
Regressed Importance Sampling on Manifolds for Efficient Object Tracking

Fatih Porikli
Mitsubishi Electric Research Laboratories

Cambridge, MA
fatih@merl.com

Pan Pan
University of Illinois at Chicago

Chicago, IL
ppan3@uic.edu

Abstract

In this paper, a new integrated particle filter is pro-
posed for video object tracking. After particles are gen-
erated by importance sampling, each particle is regressed
on the transformation space where the mapping function is
learned offline by regression on pose manifold using Lie
algebra, leading to a more effective allocation of parti-
cles. Experimental results on synthetic and real sequences
clearly demonstrate the improved pose (affine) tracking per-
formance of the proposed method compared with the origi-
nal regression tracker and particle filters.

1. Introduction
Two decades of diligent effort shows that object and

pose tracking is still one of the most challenging tasks in

computer vision. It faces with many difficulties. For in-

stance, imaging projections cause loss of essential 3D in-

formation, thus, estimating 3D pose from 2D correspon-

dences becomes an ill-posed problem. Objects frequently

encounter deformations and significant appearance changes

in real world scenarios. They partially or fully occlude each

other for extended periods of time. They exhibit complex

and erratic motion patterns, which invalidates common in-

ertial assumptions. To make everything more complicated,

the scene illumination varies perpetually, noise corrupts im-

ages irrecoverably, and cameras move and vibrate inexpe-

diently. Different tracking methods are proposed to try to

these problems, e.g. particle filter [6], kernel methods [3, 7],

regression tracker [11].

Particle filter [1, 6, 12, 9] is a Monte Carlo (MC) method

known also as bootstrap filtering, survival of the fittest, and

the condensation algorithm. The key idea is to represent the

posterior density function (of the pose object for instance)

by a set of random samples with associated weights and to

compute estimates based on these samples and weights. It

can be shown that according to the Bayesian theory, the

weighted average of these particles converges to the true

state when the number of samples is large. Yet, this is com-

putationally infeasible. In theory, the particle filter can track

any parametric variation including the pose as in [8] where

the affine motion is imposed as the state and particle filter-

ing is applied on affine group. However, the intrinsic de-

pendency to random sampling tends to degenerate and de-

bilitate the estimated likelihoods especially for higher di-

mensional pose representations. Moreover, the computa-

tional requirements exponentially grow by the number of

state variables, which makes the direct application of parti-

cle filter unsuitable for tracking of complex pose changes.

On the other hand, regression methods attempts to es-

timate the state by learning a transformation from feature

space to state space. There were attempts using the Lie al-

gebra of transformations for tracking problems. In [2], the

additive updates were performed on the Lie algebra for tem-

plate tracking. However, the approach in [2] fails to account

for the noncommutativity of the matrix multiplications and

the estimations become valid only around the initial trans-

formation of the target. In a recent study [4], a kernel re-

gression model for manifold valued data is described for an-

alyzing shape changes of the brain on MR images. This ap-

proach is computationally expensive and is not well suited

for real time applications. More recently, a learning based

tracking on Lie algebra is presented in [11]. This method

minimizes a first order approximation to geodesic error by

fitting a regression function, and reports satisfactory pose

tracking results especially when the object motion (partic-

ularly translation) is not large. Yet, the existing regression

approaches are limited to small variations where the object

kernels in successive frames overlap significantly.

Figure 1 shows typical failure cases of the regression

tracker introduced in [11] and a standard particle filter as

in [1] where both methods use the same low level shape

based appearance features. It is evident that the persever-

ing large affine motion of the Wall sequence causes the

regression tracker to fail since the regression kernels would

not overlap closely (Fig. 1-b). In the meanwhile, the parti-

cle filter cannot track the input region basically due to the

insufficient number of particles (200) for the 6-dimensional

affine state space (Fig. 1-c). Note that, increasing the num-

2009 Advanced Video and Signal Based Surveillance

978-0-7695-3718-4/09 $25.00 © 2009 IEEE

DOI 10.1109/AVSS.2009.95

406

(a) (b) (c)
Figure 1. Typical results demonstrating tracking performance for

large motion: (a) Frame 0. (b) Estimated region by the regression

tracker [11] at the frame 1. (c) Result of the particle filter [1] with

limited number of (200) particles.

ber of particles cripples the computational speed.

To overcome the shortcomings of the above techniques,

we propose a novel method that inherits the individual ad-

vantages of both particle filtering and regression tracking.

Since the affine motion imposes a manifold, specifically

a Lie group structure, our formulation employs geodesic

distance and mean computation on Lie algebra. Our con-

tributions are threefold: 1) Unlike the regression only ap-

proach, our combined method robustly estimates large para-

metric variations thanks to the importance sampling in the

particle filter. 2) Without inflating the number of parti-

cles, our method accurately computes the particle likeli-

hoods thanks to the additional refinement provided by the

regression. This keeps the computational requirements at

minimum (real-time), which makes our method suitable for

tracking of complex pose changes in high dimensional state

spaces. 3) The adopted low-level features (histograms of

oriented gradients) make pose tracking in monocular se-

quences possible.

2. Regressing Particles on Lie Algebra

Schematics of the regression tracker, particle filter, and

our combined method are presented in Fig. 2.

At the initialization of the object, the regression tracker

estimates a function that maps the region feature vectors

to the hypothesized affine motion vectors by first hypoth-

esizing a set of random motion vectors within the given

bounds, determining the transformed regions for these mo-

tions, and then computing the corresponding features within

each warped region. In the tracking time, it extracts the fea-

ture vector only for the previous object region and applies

the learned regression function, which is a matrix multipli-

cation in case of linear regression is used.

Particle filter first draws new particles by importance

sampling in state space, computes likelihood values at each

particle, and finally calculates the mean as the estimate.

Our method, on the other hand, refines the particle states

by the learned regression function before the mean com-

putation, which helps aligning the corresponding image re-

gions better in case any of the particles partially overlaps

with the tracked object, and iteratively determines the mean

Figure 2. Schematics of three tracking algorithms: (a) Regression

tracker. (b) Particle filter. (c) Our proposed method.

in the tangent space [10] instead of the Euclidean coordi-

nates as the affine motion constitutes a manifold.

2.1. Object Model

The object state in this paper is demonstrated on affine

motions [5], however, it generalizes to any matrix Lie group

transformations including 3D pose estimation. A two-

dimensional affine transformation A(2) is given by a 3 × 3
matrix M

M =
(

A T
0 1

)
(1)

where M is determined by six parameters: A is a nonsin-

gular 2 × 2 matrix of rotation, scale, and skewness, and

T ∈ R
2 is translation.

M maps a unit square at the origin to the affine region

enclosing the target object

[ximg yimg 1]T = M [xobj yobj 1]T (2)

where, the subscripts indicate the object coordinates and

image coordinates respectively. The inverse M −1 is also an

affine motion matrix and transforms the image coordinates

to the object coordinates.

2.2. Particle Filtering on Affine Motions

For particle filtering on affine motions, the state of a sam-

ple is its transformation matrix, where six parameters de-

scribe scale, orientation, skewness, and translation.

We denote the ith sample at time t as M i
t, and its weight

as wi
t. The observation It is the given image at time t. The

samples {M i
t, i = 1, 2, . . . , n} are generated from a pro-

posal density q(·). The weights at time t are updated by

wi
t ∝ wi

t−1

p(It|M i
t)p(vi

t|M i
t−1)

q(M i
t|M i

t−1, It)
, (3)

where p(It|M i
t) is the likelihood of the ith particle;

q(M i
t|M i

t−1, It) is the proposal density from which the par-

ticles M i
t have been generated; p(M i

t|M i
t−1) is the transi-

tion probability, and is determined by the dynamics (motion

history) of the object. This can be learned through the data

407

even though it is usually considered as a random walk. The

normalized weights πi are given by

πi
t =

wi
t∑n

j=1 wj
t

.

Since the state matrix M do not conform to Euclidean

geometry, the state estimate M̂ t is approximated by the

weighted intrinsic mean as follows [10]

• initialize M̂ t = M 1
t

• repeat

– for i = 1 to n
compute m i

t = log(M̂ −1
t M i

t)

– compute ΓM̂ t = exp(
∑n

i=1 πi
tm

i
t)

– assign M̂ t = M̂ tΓM̂ t

• until ‖log(ΓM̂ t)‖ < ε

The disadvantage of particle filtering for large affine mo-

tions is that the importance sampling is required to have rel-

atively larger variance values to compensate for large mo-

tions, yet, an estimation with small number of particles per-

forms inefficiently in 6-dimensional state space. Figure 1-b

shows the performance of the particle filter, which is infe-

rior since a set of 200 particles is rarely enough to popu-

late the affine probability density. The number of particles

grows exponentially along with the increase of the dimen-

sions for more complex pose changes.

2.3. Regression Tracker

The regression tracker was proposed in [11]. It estimates

the transformation matrix M t, given the observations up to

time t, I0...t, and the initial transformation M 0. We model

the transformations incrementally

M t = M t−1.ΔM t (4)

and estimate the increments ΔM t at each time frame. The

transformation ΔM t corresponds to motion of target from

time t − 1 to t in the object coordinates. The image in the

object coordinates is written as I(M −1). We consider the

pixel values inside the unit rectangle and represent the re-

gion with a descriptor, that is, an orientation histogram. It

is denoted by h(M −1) ∈ R
m where m is the dimension

of the descriptor. Given the previous location of the object

M t−1 and the current observation It, the new transforma-

tion ΔM t is estimated by the regression function

ΔM t = f(ht(M −1
t−1)). (5)

The tracking problem reduces to learning and updating the

regression function f to estimate the pose of the object.

Figure 3. Learning regression function at initialization.

Figure 3 illustrates the way we learn the regression func-

tion before tracking. During initialization, t = 0, the obser-

vation I0 and the initial location of the object M 0 are given.

A training set of n random affine transformation matrices

{ΔM i}i=1...n is generated around the identity matrix. The

object coordinates are transformed by multiplying on the

left with ΔM −1
i and the new descriptor is computed by

hi
0 = h0

(
ΔM −1

i .M −1
0

)
. The transformation ΔM i moves

the object back to the unit square. The training set consists

of samples
{

hi
0, ΔM i

}
i=1...n

. Notice that we use the nota-

tion ΔM both for the elements of training set with subscript

i and the estimated motions during tracking with subscript

t.

Let X be the n × m matrix of initial observations and

Y be the n × d matrix of mappings of motions to the Lie

algebra

X =

⎛
⎜⎝

[
h1

0

]T

...

[hn
0]T

⎞
⎟⎠ Y =

⎛
⎜⎝

[log (ΔM 1)]
T

...

[log (ΔM n)]T

⎞
⎟⎠ . (6)

The regression function can be found as

f(h) = exp
(
hT �)

)
, (7)

where � = (X T X + λI)−1X T Y and λ prevents from fea-

ture coefficients to become over dominant to others (refer

to [11] for details on the ridge regression).

After learning the model by randomly generating mo-

tion parameters within given scale, rotation, and translation

bounds in the first frame, the update process is very fast

at the consecutive frames as it requires only simple matrix

multiplications. Learning the model does not need to be

repeated at each frame as long as the object undergoes a

change is inside the bounds, e.g. human face does not turn

all the way around.

Even though the regression can estimate the affine trans-

formations in a computationally efficient way by itself, it

408

409

Figure 5. MSE of tracking algorithms on Logo sequence.

the unit square and construct the descriptor inside the inner

rectangle.

For synthetic sequences where the ground truth affine pa-

rameters are available we performed a single tracking it-

eration by each method, and simply measured the mean

squared error (MSE) on all six parameters instead of the

geodesic distance between the estimations and the true val-

ues. Notice that, although we track the targets with an affine

model, some targets are not planar. Even though an affine

model cannot perfectly fit the non-planar targets, we ob-

served it still produces the best affine approximations.

Cluttered Scene: In the synthetic sequence Logo, the

logo of CVPR09 wander erratically on a text background.

Note that, this sequence is a challenging not only because

of the motion but also due to the fact that we do not use

the intensity features but only the gradients in a this highly

cluttered image. As shown in Fig. 6, the regression tracker

fails to compensate for the pose when the logo jumps in

the image (MSE=22.93) after frame 97. The results for

the particle filter with 30 particles are not accurate either

with MSE=5.89. Even though the particle filter with 200

particles managed to approximate the translations it gives

worse MSE score (3.21) and visual results than the pro-

posed method (1.25). The proposed method tracked the

logo robustly using only 30 particles and it was able to re-

cover from the small error in frame 62. In our advantage, the

average CPU time is lower (2.29 to 2.55) than the 200 par-

ticle implementation. We presented the average CPU times

and errors in Table 2 and the corresponding frame-wise re-

sults in Fig. 5.

Large Motion and Scale Changes: For the real-world

sequences given in Figures 7, 10, 8 we visually ob-

served even better results when we applied the proposed

method. All sequences contain large and erratic motion,

scale changes, even tracking the picture in Wall is not

straightforward as it shows two spatially close concentric

rectangular regions moves together, which makes scale es-

timate much harder. Note that, we do not need to make

use of the color information available in this sequence.

Table 2. Statics of tracking algorithms on Logo sequence. CPU

times are for MATLAB implementation.

Algorithm CPU time per Average MSE

frame (sec)

Regression

tracker 0.25 22.93

Particle Filter

with 30 particles 0.47 5.89

Particle Filter

with 200 particles 2.55 3.21

Our method

using 30 particles 2.29 1.25

(a) Regression tracker

(b) Particle filter with 200 particles

(c) Our method using 30 particles
Figure 6. An example of tracking in cluttered challenging environ-

ment. Results of (a) Regression tracker (b) Particle filter with 200

particles (c) Our method using 30 particles on logo sequence.

(a) Regression tracker

(b) Particle filter with 350 particles

(c) Our method using 50 particles
Figure 7. An example of tracking with big size change of the ob-

ject. Results of (a) Regression tracker (b) Particle filter with 350

particles (c) Our method using 50 particles on car sequence.

Our experiments prove that the integration of the regression

tracker into the particle filter significantly improves the per-

formance.

410

411

