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Fig. 11. Parameter selection for the number of superpixel K using (a) the
SegTrack database and (b) the extended SegTrack dataset. The MAE of
the saliency results and the IoU score of the segmentation results are
plotted as functions of a variety of Ks.

TABLE 5
Validation of spatiotemporal edge generation on the SegTrack dataset

[52] and extended SegTrack dataset [53].

spatiotemporal edge E SegTrack Extended SegTrack
MAE IoU MAE IoU

Ec � Eo 0.011 80.05 0.049 82.82
Ec 0.147 32.43 0.143 24.93
Eo 0.023 72.54 0.084 63.29

Ec + Eo 0.045 64.18 0.091 60.30
exp(E c + Eo ) 0.060 61.31 0.107 55.46

results in Table 5. As can be seen, the combination strategy in
Equation 1 achieves the best performance.

5.4.2 Validation of Spatiotemporal Saliency Steps
The proposed spatiotemporal saliency method has intra-frame
graph and inter-frame graph saliency steps and also the skele-
ton abstraction step. The intra-frame graph provides an initial
estimation of the salient region and the background in the first
step (Section 3.2). Based on this initial estimation, the inter-frame
graph further improves the saliency estimations of the superpixels
in the second step (Section 3.3). The salient object regions are
compared with each other and highly-confident foreground regions
are strengthened into the final saliency map in the third step
(Section 3.4).

To exhibit more details of our algorithm and objectively
evaluate the contribution of different parts in the proposed saliency
model to the saliency detection performance, we report the eval-
uation of each stage of our algorithm on the SegTrack [52], the

Fig. 12. Assessment of individual steps of our saliency estimation by
(a) precision-recall curves, and (b) MAE scores. Step1 and Step2 refer
to saliency via intra-frame and inter-frame graphs, respectively. Step3
is the skeleton abstraction. Top: evaluation results on the SegTrack
[52]. Middle: evaluation results on the extended SegTrack [53]. Bottom:
evaluation results on the FBMS [1].

extended SegTrack [53] and the FBMS [1] datasets. We report
the performance improvement of each step in Figure 12. Step1
and Step2 refer to the initial saliency via the intra-frame graph
(Section 3.2) and the refined saliency via the inter-frame graph
(Section 3.3). Step3 corresponds to our final saliency results
(Section 3.4). As shown, compared to the PR curve for initial
saliency map Step1, the performance of the refined saliency
Step2 is elevated and final saliency estimates Step3 achieve
the best performance. This demonstrates the contribution of our
saliency refinement via inter-frame graph and object skeleton
abstraction scheme based saliency optimization for improving the
saliency detection performance. The results for the MAE measure
show similar conclusions. Overall, the performance of each step
improves progressively, which demonstrates that the combination
of all steps is effective for improving the overall performance.
Some qualitative comparison results can be observed in Figure 2.
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Fig. 13. Video object segmentation and salient object detection results for object occlusion. (a) For object with part occlusions, the proposed method
can still produce reliable spatiotemporal saliency prior and generate accurate segments. (b) When heavy object occlusions occur, the proposed
method may suffer difficulties since it sticks to find a salient object followed by the basic assumption of saliency detection.

6 DISCUSSIONS AND LIMITATIONS

The proposed algorithm has a few limitations. The performance
of our algorithm is limited by the accuracy of spatiotemporal
saliency estimation. Saliency estimation is the cornerstone of our
method to determine where the primary object it is. If importance
analysis was misleading, it might negatively affect segmentation
results. For example, our spatiotemporal saliency method may
not be well suited for scenes that have multiple salient objects
or have a primary foreground object that occupies large portion
of the image. In these scenarios, it is likely to produce sub-
optimal results as the potential assumption for saliency detection
is that only a part of scene attracts human attention mostly. In our
approach, we formulate the local dynamic location prior and the
global appearance information in the proposed segmentation ener-
gy function (Equation 13), which would alleviate this problem.

Another difficulty for the current method is handling ob-
jects with occlusion, which is the common challenge in video
segmentation problem. As the proposed spatiotemporal saliency
prior relies on the object continuity between adjacent frames, it is
able to handle common scenarios with small or short occlusions
in a bottom-up fashion (Figure 13-a). As for some extremely
difficult scenarios with complete occlusions, such as the bmx
in Figure 13-b, the proposed method may still locate a part
of scene as salient region, even the object has been occluded.
That is followed by the basic assumption of saliency detection
that important object should exist. One promising direction to
improve the segmentation is the use of long range connectivity
of objects such as motion trajectories. Other advances may come
from adopting some occlusion-aware tracking techniques or the
development of more powerful representations beyond regions,
such as supervoxel and video object proposal.

7 CONCLUSIONS AND FUTURE WORK

We have presented an unsupervised approach that incorporates
geodesic distance into saliency-aware video object segmentation.

As opposed to the traditional video segmentation methods that
heavily rely on cumbersome object inference and motion analysis,
our method emphasizes the importance of video saliency, which
offers strong and reliable cues for pixel labeling of foreground
video objects.

The proposed method incorporates intra-graph edge and inter-
graph motion boundary information into a spatiotemporal edge
map. It uses the geodesic distance on these graphs to measure
the saliency score of each superpixel. In intra-frame graph, the
geodesic distance between the superpixel and frame boundary is
exploited to estimate the foreground probability. In inter-frame
graph, geodesic distance to the estimated background is utilized to
update the spatiotemporal saliency map for each pair of adjacent
frames. The geodesic distance is also employed to extract the base
and supporting foreground superpixels in the skeleton abstraction
step to further enhance the saliency scores. In the pixel labeling
stage, an energy function that combines global appearance models,
dynamic location models and spatiotemporal saliency maps is
defined and efficiently minimized via graph-cuts to obtain the final
segmentation results.

We have evaluated our methods on four benchmarks, name-
ly SegTrack [52], extended SegTrack [53], FBMS [1] and the
DAVIS [54]. The extensive experimental evaluations show that
our approach can generate high quality saliency maps in relatively
short time and achieve consistently higher performance scores
than many other existing methods. Comparing with other video
segmentation methods, our approach generates both quantitatively
and qualitatively superior segmentation results.

For future work, we will apply the proposed approach to other
applications, such as video resizing, video summarization, and
video compression. Additionally, our work provides important
hints toward combining spatiotemporal saliency prior with more
effective video representations, such as trajectory and supervoxel.
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