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Abstract

Low-rank matrix recovery from a corrupted observation
has many applications in computer vision. Conventional
methods address this problem by iterating between nuclear
norm minimization and sparsity minimization. However, it-
erative nuclear norm minimization is computationally pro-
hibitive for large-scale data (e.g., video) analysis. In this
paper, we propose a Robust Orthogonal Subspace Learn-
ing (ROSL) method to achieve efficient low-rank recovery.
Our intuition is a novel rank measure on the low-rank ma-
trix that imposes the group sparsity of its coefficients under
orthonormal subspace. We present an efficient sparse cod-
ing algorithm to minimize this rank measure and recover
the low-rank matrix at quadratic complexity of the matrix
size. We give theoretical proof to validate that this rank
measure is lower bounded by nuclear norm and it has the
same global minimum as the latter. To further accelerate
ROSL to linear complexity, we also describe a faster version
(ROSL+) empowered by random sampling. Our extensive
experiments demonstrate that both ROSL and ROSL+ pro-
vide superior efficiency against the state-of-the-art methods
at the same level of recovery accuracy.

1. Introduction
The problem of learning and exploiting a low-rank struc-

ture from its corrupted observation has become a stan-

dard paradigm in machine learning and computer vision.

Many methods, e.g., Robust PCA (RPCA, also called

PCP in [4]) and Sparse Low-Rank Matrix Decomposition

(SLRMD) [23], employ the nuclear norm as a surrogate for

the highly non-convex rank minimization [15]. RPCA has

been shown to be a convex problem with performance guar-
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antee [4]. It assumes the observation matrix X ∈ R
m×n

is generated by the addition of a low-rank matrix A (rank:

r � min{m,n}) and a sparse matrix E. Suppose Singu-

lar Value Decomposition (SVD) of A is denoted as A =
USV T , where S is a diagonal matrix with singular values

Si, 1 ≤ i ≤ min{m,n}) on the diagonal, RPCA recovers

the low-rank matrix A from the corrupted observation X as

follows:

min
A,E

‖A‖∗ + λ‖E‖1 s.t. A+ E = X (1)

where nuclear norm ‖A‖∗ =
∑n

i=1 Si.

Despite its excellent results, RPCA is computation-

ally expensive with O(min(m2n,mn2)) complexity due to

multiple iterations of SVD. Reducing the number of the re-

quired SVD operations is a possible remedy [19], yet the

computational load is dominated by SVD itself. Instead of

full SVD, partial RPCA [10] computes κ (r < κ) major

singular values, thus it has O(κmn) complexity. Never-

theless, partial RPCA requires a proper way to preset the

optimal value of κ. GoDec [24] uses bilateral random pro-

jection to accelerate the low-rank approximation in RPCA.

Similarly, RP-RPCA [14] applies random projection P on

A (i.e., A′ = PA) and then minimizes the rank of A′. How-

ever, rank minimization using randomized SVD is unsta-

ble and might be even slower than RPCA, for it requires

conducting SVD on many different projected matrices A′ at

each iteration.

Non-convex matrix factorization approaches including

RMF [8] and LMaFit [16] have been also proposed for fast

low-rank recovery. Instead of minimizing the rank of A,

these approaches represent A under some preset-rank sub-

spaces (spanned by D ∈ R
m×k) as A = Dα, where coef-

ficients α ∈ R
k×n and r < k � min(m,n). Due to its

SVD-free property, these non-convex matrix factorization

approaches are computationally preferable to RPCA. Still,

their quadratic complexityO(kmn) is prohibitive for large-

scale low-rank recovery. Besides, they require an accurate
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initial rank estimate, which is not easy to obtain itself.

This paper presents a computationally efficient low-rank

recovery method, called as Robust Orthonormal Subspace

Learning (ROSL). Motivated by the group sparsity (struc-

ture) in sparse coding [20, 22, 13, 2, 7], ROSL speeds the

rank-minimization of a matrix A by imposing the group

sparsity of its coefficients α under orthonormal subspace

(spanned by orthonormal bases D). Its underlying idea is

that, given the subspace representation A = Dα, the rank

of A is upper bounded by the number of non-zero rows of α.

ROSL can be regarded as a non-convex relaxation of RPCA

by replacing nuclear norm with this rank heuristic. First,

this relaxation enables the employment of efficient sparse

coding algorithms in low-rank recovery, therefore ROSL

has only O(rmn) (r < κ, k) complexity, much faster than

RPCA. Second, by imposing this rank heuristic, ROSL is

able to seek the most compact orthonormal subspace that

represents the low-rank matrix A without requiring accurate

rank estimate (unlike RMF and LMaFit). Third, this rank

heuristic is proven to be lower bounded by nuclear norm,

which means that ROSL has the same global minimum as

RPCA.

An efficient ROSL solver is also presented. This solver

incorporates a block coordinate descent (BCD) algorithm

into an inexact alternating decision method (ADM). Despite

its non-convexity, this solver is shown to exhibit strong con-

vergence behavior, given random initialization. Experimen-

tal results validate that the solution obtained by this solver

is identical or very close to the global optimum of RPCA.

As another contribution, a random sampling algorithm

is introduced to further speed up ROSL such that ROSL+

has linear complexity O(r2(m + n)). Similar sampling

based frameworks for RPCA can be found in DFC [12]

and L1 filtering [11]. Although these methods follow the

same idea—Nystrom method [21, 9, 18], ROSL+ addresses

a different problem, i.e. accelerating orthogonal subspace

learning. In addition, ROSL+ elucidates a key point in

Nystrom method—how to estimate multiple sub-matrices,

which missed by DFC.

This paper is organized as follows. Section 2 presents the

proposed method (ROSL). Section 3 develops its efficient

solver. Section 4 provides its accelerated version (ROSL+).

Section 5 presents experimental results. Section 6 gives the

concluding remarks.

2. Robust Orthonormal Subspace Learning
As shown in Figure 1, similar to RPCA, ROSL assumes

that the observation X ∈ R
m×n is generated by the addi-

tion of a low-rank matrix A (rank: r � min{m,n}) and

a sparse outlier matrix E. Different from RPCA that uses

the principal subspace, ROSL represents the low-rank ma-

trix A under an ordinary orthonormal subspace (spanned

by D = [D1, D2..., Dk] ∈ R
m×k), denoted as A = Dα,

where coefficients α = [α1;α2; ...;αk] ∈ R
k×N and αi

specifies the contribution of Di to each column of A. The

dimension k of the subspace is set as k = β1r(β1 > 1 is a

constant).

2.1. Group Sparsity under Orthonormal Subspace

Figure 1. Illustration of the observation model X = A + E =
Dα+ E in ROSL.

ROSL introduces a new formulation of rank minimiza-

tion to replace the nuclear norm used in RPCA. Although

the Frobenius-norm regularization is a valid substitute for

nuclear norm, as shown in Lemma 1, it fails to recover the

low-rank matrix without rank estimate.

Lemma 1 [5, 17] ‖A‖∗ = minD,α
1
2 (‖D‖2F +

‖α‖2F ) s.t. A = Dα.

Motivated by the group sparsity [20, 22, 13, 2, 7], ROSL

represents A under some vector subspace D and constraints

the rank of A by imposing the group sparsity of its coef-

ficients α. Its main idea is that, given A = Dα, the rank

of A, or exactly α, is upper bounded by the number of non-

zero rows of α, i.e. ‖α‖row-0. In order to avoid the vanishing

of coefficients α, the subspace bases are constrained to be

on the unit sphere, i.e., DT
i Di = 1, ∀i. To further enable

the group sparsity of α is a valid measure of rank (A), we

should eliminate the correlation of columns of D by con-

straining it to be orthonormal, i.e., DTD = Ik, where Ik is

an identity matrix. Thus, ROSL recovers the low-rank ma-

trix A from X by minimizing the number of non-zero rows

of α, and the sparsity of E as follows:

min
E,D,α

‖α‖row-0+λ‖E‖0 s.t.Dα+E = X,DTD = Ik, ∀i
(2)

Lemma 2 ‖A‖∗ = ‖α‖row-1, when A = Dα,DTD = Ik
and α consists of orthogonal rows.

It is well known that sparsity-inducing �1-norm is an ac-

ceptable substitute for the sparsity measure (i.e., �0-norm).

Similarly, the row-1 norm, which is defined as ‖α‖row-1 =∑k
i=1 ‖αi‖2, is a good heuristic for the row sparsity (i.e.,

row-0 norm). Actually, it is easy to reach the conclusion

that the nuclear norm ‖A‖∗ is equal to the group sparsity

‖α‖row-1 under orthonormal subspace D, where A = Dα,

if rows of α are orthogonal, as stated in Lemma 2. In this
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case, the subspace bases D = U and coefficients α = SV T ,

where A = USV T by SVD. For the computational effi-

ciency, ROSL removes this orthogonal constraint on α and

recover the low-rank matrix A from X by minimizing the

row-1 norm of α, and the �1-norm of E.

min
E,D,α

‖α‖row-1+λ‖E‖1 s.t.Dα+E = X,DTD = Ik, ∀i
(3)

2.2. Bound of Group Sparsity under Orthonormal
Subspace

To show ROSL is a valid non-convex relaxation of the

performance-guaranteed RPCA, we investigate the rela-

tionship between the group-sparsity-based rank formulation

with matrix rank/nuclear norm.

Proposition 1 Consider a thin matrix A ∈ R
m×n (m ≥

n), its SVD and orthonormal subspace decomposition are
respectively denoted as A = USV T and A = Dα, where
D ∈ R

m×n, α ∈ R
n×n and DTD = In without loss of

generality. The minima of row-0 group sparsity and row-1
group sparsity of A under orthonormal subspace are re-
spectively rank(A) and nuclear norm ‖A‖∗:

(P1.1) min
Dα=A,DTD=In

‖α‖row-0 = rank(A) (4)

(P1.2) min
Dα=A,DTD=In

‖α‖row-1 = ‖A‖∗ (5)

Proof of (P1.1) It is straightforward that the rank of A,

where A = Dα, should not be larger than the dimension of

α, resulting in that ‖α‖row-0 ≥ rank(α) ≥ rank(A). Thus,

the row-0 norm of α under orthonormal subspace D is lower

bounded by the rank of A.

Proof of (P1.2) This part can be restated as: ‖α‖row-1 =∑n
i=1 ‖αi‖2, will reach its minimum ‖A‖∗, when the or-

thonormal bases are equal to the principal components,

i.e., D = U , where A = USV T by SVD. For simplic-

ity of proof, we ignore other trivial solutions—the varia-

tions (column-wise permutation or ± column vectors) of

U . Since both D and U are orthonormal bases, we reach

the relationship, D = UΩ and α = ΩTSV T , where Ω
is a rotation matrix (ΩTΩ = In, det(Ω) = 1). Here, we

introduce a decreasing sequence of non-negative numbers

σi, 1 ≤ i ≤ n such that Si = σi, 1 ≤ i ≤ n. To validate

(P1.2), we need prove that the following relation holds for

any Ω (the equality holds when Ω is the identity matrix).

‖α‖row-1 = ‖ΩTSV T ‖row-1 ≥
n∑

i=1

Si = ‖A‖∗ (6)

1. We begin with the special case that all the singular val-

ues are identical. Specifically, we decrease the sin-

gular values such that ∀i ∈ {1, ..., n}, Si = σn,

where σn is the last number in the decreasing sequence

σi, 1 ≤ i ≤ n. Since each row of the rotation matrix Ω
is a unit vector, we reach the following relationship:

‖α‖row-1 =
n∑

j=1

√√√√ n∑
i=1

Ω2
ijS

2
i = nσn =

n∑
i=1

Si = ‖A‖∗
(7)

2. Then, we try to prove that ‖α‖row-1 ≥ ‖A‖∗ still holds

in the general case, i.e., Si = σi, 1 ≤ i ≤ n. We can

transform the special case above into the general case

by n−1 steps, among which the t-th step is increasing

the top n− t singular values (Si, 1 ≤ i ≤ n− t) from

σn−t+1 to σn−t. When increasing Si, 1 ≤ i ≤ n − 1
from σn to σn−1 in the first step, the partial derivative

of ‖α‖row-1 with respect to Si is calculated as follows:

∂‖α‖row-1

∂Si
=

n∑
j=1

Ω2
ij√∑n−1

t=1 Ω2
tj +Ω2

nj(S
2
n/S

2
i )

(8)

Since Sn ≤ Si, 1 ≤ i ≤ n− 1 and
∑n

t=1 Ω
2
tj = 1, we

reach the following relationship:

∂‖α‖row-1

∂Si
≥

n∑
j=1

Ω2
ij = 1 =

∂‖A‖∗
∂Si

(9)

Thus, ‖α‖row-1 ≥ ‖A‖∗ holds when increasing Si, 1 ≤
i ≤ n − 1 in the first step. In the same way, we can

prove that ‖α‖row-1 ≥ ‖A‖∗ holds in the following n−
2 steps.

3. In sum, ‖α‖row-1 ≥ ‖A‖∗ in the general case

where singular values Si are not identical, i.e.,

Si = σi, ∀i ∈ {1, ..., n}.

According to Proposition 1, the minimum of row-1

group sparsity under orthonormal subspace is the nuclear

norm, i.e., ‖α‖row-1 ≥ ‖A‖∗, where A = Dα and

DTD = Ik. Suppose, at weight λ, RPCA recovers the

low-rank matrix as its ground truth A∗, i.e., Â = A∗, then,

‖α̂‖row-1 +λ‖X − Â‖1 ≥ ‖Â‖∗+λ‖X − Â‖1 ≥ ‖A∗‖∗+
λ‖X − A∗‖1 holds for any (Â, D̂, α̂)

̂A= ̂Dα̂, ̂DT ̂D=Ik
. In

sum, at the weight λ, ROSL has the same global mini-

mum (Â = A∗, D̂ = U, α̂ = SV T ) as RPCA, where

A∗ = USV T by SVD.

Relationship with Existing Methods ROSL can be con-

sidered to be a compromise between RPCA and ordinary

matrix factorization methods (e.g. RMF and LMaFit). On

one hand, ROSL improves upon RMF and LMaFit by seek-

ing the group sparsity of A under orthonormal subspace D,
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which allows low-rank recovery without presetting the rank.

On the other hand, ROSL is a non-convex relaxation of

RPCA by replacing nuclear norm ‖A‖∗ with the group spar-

sity ‖α‖row-1 under orthonormal subspace, which greatly

accelerates the low-rank recovery. As stated in Lemma 2,

givn A = Dα, the nuclear norm ‖A‖∗ is upper bounded by

the group sparsity ‖α‖row-1 under orthonormal subspace D,

which indicates that our ROSL has the same global mini-

mum as the performance-guaranteed method RPCA.

3. Fast Algorithm for ROSL
In this section an efficient algorithm is presented to solve

the ROSL problem in Eq. (3).

Algorithm 1 ROSL Solver by inexact ADM/BCD

Require: X ∈ R
m×n, k, λ.

Ensure: D, α, E
1: E0 = Y 0 = zeros(m,n);D0 = zeros(m, k);α0 =

rand(k, n);μ0 > 0; ρ > 1; i = 0;
2: while E not converged do
3: for t = 1→ k do
4: Compute the t-th residual: Ri

t = X − Ei +
Y i/μi −∑

j<t D
i+1
j αi+1

j −∑
j>t D

i
jα

i
j ;

5: Orthogonalization:

Ri
t = Ri

t −
∑t−1

j=1 D
i+1
j (Di+1

j )TRi
t;

6: Update: Di+1
t = Ri

tα
i
t
T

;

Di+1
t = Di+1

t /(‖Di+1
t ‖2);

7: Update:αi+1
t = S1/μi(Di+1

t

T
Ri

t);
8: end for
9: Prune: for t = 1 → k, delete (Di+1

t , αi+1
t ) and set

k = k − 1, if ‖αi+1
t ‖22 = 0;

10: Update: Ei+1 = Sλ/μi(X −Di+1αi+1 + Y i/μi);
11: Update: Y i+1 = Y i + μi(X − Di+1αi+1 −

Ei+1);μi+1 = ρμi; i = i+ 1;

12: end while

3.1. Alternating Direction Method

Similar to [10], we apply the augmented Lagrange mul-

tiplier (ALM) [3] to remove the equality constraint X =
Dα + E in Eq. (3). Its augmented Lagrangian function is

written as:

L(D,α,E, Y, μ) = ‖α‖row-1 + λ‖E‖1 + Y (X −Dα− E)

+
μ

2
‖X −Dα− E‖2F s.t. DTD = Ik

(10)

where μ is the over-regularization parameter and Y is the

Lagrange multiplier. We solve the above Lagrange function

by inexact alternating direction method (ADM), which iter-

ates through the following three steps:

1. Solve (Di+1, αi+1) = argminL(D,α,Ei, Y i, μi).

2. Solve Ei+1 = argminL(Di+1, αi+1, E, Y i, μi).

3. Update Y i+1 = Y i + μi(X − Di+1αi+1 −
Ei+1), μi+1 = ρμi, where ρ > 1 is a constant.

In the first step, solving D and α simultaneously with

constraint Dα + E = X + Y
μ is a non-convex problem.

Fortunately, the sub-problem—updating one matrix when

fixing the other one is convex. This indicates solving D and

α using coordinate descent method. In the second step, we

can easily update Ei+1 = Sλ/μi(X − Di+1αi+1 + Y i

μi )),

where shrinkage function Sa(X) = max{abs(X) − a, 0} ·
sign(X) and ”·” denotes element-wise multiplication.

3.2. Block Coordinate Descent

Motivated by group sparse coding [2], we apply block

coordinate descent (BCD) to solve D and α in the

first step of ADM. Suppose the subspace bases D =
[D1, ..., Dt, ..., Dk] and α = [α1; ...;αt; ...;αk], the BCD

scheme sequentially updates the pair (Dt, αt), by leaving

all the other indices intact. In this way, it allows shrinking

the group sparsity ‖α‖row-1 under the orthonormal subspace

D, while sequentially updating (Dt, αt). In addition, it ob-

tains new subspace bases and coefficients that best fit the

constraint A = Dα and thus achieves higher convergence

rate, as explained in [1, 6]. The BCD scheme sequentially

updates each pair (Dt, αt), 1 ≤ t ≤ k such that Dtαt

is a good rank-1 approximation to Ri
t, where the residual

is defined as Ri
t = X + Y i

μi − Ei −∑
j<t D

i+1
j αi+1

j −∑
j>t D

i
jα

i
j . Thus, if removing the orthonormal constraint

on D, the pair (Dt, αt) can be efficiently updated as fol-

lows:

Di+1
t = Ri

tα
iT (11)

αi+1
t =

1

‖Di+1
t ‖22

S1/μi(Di+1
t

T
Ri

t) (12)

where Sa(X) is the magnitude shrinkage function defined

as Sa(X) = max{‖X‖2 − a, 0}X/‖X‖2} if ‖X‖2 > 0.

Due to the space limit, we refer the readers to [2] for the

detailed induction of Eq. (12).

When taking into account the orthonormal subspace, we

need to orthonormalize Di+1
t by the Gram-Schmidt pro-

cess. As shown in Algorithm 1, the new Di+1
t is ob-

tained via three steps: (1) project Ri
t onto the null space

of [D1, ..., Dt−1], (2) update Di+1
t as Eq. (11) and (3) then

project it onto the unit sphere by normalization.

Above BCD scheme attempts to keep sequentially fitting

the rank-1 subspaces (Di+1
t αi+1

t ) to the objective X+ Y i

μi =

Di+1αi+1 + Ei, until the fitted subspace is canceled by

magnitude shrinkage, i.e., ‖αi+1
t ‖2 = 0. To improve the
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computational efficiency, we shrink the subspace dimension

k by pruning the zero pairs, for they will stay zero in the

next iteration.

It is possible to run many rounds of BCD to solve Di+1

and αi+1 exactly in the first step of ADM. In practice, up-

dating (Di+1
t , αi+1

t ), 1 ≤ t ≤ k once at each round of ADM

is shown to be sufficient for the inexact ADM algorithm

to converge to a valid solution (Di+1, αi+1 and Ei+1) to

Eq. (3).

As shown in Algorithm 1, ROSL can be solved using in-

exact ADM at the higher scale and inexact BCD at the lower

scale. To the best of our knowledge, there is no established

convergence theory, either for ADM algorithms applied to

non-convex problems with more than two groups of vari-

ables [16], or for BCD algorithms applied to sparse coding

[1, 2]. As all non-convex problems, ROSL has no theoreti-

cal guarantee of convergence. However, empirical evidence

suggests that ROSL solver has strong convergence behav-

ior and provides a valid solution: Ai+1 = Di+1αi+1 and

Ei+1, when the initialize E0, Y 0 and D0 as zero matrices,

as well as α0 as a random matrix.

3.3. Computational Complexity

Compared with RPCA, which has cubic complexity of

O(min(m2n,mn2))), ROSL is much more efficient, when

the matrix rank r � min(m,n). Its dominant computa-

tional processes are (1) left multiplying the residual ma-

trix R ∈ R
m×n by D, and (2) right multiplying it by α.

Thus, the complexity of ROSL depends on the subspace di-

mension k. If we set the initial value of k as several times

larger than r (i.e., r and k are on the same order, being much

smaller than m and n), ROSL has the quadratic complexity

of matrix size, , i.e., O(mnk) or O(mnr).

4. Acceleration by Random Sampling

Motivated by Nystrom method [21, 9, 18], we present a

random sampling algorithm to further speed up ROSL such

that its accelerated version (ROSL+) has linear complexity

with respect to the matrix size.

4.1. Random Sampling in ROSL+

Figure 2. Decomposition of the low-rank matrix A ∈ R
m×n.

As shown in Fig. 2, the low-rank matrix A ∈ R
m×n

is first permuted column-wisely and row-wisely, and then

divided into four sub-matrices (ATL ∈ R
h×l, ATR, ABL

and ABR). Accordingly, top sub-matrix AT and left sub-

matrix AL are respectively defined as AT = [ATL, ATR]
and AL = [ATL;ABL]. The same permutation and division

are done on X and E. As shown in Fig. 2, subspace bases D
is divided into DT ∈ R

h×k and DB , as well as coefficients

α is divided into αL ∈ R
k×l and αR, such that

A =

[
ATL ATR

ABL ABR

]
=

[
DT

DB

]
[αL αR] (13)

Nystrom method is initially used for large dense matrix

approximation [9], and extended to speed up RPCA in

DFC [12]. Suppose rank(ATL) = rank(A) = r, instead of

recovering the full low-rank matrix A, DFC first recovers

its sub-matrices and then approximates Â as:

Â = ÂL(ÂTL)
+ÂT (14)

where ”+” denotes pseudo-inverse. However, DFC does not

describe how to estimate the top-left submatrix.

Here, we investigate this specific issue and further sim-

plify Nystrom method in the framework of robust subspace

learning. An intuitive solution would be independently re-

covering all three sub-matrices. But this requires exhaus-

tively tuning different parameters λ, which eventually pre-

vents from achieving high accuracy. The feasible way is

that ROSL+ directly recovers the left sub-matrix and the

top submatrix, i.e., ÂL = D̂α̂L and ÂT = D̂T α̂, and then

approximates ÂTL by the left sub-matrix of ÂT . Thus, the

low-rank matrix A can be reconstructed as follows:

Â = ÂL((ÂT )L)
+ÂT = D̂α̂L((α̂)L)

+α̂ (15)

where (X)L denotes the left sub-matrix of X . Actually,

when rank(ATL) = rank(A) holds, α̂L recovered from the

left observation matrix XL is a good approximation to, or

exactly equal to, (α̂)L recovered from the top observation

matrix XT . The same relationship exists between (D̂)T and

D̂T , where (D̂)T denotes the top sub-matrix of D̂. Thus, we

can further simplify ROSL+ as

Â = D̂α̂ (16)

where D̂ and α̂ is respectively recovered from XL and XT

in the following two simple steps.

1. Solve D̂ and α̂L by applying ROSL on XL:

min
D,αL,EL

‖αL‖row-1 + λ‖EL‖1 s.t.
XL = DαL + EL

DTD = Ik
(17)

2. Solve α̂ by minimizing ‖XT − D̂Tα‖1 by fixing D̂T

as (D̂)T .
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In other words, ROSL+ first recovers D̂ from the left

sub-matrix XL (complexity: O(mlr)), and then solve α̂

by minimizing the �1-norm of XT − D̂Tα (complexity:

O(nhr)). Thus, the complexity of ROSL+ is O(r(ml +
nh)). When the matrix rank r is much smaller that its

size, i.e., r � min(m,n), the sample number can be set

as l = β2r and h = β3r, where β2 and β3 are constants

larger than 1. In this case, ROSL+ has the linear complex-

ity of the matrix size, i.e., O(r2(m+ n)).

5. Experimental Results

We present several experiments to evaluate the perfor-

mance of ROSL and ROSL+, including (1) simulation on a

corrupted synthetic low-rank matrix of varying dimension,

(2) visual low-rank recovery on real data for background

subtraction. Note that, ROSL algorithm is implemented in

Matlab without using any advanced tools unlike some other

methods we compare. All the experimental results are exe-

cuted on an Intel W3530 CPU and 6GB memory. For sim-

plicity, we set the sample number h = l for ROSL+ and

other sampling-based methods we tested.

Similar to [14], a square low-rank matrix A ∈ R
m×m

is synthesized as a product of a m × r matrix and a r ×m
matrix (r is set to be 10), whose entries obey the normal

distribution. Then, the corrupted data X is generated by the

addition of A and a sparse matrix E ∈ R
m×m (10% of its

entries are non-zero and drawn from the uniform distribu-

tion on [-50, 50]).

On this synthetic data, we evaluate the recovery accu-

racy and efficiency of ROSL, compared with RPCA, RP-

RPCA and LMaFit (advanced version of RMF). As shown

in Table 1, ROSL is much faster than these methods without

compromising the recovery accuracy. The original RPCA

using full SVD is computationally costly and is almost in-

Figure 3. Convergence rate of ROSL. At the fixed λ = 0.03, the

recovered subspace dimension always converges to r = 10 in less

than 7 iterations regardless of the initial value of k, which indi-

cates the ROSL solver is robust and very stable. The recovered

subspace dimension increases as λ increases from 0.03 to 0.05.

MAE ≈ 10−6 at all cases above.

feasible when the matrix size m = 8000. Even partial

RPCA [10] is consistently 4 times slower than ROSL and

also requires a proper way to update κ. Although random

projection helps reduce the computation of a single SVD,

many iterations of SVD are needed to be conducted on dif-

ferent projected matrices. Thus, the total computation of

RP-RPCA is costly and its recovery accuracy is low (Ta-

ble 1). In the ideal case that the matrix rank is known,

LMaFit has the same accuracy and complexity as ROSL.

However, since it is unable to minimize the matrix rank, it

fails to obtain accurate low-rank matrix recovery without

exactly setting k = r. On this synthetic data (rank r = 10)

in Table 1, LMafit converges very slowly and fails to obtain

accurate recovery at k = 30, which is true even at k = 14.

To evaluate the performance of ROSL+, we apply the

generalized Nystrom method (employed in DFC) to ROSL,

called ROSL-Nys. Since the performance of ROSL-Nys

highly depends on how to recover ATL, we present two dif-

ferent variants of ROSL-Nys, i.e., ROSL-Nys1 recovering

sub-matrices (ATL, AT and AL) independently, and ROSL-

Nys2 recovering ATL by left sub-matrix of AT . Actu-

ally, DFC also employed another column sampling method.

But it requires recovering multiple (i.e., n
l ) sub-matrices

(size:m×l) and thus has quadratic complexity, much slower

than ROSL+ (linear complexity). As shown in Table 1,

RPCA-Nys1 fails to obtain accurate recovery. The reason is

that tuning a common weight λ cannot guarantee the opti-

mality of three subproblems—estimating AL, AT and ATL.

Both the computational complexity and recovery accuracy

of ROSL+ are on the same order of that of ROSL-Nys2, and

are slightly (1.5 ∼ 2 times) better that the latter. This better

performance is due to that ROSL+ consists of only one time

ROSL and one time linear regression.

In addition, we evaluate the stability and convergence

rate of ROSL/ROSL+ on the same synthetic matrix by vary-

Figure 4. Recovery accuracy (MAE) of ROSL+ on synthetic data

(m = 1000, r = 10, k = 30). For each l, the recovery er-

rors (MAE) of ROSL+ in 10 different random-sampling trials are

shown in green (their median in red). The recovery error (MAE) of

ROSL+ decreases exponentially with the increase of l. These tests

also indicate that ROSL+ gets the same global solution as RPCA

in almost all cases.

387538793879



Table 1. Evaluation of ROSL, ROSL+ and the existing low-rank recovery approaches on synthetic low-rank matrices (size: m ×m and

rank r = 10). The experimental parameters are set up as: (1) λ is best tuned for each method, (2) the dimension of D is initialized as

k = 30, (3) the stop criterion is ‖X − Ai+1 − Ei+1‖F /‖X‖F ≤ 10−6, (4) max iteration number (iter) is set to be 300, and (5) the

sample number l = h = 100. The Mean of Absolute Error (MAE) between A and ̂A is used to gauge the recovery accuracy. The iterations

(rounds of ADM) and the total running time (seconds) are reported. Note: aEb denotes a× 10b.

RPCA Partial RPCA RP-RPCA LMaFit ROSL ROSL-Nys1 ROSL-Nys2 ROSL+

m MAE Time MAE Time MAE Time MAE Time MAE Time MAE Time MAE Time MAE Time
500 2.8E-6 2.51 2.2E-6 1.44 0.03 5.9 0.53 6.9 6.3E-6 0.78 2.4 0.42 4.8E-5 0.42 2.9E-5 0.31

1000 1.0E-6 12.7 1.1E-6 5.60 0.37 23.7 0.38 28.7 6.1E-6 2.83 2.6 0.89 5.4E-5 0.89 3.1E-5 0.65
2000 5.7E-7 112 7.6E-7 24.4 0.42 110 0.18 116 2.2E-6 12.8 2.3 1.56 5.0E-5 1.56 3.3E-5 1.1
4000 1.2E-6 981 5.3E-7 161 0.77 669 0.034 442 9.8E-6 41.8 3.0 3.78 4.3E-5 3.77 2.7E-5 2.5
8000 N/A N/A 6.7E-7 802 1.62 3951 0.005 1750 2.2E-6 214 2.8 9.0 4.6E-5 8.9 2.2E-5 5.6
Iter 18∼20 18∼20 300 300 16∼17 18∼20 18∼20 18∼20

(a) (b) (c) (d) (e) (f) (g)
Figure 5. Comparison of RPCA, ROSL(k = 10) and ROSL+(l = 50) in background modeling on the lobby video (size: 160× 128, 1060

frames). (a) Original images. Backgrounds recovered by (b) RPCA, (d) ROSL, and (f) ROSL+. Foregrounds recovered by (c) RPCA, (e)

ROSL, and (g) ROSL+. ROSL (time: 34.6s) and ROSL+ (time: 3.61s) are significantly (10×, 92×) faster than RPCA (time: 334s) while

generating almost identical results.

ing the initial rank k, weight λ or submatrix size l.

First, we observed that the recovery accuracy and con-

vergence rate of ROSL are not sensitive to selection of k,

as long as k > r. As shown in Fig. 3, ∀k ∈ [20, 100], the

subspace dimension recovered by ROSL at λ = 0.03 fast

converges to the rank r = 10 and the high accuracy (MAE

≈ 10−6) is achieved.

Second, ROSL produces accurate low-rank recovery at

any weight λ ∈ [0.03, 0.05] and the recovered subspace di-

mension consistently increases with λ. ROSL recovers the

14-dimension orthonormal subspace when λ = 0.05 and

obtains accurate recovery (MAE≈ 10−6).

Third, at the fixed sub-matrix size l, the recovery ac-

curacy of ROSL+ is relatively stable in different random

sampling trials. As the submatrix size l increases, the

recovery error (MAE) of ROSL+ decreases exponentially

and reaches as low as 3 × 10−5 when l = 10r = 100
(Fig. 4). This result is in line with the failure probability

δ of rank(ATL)=rank(A) that exponentially decreases with

the increase of l.

To compare the recovery accuracy of ROSL/ROSL+

with that of RPCA, we evaluate them on two standard vi-

sual data sets, Yale-B face images and the lobby background

subtraction video, similar to [4]. From each video, we build

an observation matrix X by vectorizing each frame as one

column, and respectively recover the low-rank component

A from X by ROSL and RPCA.

In the lobby video, both ROSL and ROSL+ exactly re-

cover the same (accurate) foreground objects and back-

ground components as RPCA at much faster speeds (ROSL:

10×, ROSL+: 92×) as shown in Fig. 5.

In the face image experiments, the non-diffusive com-

ponent E detected by ROSL is almost the same as that

by RPCA (Fig. 6). The results of ROSL+ are very close

to those of ROSL and thus not included in Fig. 6, due

to the space limit. Note that, the lobby video is a thin

matrix (20480× 1060) and the efficiency improvement of

ROSL/ROSL+ is expected to be even higher for large-scale

square matrices. Such matrices are common in typical ap-

plications, e.g., in video summarization (105 images of 106

pixels) and in face recognition (106 images of 106 pixels).
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(a) (b) (c) (d) (e)
Figure 6. Visual evaluation of ROSL and RPCA on face images

(168 × 192, 55 frames) under varying illuminations. There is

no significant difference between ROSL and RPCA. (a) Origi-

nal images, diffusive component recovered by (b) RPCA and (d)

by ROSL. Non-diffusive component (shadow/specularity) by (c)

RPCA (time: 12.16s) and (e) by ROSL (time: 5.85s).

6. Conclusion

In this paper, a Robust Orthonormal Subspace Learn-

ing (ROSL) approach is proposed for efficient robust low-

rank recovery. This approach accelerates the state-of-the-

art method, i.e., RPCA, by replacing the nuclear norm on

the low-rank matrix by a light-weight measure—the group

sparsity of its coefficients under orthonormal subspace.

This enables using fast sparse coding algorithms to solve

the robust low-rank recovery problem at the quadratic com-

plexity of matrix size. This novel rank measure is proven

to be lower-bounded by the nuclear norm and thus ROSL

has the same global optima as RPCA. In addition, a ran-

dom sampling algorithm is introduced to further speed up

ROSL such that ROSL+ has linear complexity of the ma-

trix size. Experimental results on the synthetic and real data

show that ROSL and ROSL+ achieve the state-of-the-art ef-

ficiency at the same level of recovery accuracy.
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