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Abstract

We present a novel multi-class classifier that strikes a
balance between the nearest-subspace classifier, which as-
signs a test sample to the class that minimizes the distance
between the test sample and its principal projection in the
selected class, and a collaborative representation based
classifier, which classifies a sample to the class that min-
imizes the distance between the collaborative components
of the test sample by using all training samples from all
classes as the dictionary and its projection in the selected
class. In our formulation, the sparse representation based
classifier [1] and nearest subspace classifier become spe-
cial cases under different regularization parameters. We
show that the classification performance can be improved
by optimally tuning the regularization parameter, which can
be done at almost no extra computational cost. We give
extensive numerical examples for digit identification and
face recognition with performance comparisons of different
choices of collaborative representations, in particular when
only a partial observation of the test sample is available via
compressive sensing measurements.

1. Introduction

Multi-class classification, where the goal is to assign one
of several class labels to a test sample, is an important prob-
lem encountered in many applications and has attracted sig-
nificant research interests in decades. It is widely used
for protein function identification, text classification, face
recognition, etc.

With the recent advances in Compressive Sensing (CS)
[2, 3], which aims to reconstruct an image from only a small
number of linear measurements given it can be sparsely rep-
resented in a predefined basis or dictionary, such as wavelets
or DCT, it is of increasing interests to develop multi-class
classification algorithms that can achieve high classification
accuracy without acquiring the full image. There is also a
trend to explore sparsity in the feature domain to increase

recognition performance for face recognition [1, 4] in par-
ticular. Assume that the test sample can be represented
by the training samples of the same class, it then admits a
Sparse Representation (SR) in the dictionary spanned by all
training samples from all classes, where most nonzero com-
ponents are expected to be found in the correct class. By re-
constructing this SR using sparse recovery algorithms such
as Basis Pursuit [5] or Orthogonal Matching Pursuit [6], and
combining it into a Sparse Representation based Classifier
(SRC), Wright et al. showed both accuracy and robustness
can be greatly improved for face recognition. However, one
main drawback of this approach is the complexity of ac-
quiring SRs. Even using sparsity inducing `1 minimization,
which is the convex approximation of solving the `0 NP-
hard problem, the computational load is prohibitively high
if the training set is large. Many works have been steered
in this direction including using Gabor frame based SRs
[7], using a learned dictionary instead of the whole training
set for the dictionary [8], using random hashing to increase
speed [9], etc.

Despite the initial success, several studies have raised
the question as whether SRs are really necessary. In fact,
the test sample has an infinite number of possible repre-
sentations in the dictionary spanned by all training sam-
ples. They are referred to as Collaborative Representations
(CRs), since all training samples collaboratively form a rep-
resentation for the test sample, and SR is only one example.
It is argued in [10, 4] that not the SR but the adoption of CRs
in general is more crucial in the success of the SRC. For in-
stance, using a different CR for the SRC, such as a regular-
ized least-norm representation [4], similar performance can
be achieved with much lower complexity.

In this paper, we effectively decompose the multi-class
recognition problem (not restricting only to face recogni-
tion) into two parts, namely finding the CR and imposing it
to a classifier that computes the residual toward each class in
order to properly harness the CR of the test sample. Using
the CR, the test sample is decomposed into a sum of compo-
nents that each coming from a different subspace spanned
by a separate class. We propose a novel multi-class clas-

978-1-4673-1228-8/12/$31.00 ©2012 IEEE 3602



sifier, dubbed as Collaborative Representation Optimized
Classifier (CROC), that achieves the most optimal com-
bination of the Nearest-Subspace Classifier (NSC), which
classifies a sample to the class with the minimal distance
between the test sample and its principal projection, and
the Collaborative Representation based Classifier (CRC),
which assigns a sample to the class with the minimal dis-
tance between the collaborative components and the pro-
jection within the class. Moreover, we show that the well
known SRC, the NSC, and the CRC become special cases
under different regularization parameters. This enables us
to further improve the classification performance by opti-
mally tuning the regularization parameter, which is done at
almost no extra computational cost. We also provide numer-
ical examples to compare the classification performance for
sparse and non-sparse CRs, and show in some cases the gain
of using SRs can be achieved by using a non-sparse CR with
an optimally tuned regularization parameter.

The paper is organized as follows. The multi-class clas-
sification problem is described in Section 2. The new col-
laborative representation optimized classifier is presented in
Section 3. Numerical examples are given for digit recogni-
tion and face recognition in Section 4.

2. Multi-Class Classification
Assume there are K classes, where there are ni train-

ing samples from the ith class stacked in a matrix as Ai =
[ai,1, · · · ,ai,ni ] ∈ Rm×ni , where ai,j ∈ Rm is the jth
training sample of dimension m from the ith class. By
concatenating all training samples we get the training dic-
tionary A = [A1,A2, · · · ,AK ] ∈ Rm×n, where n =∑K

i=1 ni is the total number of training samples. We are
interested in classifying the test sample y ∈ Rm, given the
labeled training samples in A.

In this paper, the multi-class classification problem is ex-
plicitly decomposed into two parts, namely representing the
test sample using the training dictionary, and inputting this
CR to a classifier to estimate the label. We will discuss these
two parts respectively below.

2.1. Representing Test Samples

We assume that samples within a class lie in the same
low-dimensional linear subspace, for example, it is well-
established that the face images of the same individual
under various illuminations and expressions will approx-
imately span a low-dimensional linear subspace in Rm

[11, 12]. If the test sample y can be represented as a su-
perposition of training samples in the dictionary A, given a
linear model as

y = Ax, (1)

where x ∈ Rn is a collaborative representation of the test
sample by exploring all training samples as a dictionary.

When A is over-determined, i.e. the dimension of the sam-
ples is much larger than the number of training samples, the
Least-Squares (LS) solution of (1) is given as

xFD
LS = argmin

x
‖y −Ax‖2 = A†y, (2)

where A† = (ATA)−1AT , and FD refers to the fact that
this CR is computed using the full test sample.

In many cases the LS solution (2) might lead to over-
fitting, therefore the test sample is mapped into a low-
dimensional feature domain via dimensional reduction, ex-
amples including Eigenfaces [13], Fisherfaces [11], Ran-
domface [1] for face recognition. Another important argu-
ment is motivated by the theory of CS, when it is impossi-
ble to acquire the full samples, only a partial observation is
available via linear measurements and one is interested in
classification upon the incomplete information. This can be
viewed equivalently as linear feature extraction. In this pa-
per, we focus on linear features, i.e. the extracted features
can be written in terms of linear transformation:

ỹ = Ry; Ã = RA, (3)

where R ∈ Rd×m is the linear transformation, and d is the
feature dimension. For face recognition, both Eigenface and
Randomface are linear features while Fisherface is not.

Now finding the CR of the test sample can be viewed as
solution to the under-determined equation:

ỹ = Ãx. (4)

Two popular choices for CRs are given below, where RD
denotes the CR is computed using the extracted features (re-
duced dimensionality).

1) The sparse representation by minimizing the `1 norm
of x:

xRD
L1 = argmin

x
‖x‖1 s.t. ỹ = Ãx. (5)

or the relaxed version

xRD
L1 = argmin

x
‖ỹ − Ãx‖22 + ε‖x‖1. (6)

The `1 constraint aims to use a minimal number of training
samples, as it is beneficial in certain cases where most of
the nonzero entries will come from the correct class, but the
complexity is greatly increased.

2) The least-norm representation by minimizing the `2
norm of x:

xRD
L2 = argmin

x
‖x‖2 s.t. ỹ = Ãx, (7)

which gives xRD
L2 = Ã†ỹ, where Ã† = ÃT (ÃÃT )−1; or

the relaxed version

xRD
L2 = argmin

x
‖ỹ − Ãx‖22 + ε‖x‖22, (8)

which gives xRD
L2 = (ÃT Ã+ εI)−1ÃT ỹ.
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These solutions for the relaxed version can also be com-
puted for the full test sample (1) without dimensionality re-
duction, given as xFD

L1 and xFD
L2 .

Above definitions represent the test image y using all
examples from all classes. Since different classes “collabo-
rate” in the process of forming the representation, they are
considered as “Collaborative Representations”. In partic-
ular, xRD

L1 , xFD
LS and xRD

L2 are adopted respectively in [1],
[10], and [4] for face recognition. However, the computa-
tional cost of xFD

LS and xRD
L2 is much smaller than that of

xRD
L1 .

2.2. Sparse Representation based Classifier

We now examine the Sparse Representation based Clas-
sifier (SRC) that was first proposed in [1] and then quickly
adopted in many follow-up work including [10, 4]. Al-
though its original name indicates this method is reserved
for SRs, in principle it can use any CR as an input. For
consistency, we keep the sparse representation name here.

The SRC uses the CR of the test sample y as an input,
denoted by x = [x1, · · · ,xK ], where xi is the part of co-
efficients corresponding to the ith class in x. The test sam-
ple can be rewritten as a sum of components from different
classes, namely

y =
K∑
i=1

yi, (9)

where the ith CR component is yi = Aixi, 1 ≤ i ≤ K.
The SRC will identify the test image with the ith class if the
residual

rSR
i = ‖y − yi‖22 = ‖y −Aixi‖22, 1 ≤ i ≤ K (10)

is the smallest for the ith class.
In the supplementary material of [1] the authors dis-

cussed the benefits of the SRC from a sparse representation
viewpoint. If the test image can be sparsely represented by
all training images as x = [0, · · · ,xi, · · · , 0], such that it
can be represented by using only training samples within
the correct class, given the abundance availability of train-
ing, then the residual for the correct class will be zero while
the residual from other classes is the norm of the test im-
age, resulting in maximal discriminative power for classifi-
cation. In [4] the author shows that the SRC checks not only
the angle between the test image and the the partial signal
represented by the coefficient on the correct class (which
should be small); but also the angle between the partial sig-
nal represented by the coefficient on the correct class and
that on the rest classes (which should be large).

3. Regularizing the Classifier From NS to CR
In this section we will first dissect the NSC, which classi-

fies a sample to the class with the minimal distance between
the test sample and its principal projection. We then present

a generic CRC, which classifies a sample to the class with
the minimal distance between the sample reconstruction us-
ing the collaborative representation component and its pro-
jection within the class. Finally we give the new optimized
classifier, which is a regularized path of classifiers that con-
nects the NSC and the CRC, and the well-known SRC can
be viewed as a particular dot on the path.

3.1. Nearest Subspace Classifier

Nearest Subspace Classifier (NSC) [14] assigns the test
image y to the ith class if the distance, or the projection
residual rNS

i from y to the subspace spanned by the ith
training set Ai = [ai,1, · · · ,ai,ni

] is the smallest among all
classes, i.e.

i = argmin
i
rNS
i .

where rNS
i is given as

rNS
i = min

xi

‖y −Aixi‖22 (11)

= ‖y −Aix
LS
i ‖22

= ‖(I−AiA
†
i )y‖

2
2. i = 1, . . . ,K. (12)

where xLS
i = A†iy.

Note that the above formulation of the NSC is used when
the training samples per class is small so that they do span
a subspace, which for face recognition is usually the case.
When the number of training samples is large, such as in
digit recognition, a principal subspace Bi for each class is
extracted using Principle Component Analysis (PCA), then
the projection residual r̃NS

i is computed as

r̃NS
i = min

xi

‖y −Bixi‖22, i = 1, . . . ,K. (13)

The NSC does not require the CR of the test sample, and
simply measures the similarity between the test sample
and each class without considering the similarities between
classes.

3.2. Collaborative Representation based Classifier

In our formulation, the Collaborative Representation
based Classifier (CRC) assigns a test sample to the class
with the minimal distance rCR

i between the ith collabora-
tive representation component, and its projection within that
class, as

rCR
i = ‖Ai(xi − xLS

i )‖22 (14)

=

{
‖Ai(xi −A†iy)‖22 if Ai is over-determined.
‖y −Aixi‖22 if Ai is under-determined.

Note that, the residual measures the difference between
signal representation obtained from using only the intra-
class information and the one using the inter-class informa-
tion obtained from the collaborative representation. If the
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test sample can be sparse represented by all training sam-
ples, the residual for the correct class will be zero while the
residual from other classes is the projection of the test sam-
ple, with similar discriminative power as the SRC in this
scenario. The CRC is different from the SRC only when
Ai’s are over-determined, the test sample is replaced by its
projection in each class.

3.3. Balancing Between NSC and CRC

Given the NSC and the CRC, which look at intra-
class residual and inter-class residual respectively, we intro-
duce the Collaborative Representation Optimized Classifier
(CROC), which computes a regularized path to study the
trade-off between these two classifiers, where the residual
for each class is calculated as follows

ri(λ) = rNS
i + λrCR

i , (15)

where λ ≥ 0. The test sample is then assigned to the class
that has the minimal residual. When λ = 0, it is equivalent
to the NSC; and when λ = +∞, it is equivalent to the CRC.
In practice, cross-validation may be used to determine the
optimal λ, as shown in the Section 4.1.

When Ai is over-complete and training is abundant, the
NS residual error shall be computed using (13) and the
CROC is equivalent to the SRC/CRC only when λ = +∞.
We will focus on the case when Ai is over-determined. First
we show the SRC is equivalent to the CROC when λ = 1
using the same collaborative representation. The residual of
each class for SRC (10) can be rewritten in the following
way:

rSR
i = ‖y −Aixi‖22

= ‖y −AiA
†
iy +Ai(A

†
iy − xi)‖22

= ‖(I−AiA
†
i )y‖

2
2 + ‖Ai(A

†
iy − xi)‖22 (16)

= rNS
i + rCR

i , (17)

where (16) follows from

(I−AiA
†
i )Ai = 0. (18)

Alternatively, we can represent the CROC as a regulariza-
tion between NSC and SRC:

ri(λ) = (1− λ)rNS
i + λrSR

i (19)

Clearly, the widely used SRC only considers one possible
trade-off between NSC and CRC by weighting two residual
terms equally. As we will further show in the numerical ex-
amples, better regularization parameter exists to outperform
the SRC regardless of the choice of collaborative represen-
tations for the test sample.

We could also rewrite the residual error for the CROC by
plugging in (11) and (14), and apply (18), as

Figure 1. Classification results of CROC shown as a regulariza-
tion path using partial measurements from random projection and
eigen projections for the MNIST digits database.

ri(λ) = ‖y −Aix
LS
i ‖22 + λ‖Ai(x

LS
i − xi)‖22 (20)

= ‖y −Aix
LS
i +

√
λAi(x

LS
i − xi)‖22 (21)

= ‖y −Ai[(1−
√
λ)xLS

i +
√
λxi]‖22

= ‖y −Aix̃i‖22

where x̃i = (1−
√
λ)xLS

i +
√
λxi. If we write

x̃ = [x̃1, · · · , x̃K ] = (1−
√
λ)xLS +

√
λx,

where x is the input CR, and xLS = [xLS
1 , · · · ,xLS

K ]
is “combined representation” by the least-square solution
within each class, then x̃ can be viewed as a different col-
laborative representation induced by x and the CROC will
be equivalent to the SRC with a different collaborative rep-
resentation as the input. However, x̃ is not a solution to any
of the optimization problem in Section 2.1, and this inter-
pretation is only valid when Ai’s are over-determined.

4. Numerical Results
In this section, we present numerical results on digit

recognition and face recognition to show the classification
accuracy gain by optimally choosing the regularization pa-
rameter. For digit recognition, the number of training im-
ages per class is very high, corresponding to the case Ai is
under-determined; for face recognition, the number of train-
ing images per class is usually small, corresponding to the
case Ai is over-determined.

4.1. Digit Recognition

The MNIST Handwritten Digits database [15] is used to
test the proposed multi-class classification algorithm. There
are about 6000 training examples and 1000 test examples of
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(a) (b)

(c) (d)
Figure 2. Classifier residual for two examples of digit “0”: (a) and (b) show the corresponding original digit and its reconstruction from the
eigen projection of k = 80; (c) shows the classifier residual for digit in (a), which is correctly classified by the NSC, but misclassified as
“8” by the SRC; (d) shows the classifier residual for digit in (b), which is correctly classified by the SRC, but misclassified as “2” by the
NSC. Both are correctly classified by CROC with λ = 0.1.

each class in the data set. Each image is an 8-bit gray-scale
image of “0” through“9” of dimension d = 28× 28.

We consider a toy example where only ni = 50 train-
ing examples is provided per class, and the number of test
examples per class is n = 500. We make K = 80 mea-
surements of each test sample, and the whole test image is
assumed unknown. We test the CROC against different reg-
ularization parameters, with λ ∈ [0, 1]. When λ > 1, the
residual is mainly dominated by the CRC and the result is
no longer interesting.

In the case where the full sample is not known, we could
make partial observations using either random projections
or projection along the eigenvector directions. Fig. 1 shows
the classification accuracy for both scenarios using sparse
(L1) and least-norm (L2) CRs. Projections using eigenvec-
tors achieve better result than random projections in terms
of accuracy. When λ = 1, the sparse CRs achieves slightly
better result than the least-norm CRs using random pro-
jections, and this gain is even larger using eigen projec-
tions. However, a better classification can be achieved with
λ around 0.1 for both CRs with very small performance gap
between sparse and least-norm CRs. Table 1 further sum-
marized the classification results for comparison. The op-
timal λ can be obtained by performing cross-validation on
randomly selected training examples and testing examples
for a few times, and compute the average classification ac-

Scenario NSC SRC CROC (λ = 0.1)
Random+L1[%] 75.56 76.02 79.82
Random+L2[%] 75.56 74.72 79.46

Eigen+L1[%] 83.82 83.14 86.34
Eigen+L2[%] 83.82 80.78 85.64

Table 1. Classification results of NSC, SRC and CROC using par-
tial measurements from random projection and eigen projections.

curacy for different λ and choose the optimal one. Fig. 3
shows the average classification accuracy over 5 times for
the least-norm CR using eigen projections, showing the op-
timal λ = 0.1 in this case.

Fig. 2 exemplifies how the CROC outperforms both the
NSC and the SRC by using the least-norm CR. Each row
shows the classifier residual using the NSC, the SRC and the
CROC when λ = 0.1 respectively. For two test examples of
digit “0”: in (a) it is correctly classified by the NSC, but the
SRC misclassifies it as digit “8”; while in (b) it is correctly
classified by the SRC, but the NSC misclassifies it as digit
“2”. However, both can be correctly identified as “0” using
a properly regularized CROC.

If we increase the number of training samples per class
to ni = 500, the training dictionary per class is now over-
complete and we will use a principal subspace Bi of dimen-
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Figure 3. Cross-validation for choice of λ using least-norm CR
from eigen projections for the MNIST digits database.

Figure 4. Classification results for the regularization path for dif-
ferent methods using partial measurements for the MNIST digits
database.

sion r for the NSC. We use the least-norm CRs to redo the
experiment for both random projection and eigen projec-
tion when r = 30 and r = 50. Notice that now the SRC is
equivalent to λ = +∞, however we only plot up to λ = 2
to show the trends, as shown in Fig. 4. We see there is a
jump in the performance when λ is around 0.05; and adopt-
ing the sparse CR does not give particular gain compared
with optimizing the regularization parameter λ.

4.2. Face Recognition

We test the proposed CROC against the Extended Yale-B
database [16, 17] and the AR database [18]. Since our main
goal is to show the benefit of the extra freedom by consid-
ering the regularization path, we do not test the robustness
of face recognition with disguise (sunglasses, scarves, etc)
in this work, yet such an extension is straightforward.

Scenario Dim. NSC SRC CROC (λ)
Full+LS 32256 97.46 99.73 99.73 (0.8)

Full+L1 100 97.46 96.73 97.82 (0.3)
300 97.46 97.82 98.28 (0.2)

Full+L2 100 97.46 91.20 97.64 (0.2)
300 97.46 97.82 98.19 (0.2)

Reduced+L1 100 96.10 96.55 97.19 (0.1)
300 97.01 97.55 98.19 (0.6)

Reduced+L2 100 96.10 89.11 96.55 (0.1)
300 97.01 97.19 97.73 (0.2)

Table 2. Face recognition results for the NSC, CRC and CROC
(with optimal λ): Full image with LS, L1 and L2 representations,
partial images of various dimensions using Randomface with L1
and L2 representations for the Extended Yale-B database.

4.2.1 The Extended Yale-B Database

The Extended Yale-B database contains 2414 frontal-face
images of 38 individuals [16]. We use the cropped and un-
normalized face images of size 192 × 168 which are cap-
tured under different illuminations [17] for our experiments.
For each individual, we randomly select ni = 30 training
samples and the rest are for testing. We consider random
features of dimensions d = 100 and 300 and test the varia-
tions below depending on if the full test image is available:

• With the full image: three CRs, namely the least-
squares representation xFD

LS (2), the sparse representa-
tion xFD

L1 (5) and the least-norm representation xFD
L2

(7), are computed and tested (sparse representations
are computed without dimensionality reduction by Ã).

• Without the full image: two CRs, namely the sparse
representation xRD

L1 (5) and the least-norm representa-
tion xRD

L2 (7), are computed and tested.

In Fig. 5 it is obvious to see that when the full image is
available, the xFD

LS representation achieves the best classifi-
cation accuracy with low complexity. When the full image
is not available, for SRC corresponding to λ = 1, the sparse
representation xRD

L1 achieves better accuracy than the least-
norm representation xRD

L2 in terms of accuracy, in line with
the previous work showing sparsity helps classification, in
particular for smaller d = 100. However, this gain of using
sparse representation [1] can be achieve by the least-norm
representation with a properly tuned regularization param-
eter, at around λ = 0.1, at much lower computational cost.
The classification accuracy for NSC, SRC and CROC with
optimal λ are summarized in Table. 2.

4.2.2 The AR Database

Same as [1], we use a subset of 50 male subjects and 50
female subjects with only changes of illumination and ex-
pressions. For each subject, the seven images from Session
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d = 100 d = 300

Figure 5. Face recognition results on the regularization path for different scenarios: using full image with three different CRs, Randomface
of dimension d = 100 and d = 300 with `1 and `2 CRs for the Extended Yale-B database.

1 are used for training, and the other seven images from
Session 2 are used for testing. The images are cropped to
size 60× 43.

Fig. 6 shows the regularization path of face recognition
results for CROC of different scenarios: full image with
least-squares CR xFD

LS , random projection of full image
with least-norm CR, eigen-projection of full image with
least-norm CR, and partial image using random pixel se-
lection with least-norm CR at feature dimension d = 100
and d = 300. In the full image case, we show that better
accuracy can be achieved at λ = 0.3, about 1.5% improve-
ment than at λ = 1, corresponding the result in [10] using
least-square CR. In almost all curves shown, some gain can
be obtained by optimizing the regularization parameter λ.
Fig. 7 shows two face examples and corresponding random
pixel selection features: (a) face “1” is correctly classified
by NSC, but misclassified as face “58” by SRC; (b) face
“2” is correctly classified by SRC, but misclassified as face
“25” by NSC. Both are correctly classified by CROC with
λ = 0.1.

Fig. 8 compares classification result for NSC, SRC and
CROC with optimal λ using random pixel selection (par-
tial), Randomface and Eigenface and least-norm CR with
different feature dimensions d = 30, 50, 100, 300. The gain
of CROC with random pixel selection and Randomface is
more significant than the gain with Eigenface.

5. Conclusions
In this paper we explicitly decompose the multi-class

classification problem into two steps, namely finding the
collaborative representation and inputting it to the multi-
class classifier. We focus on the second step and propose
a novel regularized collaborative representation based clas-

Figure 6. Face recognition results on the regularization path for
different projection and CR combinations: Full image with LS
representation, random pixel selection (partial), random projection
and eigen-projection of full image with `2 CR for the AR database.

sifier where the NSC and the SRC are special cases on the
whole regularization path. We show that classification per-
formance can be further improved by optimally tuning the
regularization parameter at no extra computational cost, in
particular when only a partial test image is available via CS
measurements. Numerical examples for digit recognition
and face recognition demonstrate the benefit of our algo-
rithm.
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