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Abstract— An accurate and computationally very fast multi-
modal human detector is presented. This 1D+2D detector fuses
1D range scan and 2D image information via an effective
geometric descriptor and a silhouette based visual represen-
tation within a radial basis function kernel support vector
machine learning framework. Unlike the existing approaches,
the proposed 1D+2D detector does not make any restrictive
assumptions on the range scan positions, thus it is applicable
to a wide range of real-life detection tasks. To analyze the
discriminative power of the geometric descriptor, a range scan
only version, 1D+, is also evaluated. Extensive experiments
demonstrate that the 1D+2D detector works robustly under
challenging imaging conditions and achieves several orders
of magnitude performance improvement while reducing the
computational load drastically.

In addition, a new multi-modal (LIDAR, depth image, optical
image) dataset, DontHitMe, is introduced. This dataset contains
40,000 registered frames and 3,600 manually annotated human
objects. It depicts challenging illumination conditions in indoors
and outdoors environments and is publicly available to our
community.

I. INTRODUCTION

According to National Highway Traffic Safety Adminis-
tration reports [1], thousands of pedestrians lose their lives
in traffic accidents. At least the same number of pedestrians
get injured and become handicapped because of these inci-
dents. Incorporating advanced human detection solutions in
intelligent driving systems would significantly reduce these
unfortunate events.

There are two sets of challenges that make the human de-
tection task complicated. The first one is the external factors.
These factors are not object depended and often caused by
environmental elements. Illumination variations, insufficient
street lighting, saturation due to headlights, cast shadows,
reflections, weather conditions, existence of human-like ob-
jects and clutter, and imaging noise fit into this category.
External factors have absolute effects to the performance of
the detection process.

The second set of challenges are due to the human itself,
thus may be called as the internal factors. Humans have artic-
ulated body parts that move, rotate, and deform. They stand
up, walk, run, bend and make body gestures. The appearance,
height, weight, and clothing might differ significantly from
one to another. Therefore, their bodies appear in different
shapes and silhouettes. In addition, human body has various
poses from distinct view points. All these factors make the
objective of the human detection considerably more difficult
than detection of rigid objects.
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Fig. 1. Left image shows the detected pedestrian by the proposed multi-
modal human classifier under severe illumination conditions. Single-modal
classifiers [2] (and conventional multi-modal approaches) are not be able to
detect as can be seen in the right image.

This paper presents a novel multi-modal human detector
that fuses 1D range scans from a LIDAR (Laser Imaging
Detection And Ranging) sensor and 2D monocular images
from an optical camera. The proposed algorithm integrates
the photometric and depth features obtained from both data
modalities in a joint classifier. It is robust under difficult
environmental conditions. Unlike the existing approaches, it
can detect humans even if the range scan beams hit upper
torso and head of the body without making any assumptions
about the visibility of the legs. This is critical for real world
applications. For instance, the scan beam may easily miss
the legs when the road climbs over a hill or there is a short
subject, e.g. a child, in the detection range. The legs can
be occluded due to skirts, bags, strollers, etc. When the
pedestrian stands up sideways, only one leg is visible. Fusing
multiple modalities not only increases the detection accuracy
for such examples but also improves the computational time.
Since it efficiently narrows down the search region in the
image, our detector runs very fast.

This work makes several improvements to the human
detection problem in the following ways:

1: A highly accurate and computationally fast multi-
modal human detector that fuses 1D range scans and 2D
images is presented. This 1D+2D detector does not make
any restrictive assumptions about the range scan positions.

2: A simple yet effective geometric descriptor is intro-
duced for LIDAR data. A single-modal human detector, 1D+,
using this descriptor is developed. This detector achieves
higher accuracy than the state-of-the-art human classifiers
based on 1D range scans.

3: It is shown that the multi-modal classifier can be trained
with less precise range information, for instance using Kinect
sensor depth data, to eliminate the need for expensive and
cumbersome manual labeling.

4: A new LIDAR, camera, and Kinect sensor based, regis-
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Algorithm 1 Detection Algorithm
Inputs: L = (d1, ..., dn) range scan points, I , T , h

1: * Compute LI , by LI : T (L)
2: for k=1, ... , n (all points in LI )
3: * Scale search window W by 1/dk
4: * Compute geometric descriptor f1D = [d1, ..., dm]T

inside W using Eqs. 1-5
5: * Determine, ∆yj , vertical jump offsets from dk
6: for each ∆yj for W
7: * Compute HOG f2D = [v1, ..., vn]T

8: * Normalize f1D and f2D

9: * Concatenate f1D and f2D to f = [f1Df2D]T

10: * Compute h(f) =
∑m

i=1 αiexp(−γ‖f − f∗
i ‖2)

11: * if h(f) > 0 detect human, remove underlying points
from LI

performs accurately without making any assumption about
the range scan position on the human body, a large number
of training samples is required for training. However, it is
cumbersome to collect such a large number of registered
LIDAR and camera data where range scans hit humans on
different parts of their bodies. To capture different pose,
appearance variations and scan positions, the height and
position of the LIDAR must be modified excessively. This
is definitely a tedious and inefficient task with no guarantee
of capturing sufficient amount and quality of data.

To our advantage, it is possible to generate a high number
of diverse range scans for positive and negative samples by
using a depth camera that provides the 3D structure of the
scene. Any number of scans can be obtained from a depth
image by converting the geometric information into LIDAR-
like readings synthetically.

Towards this goal, a sensor setup composed of an Asus
Xtion Pro Live IR and color camera, and a Hokuyo URG-
04LX LIDAR was used. Three sensors, IR camera, color
camera and LIDAR were registered in the same coordinate
system. A multi-modal human data set, called as DontHitMe,
was collected in outdoors (parking lots, streets, etc.) and
indoors (campus, etc.) buildings. Since the IR camera is
sensitive to the sunlight, outdoor data was recorded when
there was no direct sunlight in the scene. In addition to the
color and depth images, this dataset also includes registered
1D LIDAR range scans. It contains 40,000 images of 450
different humans in different poses, appearance variations,
lighting conditions, and shadow artifacts. Several human
shapes that present a challenge to existing human classifiers,
such as women in skirts and small children were recorded. To
capture the variance of the human poses, images are recorded
sequentially at 8 fps. The location and height of the setup
was changed during the collection process to collect samples
in different backgrounds. Modifying the height of the sensor
setup was diversified the recorded 1D range scans.

The original LIDAR range scans hit human body on differ-
ent parts from the legs to the head. A total of 3,600 manual
ground truth positions in images, depth camera data, and

Fig. 3. 1D range scans are generated from the depth camera data for each
positive window.

range scans were annotated. Each human in the dataset was
labeled with a bounding box, W (x, y, δx, δy). DontHitMe
dataset is divided into two different categories. The first
dataset, called as DontHitMe-Indoor, includes 30,000 frames
and 3,000 ground truths which are recorded indoor campus
buildings. The second dataset is collected in outdoors at
night times and contains more challenging cases for human
detectors, such as insufficient lighting and severe illumination
changes because of car headlights. This dataset contains
10,000 frames and 600 ground truths, called as DontHitMe-
Night.

To complement the original LIDAR data, the depth camera
data in DontHitMe-Indoor were processed to obtain addi-
tional synthetic range scans as shown in Fig. 3. These hori-
zontal scans were produced by uniformly sampling multiple
positions vertically along the labeled human window W
for the positive samples. In this way, multiple scans were
generated from each part of human body, from the legs to
the head. A depth scan Li = (d1, ..., dmi)i was discarded if
it contained points where the depth camera does not provide
a valid distance.

B. Experiments

Several experiments were conducted to quantify the per-
formance of the proposed multi-modal human classifier,
1D+2D, and its range scan only version, 1D+.

In the first experiment, we analyzed the performance of
1D+ detector. We obtained 46,000 positive and 376,000
negative samples from the LIDAR sensor scans and depth
images of DontHitMe-Indoor dataset. A total of 43,000
positive samples are generated synthetically from the depth
images by uniform sampling and additional 3,000 positive
samples were obtained from the recorded 1D range scans.

In order to reduce the variability in the testing scores, we
performed multiple rounds of 10-fold cross-validation. We
aimed to see the performance of the 1D+ detector at the
different parts of the human body. Therefore, the positive
samples in DontHitMe-Indoor dataset are divided into 3
categories, as upper body, torso and lower body.

The outcomes of the proposed and the existing state-of-
the-art classifiers for the separate human body parts and for
negative samples can be seen in Table I. The results are
compared to [18], which is a 1D range scan based human
classifier. As visible, our 1D+ detector outperforms [18] at
least by 20.2% for each part of the human body. The result
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Fig. 4. ROC curves of the 1D+ Detector and Arras’s classifier [18] at
different parts of the human body.

TABLE I
COMPARISONS OF 1D RANGE SCAN BASED HUMAN DETECTORS FOR

DIFFERENT HUMAN BODY PARTS

Test Set 1D+ Detector Arras et al. [18]
Upper Body 97.5% 78.6%
Torso 97.9% 82.7%
Lower Body 96.8% 86.6%
Negative Samples 96.5% 5.6%

of this experiment shows that assumptions on the visibility of
the legs is not valid for real-life scenarios. The 1D+ is more
robust and achieves remarkable accuracy at each level of the
human body as can be seen in the detection performance
curves of the classifiers in Fig. 4. As expected, the method
explained in [18] shows its best performance if the range
scans hit the lower part of the human body. Whereas the
performance of our detector is almost same at different parts
of the body. Proposed 1D+ does not miss any human at
89% false detection level. One of the main reasons of the
consistent performance of our classifier at each part is that
the positive samples are provided to our detector uniformly
from different body parts in the training phase. Also, it learns
more diverse geometric cues from every different part of the
the body from head to the feet.

Another experiment was conducted to measure the per-
formance of the proposed 1D+2D detector. A total of 1,000
positive and 10,000 negative visual descriptors were obtained
from DontHitMe-Indoor dataset. For each visual descriptor,
20 different geometric descriptors were generated syntheti-
cally from different parts of the body by uniformly sampling
in their corresponding depth images. In this way, total of
20,000 positive and 200,000 negative multi-modal samples
which merge visual and geometric descriptors were gen-
erated from DontHitMe-Indoor dataset to train the 1D+2D
detector. Also, for comparison purposes, 1D+ detector was
trained only with the geometric descriptors and the HOG
human classifier [2] was trained with the visual descriptors

Fig. 5. Performance of the benchmark HOG [2] and the proposed 1D+2D
and 1D+ human classifiers tested on DontHitMe dataset.

of this set. The accuracy of the proposed 1D+2D detector and
1D+ detector were compared to the HOG human classifier.
As in the previous test, multiple 10-fold cross-validations
were performed. During this experiment, it was ensured
that the test fold and training folds include the samples
obtained from different humans. In this way, testing of the
geometric and visual descriptors obtained from the same
positive samples used in training are prevented. The ROC
curves of this experiment can be seen in Fig. 5. The 1D+2D
detector and 1D+ detector perform significantly better than
the visual only detector.

The proposed classifiers were tested with 600 labeled
ground truth images of DontHitMe-Night dataset to quantify
the performance of the classifiers under severe illumination
conditions in outdoor. In this experiment, the classifiers
trained in the previous experiment were applied on the night
dataset. No new classifier was trained by using DontHitMe-
Night and no syntectic range scans were generated from
the depth images of this dataset. The tested geometric
human descriptors were obtained only from the recorded
LIDAR scans. The ROC curves of the 1D+2D, 1D+, and
[2] detectors are displayed in Fig. 6. It can be seen that the
HOG descriptor is not enough to represent the human under
insufficient lighting and at night times. Our single-modal
human descriptor achieved better accuracy than the HOG
descriptor. Fusing the visual and geometric cues in a joint
feature vector helped to improve the performance; 1D+2D
detector outperforms consistently the other alternatives.

Since our geometric descriptor is obtained from the LI-
DAR scans, our 1D+2D detector is more capable of handling
image motion blur than the HOG classifier. Such motion blur
examples can be seen in Fig. 5, for example, at the foot level
of the pedestrians.

Note that, since it is accurate and computationally feasible
at the same time, we compare against the HOG detector
that uses SVM-RBF [2] for the most objective evaluations.
There are other visual features that can generate higher
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