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of the dominant visual attributes in the dataset. The most
apparent difference is that the trackers are less dispersed
in the AR-rank space. This is because 25 ranking lists
are averaged, indicating that the tracker ranking lists
vary over the individual sequences and are consequently
pulled to the average rank by averaging.
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Fig. 9. The AR-rank and raw plots for the baseline ex-
periment with per-attribute normalization (upper row) and
per-sequence normalization (bottom row).

Note that majority of the tested trackers are highly
competitive. This is supported by the fact that the track-
ers, that are often used as baseline trackers, NCC, MIL,
CT, FRT and IVT, occupy the bottom-left part of the AR-
rank plots. Obviously these approaches vary in accuracy
and robustness and are thus spread perpendicularly to
the bottom-left-to-upper-right diagonal of AR-rank plots.
In both experiments, the NCC is the least robust tracker.
The Struck, which is often considered a state-of-the-art
tracker is positioned in the middle of the AR plots, which
further supports the quality of the tested trackers.

Next, we have ranked the individual types of visual
degradation according to the tracking difficulty they
present to the tested trackers. The expected number
of failures per hundred frames was computed on each
attribute for all trackers. The median of these per visual
attribute was taken as a measure of tracking difficulty
(see Table 6). The properties that present most diffi-
culty are occlusion, motion change and size change,
followed by camera motion and illumination change.
Subsequences that do not contain any specific attribute
(neutral) present little difficulty for the trackers in gen-
eral as most trackers do not fail on such intervals.

TABLE 6
Tracking difficulty for the six visual attributes: camera

motion (CM), illumination change (IC), occlusion (OC),
object size change (SC), object motion change (MC) and

neutral (NE).

CM IC OC SC MC NE
Exp. failures 0.55 0.42 1.13 0.74 0.79 0.00

Fig. 10. The scatter plot for the woman sequence shows
the failures for each tracker w.r.t. frame number.

4.6 Results of Sequence analysis

A further analysis was conducted to gain an insight into
the dataset from a tracker perspective. For each sequence
we have analyzed if a particular tracker failed at least
once at a particular frame (Figure 10). By counting how
many trackers failed at each frame, the level of diffi-
culty can be visualized by the difficulty curve for each
sequence (Figure 11). From these curves two measures
of sequence difficulty are derived: area and max. The area
is a sum of frame-wise values from the difficulty curve
normalized by the number of frames, while the max is
the maximum on this curve. The former indicates the
average level of difficulty of a sequence, and the latter
reflects the difficulty of the most difficult part in the
sequence. Table 7 summarizes the area and max values
for all sequences. A high value of the area suggests that
such sequence is challenging in a considerable number
of frames. For example, the area for the david sequence
is smaller than the area for the woman sequence, which
suggests that david sequence is less challenging that the
woman sequence. A large max indicates the presence of
difficult frames. For example, a significant peak in the
woman sequence (frame 566) suggests that this sequence
contains a subsequence around this frame which is
challenging to most of the trackers. In case of drunk
sequence, the corresponding max value is 3 (see Table 7),
thus almost all trackers successfully track the target.

Using the area measure the sequences were labeled by
the following four levels of difficulty: Hard (area greater
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TABLE 5
Ranking results of the baseline and bounding box perturbation experiments without rank normalization
(sequence-pooled) and the baseline experiment with per-attribute normalization. The per-accuracy and

per-robustness averaged ranks are denoted by A and R, respectively. The top, second and third lowest average ranks
are shown in red, blue and green respectively. The last four columns denote tracker properties which are split into:

localization (stochastic/deterministic, i.e., S/D); model type (holistic/part-based, i.e., H/P); visual model
representation (generative/discriminative, i.e., G/D); scale adaptation (yes/no, i.e., Y/N).

Experiment Baseline Region perturbation Baseline Properties
Normalization sequence-pooled sequence-pooled per-attribute
Ranking measure A R Avg. A R Avg. A R Avg. Loc. Model Repr. Scale
DSST [74] 3.67 9.00 6.33 5.25 9.78 7.51 5.41 12.08 8.75 D H D Y
SAMF [75] 3.00 11.91 7.45 4.00 10.70 7.35 5.30 13.60 9.45 D P D Y
KCF [73] 3.00 12.33 7.67 4.00 12.15 8.08 5.05 14.67 9.86 D H D N
DGT [55] 4.62 5.00 4.81 3.50 4.00 3.75 10.76 9.13 9.95 D P G Y
PLT14 [24] 12.29 2.00 7.15 10.00 1.50 5.75 13.88 6.20 10.04 D H D Y
PLT13 [23] 17.50 1.00 9.25 15.55 1.50 8.52 17.54 3.67 10.60 D H D N
eASMS [62] 10.00 6.80 8.40 6.00 6.83 6.42 13.48 13.35 13.41 D H G Y
ACAT [24] 16.00 17.54 16.77 19.54 12.15 15.85 12.99 14.58 13.79 D H G Y
HMM-TxD [24] 5.00 16.80 10.90 6.00 12.45 9.23 9.43 19.96 14.70 D P G Y
MCT [71] 17.50 7.83 12.67 20.07 11.70 15.89 15.88 13.61 14.74 S H G Y
MatFlow [24] 21.54 5.00 13.27 19.54 12.15 15.85 21.25 8.52 14.88 D P G N
qwsEDFT [59] 17.50 16.92 17.21 19.00 21.75 20.38 16.65 18.50 17.58 D H G N
ACT [63] 19.42 14.62 17.02 22.00 12.42 17.21 20.08 15.92 18.00 D H D N
ABS [24] 17.50 16.92 17.21 13.45 12.15 12.80 19.72 17.93 18.83 D H G Y
VTDMG [24] 17.50 15.69 16.60 19.00 11.00 15.00 20.77 17.69 19.23 D H G N
LGT [53] 28.63 5.75 17.19 23.81 4.00 13.91 28.12 11.28 19.70 S P G Y
BDF [56] 23.50 15.69 19.60 22.29 15.45 18.87 22.42 17.10 19.76 D P G N
aStruck [24] 22.50 20.45 21.48 22.29 25.64 23.96 21.41 18.43 19.92 D P D N
DynMS [24] 18.54 15.69 17.12 19.54 15.58 17.56 21.54 18.80 20.17 S H G Y
Struck [72] 19.58 24.60 22.09 22.00 20.44 21.22 20.11 20.30 20.21 D H D N
Matrioska [49] 21.54 18.33 19.94 21.50 27.62 24.56 21.15 19.92 20.53 D P G N
TStruck [72] 21.54 25.64 23.59 22.00 20.44 21.22 21.71 19.38 20.55 D H D N
OGT [54] 12.06 29.78 20.92 16.50 30.58 23.54 13.76 29.13 21.44 S H G N
EDFT [58] 18.54 24.43 21.49 21.50 24.70 23.10 19.43 23.71 21.57 D H G N
CMT [48] 20.17 27.44 23.81 24.72 27.30 26.01 18.93 24.53 21.73 D P G Y
SIR-PF [24] 23.50 18.50 21.00 20.07 24.70 22.39 23.62 20.13 21.88 S H G N
FoT [50] 21.00 27.44 24.22 23.32 31.20 27.26 18.48 25.67 22.07 D P G Y
LT-FLO [51] 17.50 30.50 24.00 20.07 31.20 25.64 15.98 29.85 22.91 S P G Y
IPRT [24] 26.67 22.33 24.50 23.81 23.78 23.80 26.68 21.72 24.20 S H G N
IIVTv2 [24] 29.35 30.67 30.01 26.18 28.17 27.17 24.79 24.81 24.80 D P G Y
NCC [65] 17.50 38.00 27.75 22.29 38.00 30.14 17.74 34.25 26.00 D H G N
PT+ [24] 32.64 15.69 24.16 27.84 13.67 20.75 32.05 20.68 26.36 D P G Y
IMPNCC [24] 29.73 33.25 31.49 32.42 31.71 32.07 25.56 27.68 26.62 D H G Y
FRT [57] 21.00 35.00 28.00 23.81 36.00 29.91 23.38 30.39 26.89 D P G N
FSDT [24] 31.50 33.40 32.45 23.32 30.73 27.02 23.55 31.16 27.36 D H D Y
IVT [25] 28.05 33.14 30.60 28.35 31.20 29.77 27.23 28.90 28.06 D H G Y
MIL [35] 34.25 28.38 31.31 35.75 30.10 32.92 33.95 24.20 29.08 D H D N
CT [69] 32.64 33.14 32.89 29.00 30.88 29.94 31.51 27.79 29.65 D H D N

than 3.00), intermediate (area between 3.00 and 2.00),
intermediate/easy (area between 1.00 and 1.00) and
easy (area less than 1.00) (see Table 7). These levels
were defined by manually clustering the areas into four
clear clusters. Surprisingly, the david sequence (Figure 11)
shows a small area in this study, although the sequence
is usually considered in the community to be challeng-
ing and it is commonly referred in the literature. One
explanation might be that the trackers are over-fitted
to this sequence since it is so often used in evaluation
and development. An alternative explanation might be
that the sequence is actually not very challenging for
tracking, but appears to be to a human observer. The
popularity would then be explained by the fact that it is
appealing to demonstrate good tracking performance on
a sequence that appears difficult, even though it might
not be. The analysis also shows that the motocross, hand2,

diving, fish2, bolt and hand1 are the most challenging
sequences. Most of the difficulties in these sequences
arise from changes in camera and object motion as
well as from rapid changes in object size. For example,
motocross is hard because all three aforementioned nui-
sances occur simultaneously while the hand2 sequence
shows challenging pose variations of the person’s hand.
The diving sequence shows significant changes in object
size, in bolt sequence both motions camera and object
occur simultaneously, while the fish2 sequence shows
challenging pose variations of the object.

Easy to intermediate sequences might remain valuable
for tracker comparison as these sequences still conceal
challenges in particular frames. These sequences are
identified by considering max in Table 7. For example,
almost all trackers fail at frame 77 of the jogging se-
quence. A closer look at this frame and previous frames
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Sequence area max frame difficulty
motocross 5.92 19 39 hard
hand2 5.65 24 167 hard
diving 4.85 15 195 hard
fish2 4.59 16 35 hard
bolt 4.14 17 17 hard
hand1 3.23 15 51 hard
fish1 2.94 16 39 interm
fernando 2.78 19 292 interm
gymnastics 2.59 19 97 interm
torus 2.26 9 146 interm
skating 2.12 9 312 interm
trellis 1.58 10 391 interm./easy
basketball 1.43 11 668 interm./easy
tunnel 1.27 6 493 interm./easy
sunshade 1.24 12 114 interm./easy
jogging 1.12 28 77 interm./easy
woman 1.05 19 566 interm./easy
bicycle 0.75 8 176 easy
david 0.60 4 200 easy
ball 0.47 7 189 easy
sphere 0.41 3 33 easy
car 0.25 7 170 easy
drunk 0.11 3 248 easy
surfing 0.04 1 178 easy
polarbear 0.00 0 1 easy

TABLE 7
Sequence difficulty from tracking perspective. The table

shows for each sequence the average number of
per-frame failed trackers (area), the frame (frame) where
maximum number (max) of trackers simultaneously failed

and the difficulty level (difficulty).

shows a complete occlusion of the object. Similarly, the
woman sequence at frame 566 (Figure 11) contains camera
zooming which makes 19 out of 38 trackers fail. The
bicycle sequence also shows a peak in the difficulty curve
at frame 176 (Figure 11). In this part of the sequence,
an object is occluded, which is immediately followed
by a shadow cast over the target. A significant peak is
also present in the bolt sequence (Figure 11) at frame 17,
at which many trackers fail. A closer look at the frame
and its neighbouring frames shows a significant object
motion between the frames as a cause of failures.

5 CONCLUSION

In this paper a novel tracker performance evaluation
methodology was presented. Requirements for the per-
formance measures, the dataset and the evaluation sys-
tem are defined and a new evaluation methodology is
proposed which aims at a simple, easily interpretable,
tracker comparison. The proposed methodology is the
first of its kind to account for the tracker equivalence
by considering statistical significance and practical dif-
ferences. A new dataset and a cross-platform-compatible
evaluation system were presented. The dataset consists
of 25 color sequences, which are per-frame annotated
by visual attributes and rotated boxes. Effects of re-
initialization and per-frame annotation are studied theo-
retically and the theoretical predictions are verified with
experiments. The novel performance evaluation was ap-
plied to comparison of 38 trackers, making it the largest

Fig. 11. Difficulty curves for the bicycle, bolt, david, and
woman sequences.

benchmark to date. Using the benchmark, the dataset
was analyzed from perspective of per-sequence and per-
visual-attribute tracking difficulty. The raw results of all
trackers are publicly available from the VOT homepage
for reproduction of the results in this paper and to allow
comparison with new trackers.

The results of an exhaustive analysis show that track-
ers tend to specialize either for robustness or accuracy.
None of the trackers consistently outperformed the oth-
ers by all measures at all sequence attributes. The top-
performing trackers include trackers with holistic as well
as part-based visual models. There is some evidence that
robustness is achieved by discriminative learning where
variants of structured SVM, e.g. PLT, seem promising.
Variants of segmentation appear to play a beneficial role
in tracking with noisy initializations. This is evident in
favorable performance of trackers DGT and PLTs in the
noise experiment. But relying strongly on segmentation
reduces performance when color significantly changes
which is seen in significant deterioration of the DGT
on illumination change. Estimation of few parameters
likely increases tracking robustness at reduced accuracy.
Attribute-wise analysis shows that motion prediction
significantly improves performance during dynamic tar-
get motion. Results show that evaluating trackers by
pooling results from sequences largely depends on the
types of attributes that dominate the dataset. A per-
visual-attribute analysis and attribute normalization in
final ranking is thus beneficial to remove this bias. Most
of the tested trackers outperform standard baselines and
perform favorably to common state-of-the-art such as
Struck, making the benchmark quite challenging.

The per-attribute analysis of the new dataset showed
that the visual attributes that are most challenging to
trackers are occlusion, motion change and size change.
Sequence-wise analysis showed that some sequences
are challenging on average, other sequences are very
challenging at particular frames, and some of them are
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well tackled by all the trackers. An interesting find is
that one particular sequence (David), which is usually
assumed challenging in the tracking community, seems
not to be according to the presented analysis, as trackers
rarely fail on this sequence.

Establishing standard datasets and evaluation
methodology tends to result in significant short-term
advances in the field, but it can also have negative
effects, leading to empoverished specter of approaches
that get put forward in the long run [81]. Evaluation
is often reduced to a single performance score, which
might lead to degradation in research. The primary
goal of the authors, i.e., coming up with new tracking
concepts, shifts to increasing a single performance score,
and this is further enforced by pre-occupied reviewers
that may find appealing to base their decision on this
single score as well. We would like to explicitly warn
against this. In practical experiments we are in fact
comparing performance of various implementations
rather than concepts. Implementations sometimes
contain tweaks that improve performance, while often
being left out from the original papers in interest of
purity of the theory.

We also point out that the notion of a ”best” tracker
varies with the tracker application. For example, sports
analytics applications, which sports scientists use for
player accelerations and velocity analysis, crucially de-
pend on the quality of the estimated player position and
do not require autonomous real-time performance. Thus
user intervention for tracker reinitialization is allowed
at any point. In such applications a highly accurate
tracker is required, but robustness is only desired, i.e.,
an accurate non-robust tracker would be preferred over
a robust but inaccurate tracker. But other applications
in which tracking autonomy is critical, a robust tracker
would be preferred over an accurate but non-robust
tracker. The presented methodology allows identifying
these characteristics and their variation w.r.t. the visual
attributes which goes beyond the related methodologies.

We believe that it is difficult to overfit a tracker to a
visually diverse dataset, but tuning parameters may very
likely contribute to higher ranks. Related works like [82]
suggest splitting the dataset into training and testing
sequences, making all sequences available, but only pro-
viding the annotations for the training sequences. The
evaluation is then performed by running the tracker
on the test set and uploading the results to an online
service that checks the results against the unpublished
ground truth. One problem with such an approach is
that re-initialization at failure becomes impossible, since
the test-data ground truth is censored, thus reducing the
strength of the performance measures. But a conceptual
problem lies in the assumption that the ”unpublished”
ground truth cannot be re-produced. In fact, if the
annotation rules are followed faithfully, the researchers
can easily annotate the ground truth in the censored
part of the dataset and this annotation will be equally
valid as the unpublished. So if overfitting would be

possible, censoring the ground truth would introduce
even a larger bias in the results in favor of researchers
that simply spend time re-annotating the test dataset.

Because of the unavoidable dependence on imple-
mentation and efforts spent in adjusting the tracker
parameters, care has to be taken when deciding for or
against a new tracker based on performance scores. One
approach might be to apply a comparative evaluation
to position a new tracking approach against a set of
standard baseline implementations using a single rank-
ing experiment, use detailed analysis with respect to
different visual attributes and put further focus on the
theory.

Our future work will focus on revising and care-
fully enriching the dataset, continually improving the
tracker evaluation methodology and, through further
organization of the VOT challenges, pushing towards a
standardised tracker comparison.

APPENDIX A
DERIVATION OF NOR AND WIR STATISTICS

The derivation of the results in the bias-variance analysis
of the NOR and WIR overlap estimators in equations (5-
8) from Section 3.2 is outlined here. Recall that the track-
ing accuracy is measured by M = 1

N

∑
j=1:N Mj where

Mj = 1
Ns

∑
i=1:Ns

oij is the tracking accuracy at j-th
sequence. This accuracy is a random variable governed
by a mixture model Mj ∼ pf (µf , σ

2
f )p+ (1− p)ps(µs, σ2

s)
where pf (·) and ps(·) are distributions with mean and
variance (µ, σ) describing the statistics of the average
overlap in case a failure in the sequence occurs or
not, respectively. The mean and variance of the mixture
model are

〈Mj〉 = pµf + (1− p)µs (13)
var(Mj) = pσ2

f + (1− p)σ2
f + p(1− p)(µf − µs)2. (14)

We will first consider the NOR scenario. In case a fail-
ure does not occur, the parameters of ps(µNORs, σ

2
NORs)

are trivially computed, i.e.,

µNORs = µA ; σ2
NORs =

1

Ns
σ2
A. (15)

In case of failure, the overlap drops to zero after Nsαj
frames, thus the mean value of pf (µNORf , σ

2
NORf ) is

µNORf = 〈αjµA〉 =
1

2
µA. (16)

The variance σ2
NORf is computed by application of the

total variance law, yielding

σ2
NORf =

1

2Ns
σ2
A +

1

12
µ2
A. (17)

Plugging these results into (13,14) yields equations (5)
and (6) in the paper.

In the WIR scenario, the tracker is reset after failure
and ∆ frames after the reset are ignored in computation
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of the accuracy. It is easy to show the following equiva-
lence

µWIRs = µA ; σ2
WIRs =

1

Ns
σ2
A (18)

µWIRf = µA ; σ2
WIRf =

1

(Ns −∆)
σ2
A. (19)

Plugging these into (13,14) yields equations (7) and (8)
in the paper.
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D. Pangeršič, G. Häger, F. Shahbaz Khan, F. Oven, H. Possegger,
H. Bischof, H. Nam, J. Zhu, J. Li, J. Y. Choi, J.-W. Choi, J. a.
Henriques, J. Van de Weijer, J. Batista, K. Lebeda, K. Öfjäll, K. M.
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