its focus on effect of change in image
in artifacts. These artifacts are likely to result in rejectof modality, and on evaluation on whole images and the effect
positive examples. Therefore, it is not unexpected to tasul of different parameters associated with it.
rejection of the negative examples as well. But, the inadas  Although the practical application of pedestrian detettio
false alarm rate in the case of RCM is much more than in tiee on whole images, most evaluations focused on cropped
case of HOG. That is probably due to the fact that smoothimgages. Unfortunately, detection performance on cropped i
tends to reduce the correlation between gradient magnitualges is sometimes illusive and does not reveal the actual
of pixels in a region and their relative positions. To sed,thalassification performance on practical applications. i o
consider the extreme case of smoothing when all the pix@speriments, we observed up to one order of magnitude
become the same value. In this case there is no correlatioarease in false alarm rate and 25% increase in miss rate whe
between gradient magnitude and relative position. In tiee caevaluating on whole images instead of cropped windows
of the MERL-NIR dataset, where the effect of smoothing When evaluating on whole images, an image is typically
in reducing artifacts is not really important, the effect ofcanned with multiple window sizes using a classifier that is
smoothing in reducing correlation between pixel positiand trained on a single size. This is accomplished by eitherirggi
gradient magnitudes becomes much more visible. Hence, features or resizing images. In our experiments, we found

IV. CONCLUSION
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Fig. 5. Effect of smoothing images after resizing them orecin performance.

that resizing feature can result in a significant deteriorat [6] A. Opelt, A. Pinz, and A. Zisserman, “Incremental leagniof object

in detection performance than resizing images. That sigges

detectors using a visual shape alphabet,” Aroc. IEEE Conf. on
Computer Vision and Pattern Recognitiddew York, NY, vol. 1, 2006,

one of two techniques: either to always resize images so that , 5"1o
scanning window size is the same as the classifier’s training] D. Gavrila and V. Philomin, “Real-time object detectiéor smart vehi-

window size, or to train multiple classifiers for multipless.

cles,” inProc. IEEE Conf. on Computer Vision and Pattern Recognjtion
Fort Collins, CO, 1999, pp. 87-93.

Implementation details make a difference in detection perg) p. papageorgiou and T. Poggio, “A trainable system fgeatetection,”

formance. In our experiments, we found that smoothing
an image, after resizing, an important factor in detectior?]
performance, especially in the case of the RCM classifier,

Intl. J. of Computer Visionvol. 38, no. 1, pp. 15-33, 2000.

A. Mohan, C. Papageorgiou, and T. Poggio, “Example-taebject
detection in images by componentffEE Trans. Pattern Anal. Machine
Intell., vol. 23, no. 4, pp. 349-360, 2001.

where features are more sensitive to resizing artifact®uin [10] N. Dalal and B. Triggs, “Histograms of oriented gradgerfior human

experiments, for color images, smoothing was important to

detection,” inlEEE Computer Society Conference on Computer Vision
and Pattern Recognitiqr2005.

obtain the best performance. But, for near infrared imagesy; q. zhu, s. Avidan, M.-C. Yeh, and K.-T. Cheng, “Fast huntietection

smoothing resulted in worse performance.

using a cascade of histograms of oriented gradientdEEE Computer
Society Conference on Computer Vision and Pattern Redogniew
York, June 2006.
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