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Abstract—A comprehensive framework for detection and char-
acterization of partial intrinsic symmetry over 3D shapes is
proposed. To identify prominent symmetric regions which overlap
in space and vary in form, the proposed framework is decoupled
into a Correspondence Space Voting (CSV) procedure followed
by a Transformation Space Mapping (TSM) procedure. In the
CSV procedure, significant symmetries are first detected by
identifying surface point pairs on the input shape that exhibit
local similarity in terms of their intrinsic geometry while simul-
taneously maintaining an intrinsic distance structure at a global
level. To allow detection of potentially overlapping symmetric
shape regions, a global intrinsic distance-based voting scheme is
employed to ensure the inclusion of only those point pairs that
exhibit significant intrinsic symmetry. In the TSM procedure,
the Functional Map framework is employed to generate the final
map of symmetries between point pairs. The TSM procedure
ensures the retrieval of the underlying dense correspondence map
throughout the 3D shape that follows a particular symmetry. The
TSM procedure is also shown to result in the formulation of a
metric symmetry space where each point in the space represents
a specific symmetry transformation and the distance between
points represents the complexity between the corresponding
transformations. Experimental results show that the proposed
framework can successfully analyze complex 3D shapes that
possess rich symmetries.

I. INTRODUCTION

The detection and characterization of shape symmetry has
attracted much recent attention within the computer graphics
and computer vision communities [12]. Most of the existing
literature has focused on the detection of extrinsic symmetries,
a popular approach being transformation space voting [11].
However, there has been steadily growing interest in detection
and characterization of intrinsic symmetries; especially global
symmetries [9], [13].

Symmetry can be considered as a distance-preserving trans-
formation. For a symmetry transformation T , the distance
between two points p and q on the surface of a 3D shape is
equal to the distance between the corresponding transformed
surface points T (p) and T (q). In the case of extrinsic sym-
metry, the Euclidean distance measure is used, whereas in the
case of intrinsic symmetry, intrinsic distance measures such
as, the geodesic distance measure (GDM) or the biharmonic
distance measure (BDM) are used. Detection of overlapping
intrinsic symmetry is a more challenging problem due to the
significantly larger search space involved in the detection of
symmetric regions (when compared to global symmetry analy-

Fig. 1. Overview of the proposed symmetry detection and characterization
framework.

Fig. 2. Symmetry extraction in functional space. The top row depicts two
significant symmetry transformations along with a few representative point
correspondences. The corresponding functional map matrices are shown in
the bottom row.

sis) and in the determination of symmetry revealing transforms
(when compared to extrinsic symmetry detection) [11], [12].
The problem of detection and characterization of overlapping
intrinsic symmetry is more general, since the extrinsic sym-
metry detection problem can be considered a special case of
overlapping intrinsic symmetry detection [12].

An intrinsic symmetry over a 3D shape is a subregion with
associated self-homeomorphisms that preserve all pairwise
intrinsic distances [12]. Complex shapes often exhibit multiple
symmetries that overlap spatially and vary in visual appearance
as depicted in Fig. 2. Analysis of overlapping symmetry poses
significant challenges.

The key idea behind the proposed scheme for intrinsic



symmetry detection and characterization is to approach the
problem from a shape correspondence perspective and gen-
erate the transformation map which can be further used to
describe the symmetry space. To this end, given a 3D shape,
approximated by a triangular mesh, as input, we perform
two stages of processing. In the first stage, representative
symmetric point pairs are identified based on their local
geometry and a global distance representation. In the second
stage, the original transformation is retrieved as a functional
map to facilitate further characterization of the underlying
symmetry. The detected intrinsic symmetries are representative
of the 3D shape and the corresponding functional matrices
exhibit a high degree of diagonality, as shown in Fig. 2.
The primary contributions of our paper are as follows:
(1) We exploit the functional map representation in conjunc-
tion with the Correspondence Space Voting (CSV) procedure
of Xu et al. [23]. In Xu et al. [23], the CSV procedure is
followed by a computationally complex optimization step for
symmetry detection that comprises of a two-stage clustering
procedure. The proposed algorithm, in contrast, is based on
the detection of a few initial symmetric candidates followed
by a computationally efficient generalization procedure for
overall symmetry detection that is based on the functional map
representation and the solving of a system of linear equations.
(2) We provide robust and meaningful characterization of the
symmetry transformation by formulating a symmetry space
which allows one to quantitatively distinguish between in-
stances of simple and complex intrinsic symmetry. To the
best of our knowledge, such quantitative characterization of
symmetry has not been attempted in the published literature.

II. RELATED WORK

Since an exhaustive exposition of the state of the art in
symmetry detection is beyond the scope of this paper, we
restrict our discussion to existing works that are most closely
related to the proposed approach, and direct the interested
reader to the comprehensive survey by Mitra et. al. [12]. Most
existing approaches to intrinsic symmetry detection based on
region growing [22], partial matching [20], and symmetry
correspondence [9] cannot extract physically overlapping sym-
metries. Recent algorithms for detection of approximate and
partial extrinsic symmetries are based on clustering of votes in
a parameterized transformation space [8], [11]. Xu et al. [23]
let surface point pairs vote for their partial intrinsic symme-
try and subsequently perform intrinsic symmetry grouping.
However, their method cannot retrieve the final symmetry
map which makes characterization of the specific intrinsic
symmetry very difficult. Moreover, the aforementioned meth-
ods are ineffective at finding correspondences between points
in complex symmetry orbits that are spread across multiple
distinct clusters in the transformation space. They also suffer
from the curse of dimensionality in that the voting procedure
in high-dimensional transformation space becomes increasing
intractable when dealing with complex symmetries.

Another class of symmetry detection techniques character-
izes shape representations based on the extent of symmetry

displayed by an object with respect to multiple transforma-
tions [7], [17], [25]. Although these shape representations
provide a measure of symmetry for a regularly sampled set
of transformations within a group, they are practical only
for transformation groups of low dimensionality. Lipman et
al. [9] have proposed an eigenanalysis technique for symmetry
detection that relies on spectral clustering. Xu et al. [23] have
extended the eigenanalysis approach to distinguish between
scale determination and symmetry detection by incorporating
the concept of global intrinsic distance-based symmetry sup-
port accompanied by a two-stage spectral clustering procedure.
However, their two-stage spectral clustering procedure [23]
is computationally complex and further processing of the
detected symmetries, which are represented as point pairs, is
extremely inefficient.

III. THEORETICAL FRAMEWORK

The proposed algorithm for symmetry detection and charac-
terization is decoupled into two stages termed as Correspon-
dence Space Voting (CSV) and Transformation Space Mapping
(TSM) or Functional Map Retrieval (FMR). The terms TSM
and FMR are used interchangeably in this paper. For CSV, a
joint criterion that combines local intrinsic surface geometry
and global intrinsic distance-based symmetry is proposed,
and is shown to result in a provably necessary condition for
intrinsic symmetry. Although the CSV procedure is inspired
by the work of Xu et al. [23], we have bypassed the two com-
putationally intensive procedures in their scheme, i.e., spectral
clustering and all-pairs geodesic distance computation [23], to
improve significantly the running time of the proposed CSV
procedure. Moreover, our incorporation of the TSM or FMR
procedure in symmetry detection is novel in that it not only
provides a concise description of the underlying symmetry
transformation, but also enables its formal characterization.
We propose a formal TSM-based scheme for characterization
of the complexity of the detected symmetries and also demon-
strate its effectiveness.

The CSV procedure is used as an initialization step in
the proposed algorithm. Following the initial detection of
good symmetry correspondences using CSV, we retrieve the
symmetry transformation map using the functional map frame-
work. The generalization of symmetry detection over the
entire surface is performed by solving a system of linear
equations which not only returns the underlying symmetry
transformation map, but also ensures the scalability of sym-
metry detection with respect to the number of surface points.
The intrinsic symmetry criterion ensures that the retrieved
functional matrix exhibits diagonality. The inner product of
the functional matrix with a suitably formulated cost matrix
is shown to provide a quantitative measure of the complexity
of the detected symmetry. In the following subsections, we
summarize some previously formulated concepts, tools and
techniques that are used in the proposed algorithm.



A. Biharmonic Distance Measure

An intrinsic distance measure between pairs of points on
a 3D surface needs to be a metric, smooth, locally isotropic,
globally shape-aware, isometry invariant, insensitive to noise
and small topological changes, parameter-free, and practical
to compute on a discrete mesh. While most existing intrinsic
distance measures do not possess all the above properties, the
biharmonic distance measure (BDM) is one of the few in the
published literature that does [9]. The BDM kernel is based on
the Green’s function of the biharmonic differential equation.
The (squared) biharmonic distance between two points x and
y can be defined using the eigenvectors (φk) and eigenval-
ues (λk) of the Laplace-Beltrami operator [9] as follows:

dM (x, y)2 =
∑∞

k=1

(φk(x)− φk(y))2

λ2k
. The BDM captures

the rate of decay of the normalized eigenvalues λk of the
Laplace-Beltrami operator; if the decay is too slow, it produces
a logarithmic singularity along the diagonal of the Green’s
function [24]. Alternatively, too fast a decay basically ignores
the eigenvectors associated with higher frequencies, resulting
in the BDM being global in nature (i.e., the local surface
details are ignored). Lipman et al. [10] have demonstrated
that quadratic normalization provides a good balance between
the two extremes.

B. Wave Kernel Signature

The Wave Kernel Signature (WKS) of a surface point x is a
descriptor that evaluates the probability of a quantum particle
with a certain energy distribution to be located at point x. If the
quantum particle has an initial energy distributed around some
nominal energy with a probability density function f(e), then
the solution of the Schrodinger equation can then be expressed
in the spectral domain as: ψ(x, t) =

∑
k>=1 e

iektf(ek)φk(x).
Aubry et al. [1] consider a family of log-normal energy
distributions centered around some mean log energy, i.e.,
log e, with variance σ2. For a family of energy distributions,
each point x on the surface is associated with a WKS of
the form: p(x) = (pe1(x), . . . , pen(x))

T where pei(x) is
the probability of measuring a quantum particle with the
initial energy distribution ei(x) at point x. The WKS can be
shown to exhibit a band-pass characteristic which reduces the
influence of low frequencies and allows for better separation
of frequency bands across the descriptor dimensions.

C. Functional Map

A functional map [15] is a novel approach for inference
and manipulation of maps between 3D shapes. It provides an
elegant means for avoiding the direct representation of corre-
spondences as mappings between shapes. Rather than plotting
the corresponding points on the 3D shapes, the mappings
between functions defined on the 3D shapes are considered.
This notion of correspondence generalizes the standard point-
to-point map since every point-wise correspondence induces a
mapping between function spaces [15].

Ovsjanikov et al. [15] have noted that when two shapes X
and Y are related by a bijective correspondence t : X → Y ,

then for any real function f : X → R, one can construct a
corresponding function g : Y → R as g : f ◦ t−1. Equip-
ping X and Y with harmonic bases, {φi}i≥1 and {ψj}j≥1,
respectively, one can represent a function f : X → R
using the set of (generalized) Fourier coefficients {ai}i≥1
as f =

∑
i≥1 aiφi. Translating this representation into the

other harmonic basis {ψj}j≥1, one obtains a simple repre-
sentation of the correspondence between the shapes given by
T (f) =

∑
i,j≥1 aicijψj where cij are Fourier coefficients

of the basis functions of X expressed in the basis of Y ,
defined as T (φi) =

∑
i,j≥1 cijψj . The correspondence t

between the shapes can thus be approximated using k basis
functions and encoded using a k×k matrix C = (cij) of these
Fourier coefficients, referred to as the functional matrix. The
functional matrix C has a diagonal structure if the harmonic
bases {φi}i≥1 and {ψj}j≥1 are compatible, i.e., if the bijective
correspondence t is isometry preserving.

D. The Proposed Algorithm - Input and Output

The input to the algorithm is a 3D shape that is represented
by a compact, connected 2-manifold, M , with or without a
boundary, i.e., M → R3. Distances on the manifold M are
expressed in terms of an intrinsic distance measure such as the
BDM. The BDM is used on account of its ease of computation
and greater robustness to local surface perturbations when
compared to the GDM [10]. We use the terms “intrinsic
distance” and “biharmonic distance” interchangeably in this
paper. Since a symmetry transformation is represented by a
functional map, the output of the proposed algorithm consists
of functional maps represented as matrices which can be
regarded as a complete and compact description of all the
overlapping intrinsic symmetries of the 3D shape.

E. Definition of Intrinsic Symmetry

Given a compact connected 2-manifold M without a bound-
ary, we deem M to be intrinsically symmetric if there ex-
ists a homeomorphism T : M → M on the manifold that
preserves all intrinsic distances [19]. That is, dM (p, q) =
dM (T (p), T (q)) ∀p, q ∈ M , where dM (p, q) is the intrinsic
distance between two points on the manifold. In this case, we
call the mapping T an intrinsic symmetry.

F. Symmetry Criteria

We propose two simple criteria to test whether two sur-
face point pairs {x, x′} and {y, y′} on the manifold M
potentially share the same intrinsic symmetry. The first is a
local intrinsic geometry criterion that determines the sym-
metry potential of the two surface point pairs by com-
paring their corresponding WKS values: WKS(x, t) =
WKS(x′, t) and WKS(y, t) = WKS(y′, t) ∀t ≥ 0, where t is
a scale parameter. The second is an intrinsic distance criterion:
dM (x, y) = dM (x′, y′) and dM (x, y′) = dM (y, x′). The
above two criteria are necessarily satisfied if the surface point
pairs under consideration correspond to the same intrinsic
symmetry [19], [23].



G. Correspondence Space Voting (CSV)

The CSV procedure is used to initialize the proposed algo-
rithm to ensure the success of the finally generated functional
map. Our version of CSV, unlike [23], is performed in a
reduced search space resulting from employing an efficient
sampling strategy and the local geometric similarity criterion.
Our CSV procedure comprises of the following three stages:
Selection of Surface Points: A subset X consisting of n
sample surface points with adequate discriminative power is
chosen from the input 3D shape surface using the farthest point
random sampling strategy [6] thus ensuring a reduced search
space for CSV. This strategy generates a set of points located
mostly in the vicinity of the shape extrema. These points are
then used in the subsequent generation of surface point pairs.
Generation of Surface Point Pairs: Surface point pairs are
generated from the n sample surface points in the chosen
subset X by computing the similarity of their WKS values as
described in the local intrinsic geometry criterion. The surface
point pairs that satisfy the local intrinsic geometry criterion to
within a pre-specified threshold are considered good voters for
inclusion in the subsequent global distance-based voting stage.
Global Distance-based Voting: A subset of symmetric point
pairs is extracted from the set of good voters using a global
distance-based voting procedure. A point pair in the set of
good voters is deemed to be symmetric if it has sufficiently
large global symmetry support, which is measured by the
number of point pairs that satisfy the intrinsic distance cri-
terion [23]. Our use of the BDM instead of the GDM (as
in [23]) in the intrinsic distance criterion renders the voting
procedure computationally more efficient and more robust to
noise and small surface perturbations.

H. Transformation Space Mapping and Symmetry Extraction

In the proposed algorithm, instead of comparing two dif-
ferent shapes, we compare two symmetric regions within the
same shape. Based on the previously detected set of symmetric
point pairs, we leverage the functional map representation for
symmetry extraction. For each pair of symmetric points, we
deem one point as the source and the other as the destination
and choose a local region around each point. The ordering of
the source and destination points within the pair is the same
as the one originally chosen during CSV. The corresponding
eigenbases for the points in the source and destination regions
are computed. These eigenbases are ordered based on their
mutual similarity and the final functional map for that partic-
ular symmetry is extracted. The functional map representation
ensures that (a) the problem of symmetry extraction is tractable
and, (b) the resulting symmetry can be represented, not by a
large matrix of point correspondences, but rather as a more
compact functional map which can be further manipulated.

IV. SYMMETRY CHARACTERIZATION

Since the proposed CSV ensures that the point pairs used
in functional map generation are intrinsically symmetric (to
a reasonable extent), the resulting functional map is diagonal
or close to diagonal [15]. Substantial deviation of the actual

Fig. 3. The complexity of the symmetry transformation is characterized by
the weight matrix W and represented in the increasing order of the value of
the inner product of W and C.

symmetry transformation from ε-isometric deformation results
in a more densely populated functional matrix C. The degree
of off-diagonality of C corresponds to the complexity of
the symmetry transformation, i.e., more non-zero off-diagonal
elements in C implies a more complex symmetry transfor-
mation [18]. We formulate a weight matrix W of the same
dimensions as C where the weight values are assigned based
on an inverted Gaussian model, i.e., W : wi,j = 1−exp(−d2i,j)
where di,j is the distance of the (i, j)th element of W from
the matrix diagonal. Thus zero weights are assigned to the
diagonal elements of W whereas the off-diagonal weight
values are an increasing function of their distance from the
principal diagonal of W .

The complexity of the symmetry transformation is captured
by the inner product of C and W given by

∑
i

∑
j wi,jci,j

=
∑

i

∑
j mi,j which is a measure of the diagonality of C.

The inner product allows each symmetry transformation to
be represented as a point in the symmetry space with a value
given by the inner product of the C and W . The Euclidean dis-
tance between the points in the 1D symmetry space represents
the complexity distance between the corresponding symmetry
transformations (Fig. 3). The symmetry space can be shown
to be a metric space because all the primary properties of a
distance metric are preserved, i.e., non-negative definiteness,
symmetry and triangle inequality. This also makes it possible
to cluster the points in the 1D symmetry space to identify
potentially similar intrinsic symmetries.

V. EXPERIMENTAL RESULTS

We present the results obtained by the proposed intrinsic
symmetry detection algorithm on various 3D shapes from the
Non-rigid World dataset [2] and compare them with results
obtained from the most closely related approaches [9], [23].
We use the cotangent (COT) scheme [16] to implement the dis-
crete Laplace-Beltrami operator. The COT scheme is based on
discretization of the heat equation and is observed to produce
eigenfunctions that approximately preserve the convergence
property of the continuous Laplace operator for a reasonably
well sampled triangular mesh [5]. We also show how the
detected symmetries can be further analyzed for symmetry
characterization and clustering, potentially revealing greater
semantic information about the underlying 3D shape.



Fig. 4. Examples of overlapping symmetry detection for the Horse shape
model.

A. Symmetry Detection

The results of the proposed symmetry detection algorithm
are depicted in Figs. 2 and 4. Several important properties of
the proposed algorithm are highlighted in these results.

1) General Symmetry Detection: The ability of the pro-
posed algorithm to identify multiple intrinsic symmetries is
evident from the results shown in Fig. 4. The extracted symme-
tries are seen to cover the global symmetry of the underlying
3D shape which has undergone approximately isometric defor-
mations. Additionally, the proposed algorithm is also observed
to be capable of detecting symmetry transformations that cover
individual components of a 3D object that possess various
forms of self-symmetry.

2) Overlapping Symmetry Detection: An important aspect
of the proposed algorithm is its ability to detect instances of
overlapping symmetry. An instance of overlapping symmetry
is deemed to occur when a specific region on the surface of
the 3D shape is simultaneously subjected to more than one
symmetry transformation and hence is symmetric to more than
one region on the 3D shape surface. Fig. 4 shows examples of
successful detection of overlapping symmetry between the legs
of the Horse shape model by the proposed algorithm. Three
different combinations of the detected overlapping symmetry
transformations between the four legs of the Horse model (out
of a total of six possibilities) are depicted in Fig. 4.

B. Performance Statistics

The experiments reported in this paper were performed on
an Intel Core

TM
3.4 GHz machine with 24 GB RAM. Table I

reports the timing results for the various steps of the proposed
symmetry detection algorithm. The most time consuming step,
i.e., the all-pairs biharmonic distance computation, accounts
for ≈ 80% of the execution time of the proposed algorithm.
More importantly, bypassing the two-step spectral clustering
procedure described in [23] reduces significantly the compu-
tation time of the proposed algorithm.

C. Comparisons

We compare the proposed symmetry detection algorithm
with two sufficiently similar methods [9], [23]. Though both
methods [9], [23] are capable of detecting instances of partial
intrinsic symmetry, neither is able to characterize the under-
lying symmetry. In contrast, the proposed algorithm, not only
detects overlapping intrinsic symmetries, but it also has the
ability to characterize and cluster the detected symmetries in
symmetry space. In the proposed algorithm, interpolation of

TABLE I
TIMING RESULTS FOR THE VARIOUS STEPS IN THE PROPOSED

ALGORITHM. BIHARMONIC: TIME TAKEN TO COMPUTE THE ALL-PAIRS
BIHARMONIC DISTANCE; FMAP: TIME TAKEN TO COMPUTE THE
FUNCTIONAL MAPS; EXTRACTION: TIME TAKEN FOR SYMMETRY
EXTRACTION; TOTAL: TOTAL EXECUTION TIME. ALL TIMES ARE

MEASURED IN SECONDS.

# Points Biharmonic FMap Extraction Total
3400 32 2 5 39

10000 41 3 7 51
50000 237 4 15 256

Fig. 5. The proposed CSV procedure ensures detection of instances of global
overlapping intrinsic symmetry (a), (b). In contrast, Lipman et al. [9] fails to
detect instances of overlapping symmetry (c).

the functional map of symmetry transformations from the cho-
sen point pair to the remaining point pairs (i.e., identification
of other point correspondences from those obtained via the
CSV procedure) is achieved by solving a system of linear
equations which is computationally much more efficient than
the two-stage spectral clustering procedure of Xu et al [23].
In contrast to the proposed algorithm, the symmetry-factored
embedding (SFE) technique of Lipman et al. [9] is incapable of
detecting cases of overlapping intrinsic symmetries resulting in
poor symmetry-based segmentation of the 3D shape (Fig. 5).

D. Performance in Presence of Noise

The proposed symmetry extraction algorithm is evaluated on
the TOSCA dataset [3] under varying levels of additive white
Gaussian noise. The mean normalized error (MNE) in the
functional map is computed over all the point correspondences
for varying σ values of the white Gaussian noise (Fig. 6). It
is interesting to note that the MNE initially increases with
increasing values of σ before settling upon a value of ≈ 0.0007
for values of σ > 0.4, thus depicting the robustness of
proposed technique to additive white Gaussian noise.

E. Quantitative Evaluation

We used the SHREC 2010 feature detection and descrip-
tion benchmark [4] to evaluate the proposed algorithm. We
considered shapes that have undergone perturbations charac-
terized by isometry, topology, micro-holes, scale and noise.
The quantitative evaluation is along the lines proposed by
Sipiran and Bustos [21] and its goal is to determine whether
the extracted symmetric components are consistent between
a null shape X and the transformed shape Y where the



Fig. 6. Normalized error in the functional map for varying levels of additive
white Gaussian noise.

Fig. 7. Plot of repeatability vs. overlap for the proposed symmetry detection
algorithm on the SHREC 2010 benchmark dataset.

extracted symmetric components are SX = {X1, . . . , Xn} and
SY = {Y1, . . . , Ym}, respectively. Using the ground-truth data,
we compute for each component Yj ∈ SY the corresponding
component X ′j in SX . The component repeatability between X
and Y is defined as: R(X,Y ) =

∑m
j=1 max1≤i≤nO(Xi, X

′
j)

where, the overlap O(Xi, X
′
j) between two extracted sym-

metric components Xi and X ′j is defined as: O(Xi, X
′
j) =

A(Xi ∩X ′j)
A(Xi ∪X ′j)

where A(X) is the surface area of component X .

The repeatability R in overlap O is defined as the fraction of
symmetric components in SY that have an overlap greater than
O with their corresponding components in SX [21]. A resilient
symmetry extraction algorithm is expected to exhibit high
values of R (≈ 1) for a wide range of O values. Fig. 7 shows
the plot of R versus O for various surface perturbations. The
proposed symmetry extraction algorithm is seen to maintain a
high overall repeatability R ≥ 0.80 at overlap values O ≤ 0.75
for most surface perturbations.

F. Symmetry Characterization

The degree of diagonality of the functional map C could be
used to characterize the complexity of the underlying symme-
try transformation. The more complex the symmetry transfor-
mation, the greater the deviation of the shape deformation from
intrinsic isometry. This results in a deformation characterized
by a functional matrix C with higher off-diagonal element
values and a higher value for the inner product of C and
the weight matrix W . The resulting characterization of the
isometric deformation is depicted in Fig. 3.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented an algorithm for detection and charac-
terization of intrinsic symmetry in 3D shapes. Our algorithm

attempts to formalize the symmetry analysis problem, not
only as one of symmetry detection, but as one that includes
symmetry characterization in the transformation space. In
particular, the introduction of the functional map formalism
in symmetry detection enables us to come up with a novel
representation of the symmetry transformation as a functional
map. In the near future, we aim to formulate operations, such
as addition and subtraction, on these generated functional maps
that would potentially provide a deeper and more compre-
hensive understanding of intrinsic symmetry in general. We
also plan to study the possibility of transformation map-based
exploration of symmetry transformations across non-isometric
deformable shapes.
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