Abstract—In visual tracking, usually only a small number of samples are labeled, and most existing deep learning based trackers ignore abundant unlabeled samples that could provide additional information for deep trackers to boost their tracking performance. An intuitive way to explain unlabeled data is to incorporate manifold regularization into the common classification loss functions, but the high computational cost may prohibit those deep trackers from practical applications. To overcome this issue, we propose a two-stage approach to a deep tracker that takes into account both labeled and unlabeled samples. The annotation of unlabeled samples is propagated from its labeled neighbors first by exploring the manifold space that these samples are assumed to lie in. Then, we refine it by training a deep convolutional neural network (CNN) using both labeled and unlabeled data in a supervised manner. Online visual tracking is further carried out under the framework of particle filters with the presented manifold regularized deep model being updated every few frames. Experimental results on different public tracking datasets demonstrate that our tracker outperforms most existing visual tracking approaches.

I. INTRODUCTION

As a fundamental topic in multimedia processing, visual tracking could be used in different practical applications, especially human-computer interaction, autonomous cars, biomedical image analysis and video surveillance [29], [5], [3]. It is a challenging problem due to target appearance changes caused by illumination variation, occlusion, motion blur, background clutter, etc. Visual tracking has been studied for decades, and researchers have developed and designed various tracking algorithms to handle those challenges. Recently, deep Convolutional Neural Networks (CNNs), being a powerful representation of visual data, have been applied to various multimedia processing topics, such as object detection [10], and image classification [15]. Deep CNNs have also been used in visual tracking and achieve outstanding tracking performance.

Actually, the use of deep networks in visual tracking is never a smooth ride. The deficiency of labeled data in visual tracking limits the application of deep CNNs to the tracking field. The main reason is that obtaining a powerful and efficient deep model needs large-scale annotated data. However, in visual tracking, the annotated samples are cropped from the first frame in a video, which are too few to train the complex CNNs with millions of parameters. To handle this problem, two types of CNNs based visual tracking methods have been proposed from the perspective of sample collection. The first type of methods [23], [32] adopt the CNNs trained on object detection or image classification datasets to the tracking field and regard them as a feature extraction tool. However, it may not be suitable for the tracking problem by transferring deep models from a non-tracking field. Moreover, a large-scale dataset, which could be used to train a CNN model for visual tracking, is still unavailable. And it needs tremendous resources and efforts to annotate a benchmark for training deep trackers. Hence, the second type of trackers [25], [30] collect training samples from the barely available annotated tracking benchmarks and consider the CNN as a classifier to distinguish the target from the complex background. The above deep methods are trained with labeled samples to achieve impressive tracking performance, but they ignore the unlabeled samples which are the most common and almost innumerable in visual tracking data. In this paper, we attempt to make an effective use of those unlabeled and labeled samples together for accurate target location.

Visual data, including labeled and unlabeled samples, on a high dimensional space often lie on a manifold with a smaller dimensionality than the original space [39]. To exploit the geometry of a high dimensional sample space, manifold regularization has been proposed by combining labeled and unlabeled data into a unified semi-supervised learning framework [4]. It has been widely applied in many vision fields, such as data fusion, image retrieval, and classification. The deep learning algorithms under a manifold regularization framework [33], [17] are introduced as well. But manifold regularized CNNs have not been generalized to the tracking problem. The major issue is that the training procedure of semi-supervised CNNs is time-consuming, which is not suitable for online visual tracking. To handle this problem, Lee [19] proposed pseudo labels for unlabeled samples to train a simple and efficient semi-supervised deep model, which is equivalent to entropy regularization [20] in effect theoretically. Inspired by the aforementioned methods, we generate the deduced labels for unlabeled data points under the manifold assumption and introduce an efficient tracker using CNNs.

We could introduce a manifold regularization item in the
loss function of CNNs by taking the unlabeled samples arising during tracking into consideration, but it will be a time-consuming strategy for online tracking. Therefore, by deducing labels for unlabeled samples according to the manifold structure of the sample space, we could learn a deep model in a supervised manner approximately instead of the complex semi-supervised problem. Motivated by these facts, in this work, we introduce a two-stage approach to the deep tracker that takes both labeled and unlabeled samples into account as shown in Fig. 1.

The presented tracking approach offers the following three-fold contributions:

- To better exploit both labeled and unlabeled samples, visual data in a manifold space are assumed to have similar labels with their neighbors. This idea is formulated as a graph Laplacian regularization with a Gaussian random field. The labels of unlabeled samples are calculated by the weighted average of its neighbors using this Gaussian harmonic function.

- Those unlabeled samples with the deduced labels are used to update a pre-trained CNN along with labeled samples. The deduced labels of unlabeled data only relying on the structural space may be inaccurate. Thus, we present to train a CNN model using the deduced samples as part of training samples and output a more accurate tag for each unlabeled one.

- Our tracker is carried out under the framework of particle filters with online updated CNNs. The proposed tracking approach is then verified on several public tracking benchmarks and achieves better tracking results.

II. Related Works

A large number of visual tracking algorithms [38], [29] have been proposed over decades. They are typically classified into generative trackers and discriminative trackers. It is out of the scope of this work to comprehensively review those tracking methods. Here, we only review the works that are mostly related to ours, and a more comprehensive overview can be found in [29].

Traditional discriminative tracking methods utilize handcrafted representations such as CIE-Lab and HOG to model the target appearance in general. For example, Henriques et al. [13], [12] employed the HOG features to model the target and locate the object center with kernelized correlation filters. Haar-like features [21] were exploited in Struck [11] to perform online tracking using the kernelized structured output SVM. Ning et al. [26] used the original features of the color image including Lab and LRT to formulate the final sample vectors and trained a discriminative classifier using dual linear structured SVM. The SOWP descriptors [16] were designed by combining spatially ordered features to extract multiple local patches for accurate visual tracking based on the Struck tracker. Ma et al. [2] also used HOG features to establish the final target representation. Qi et al. [46] used the spare codes the represents a target. Those hand-crafted features often rely on professional knowledge and are developed for specialized issues, which means that they may not generalize well in the tracking problem.

As the latest feature learning and classifier training techniques, CNNs have been gradually used in visual tracking approaches. Ma et al. [23] extracted CNN features for each image patch from VGG-Net [28] trained on ImageNet, and learned multiple linear correlation filters using different features obtained from different convolutional layers in this network. The tracking results were decided by combinations of the response maps calculated by those correlation filters. Wang et al. [32] proposed a tracking method using fully convolutional networks which were pre-trained on ImageNet as well, and designed a feature map selection approach to determine discriminative features for tracking. Wang et al. [44] investigated different strategies to tackle the limited training samples in online tracking. Qi et al. [27], [34] presented a tracking method to construct several weak trackers based on correlation filters, where each one was trained using the CNN features extracted from different layers. The CNN here was pre-trained on VGG.Net, and the adaptive hedging method was applied to ensemble these weak trackers into a stronger one. But the models obtained from other vision tasks may be inappropriate for visual tracking. Nam and Han [25] learned a representation for multi-domain learning based CNNs using a large number of training samples obtained from VOT [18] or OTB [38] (one for training, the other for testing). This work performed well on the tracking benchmarks. Bertinetto et al. [6] trained a fully-convolutional Siamese network end-to-end for visual tracking on the ILSVRC15 dataset [31]. Tao et al. [30] constructed a Siamese deep CNN whose inputs are image pairs for visual tracking. They adopted the ALOV dataset [29] to train and test their approach on OTB. The above methods all neglect the abundant unlabeled samples available in a visual tracking problem.

Manifold regularization based tracking methods aim to make full use of both labeled and unlabeled data, which have also been exploited in traditional visual tracking methods. Bai and Tang [1] proposed a tracking method using online Laplacian ranking support vector machines, where weakly labeled data in the current frame were used to update their appearance model. Ma et al. [22] treated dictionary learning and classifier training as a single stage, and constructed a dictionary that reflected the manifold structure of samples and retained discrimination at the same time. Wang et al. [43] also proposed a Laplacian regularization method to propagate foreground labels. But the manifold regularized CNNs based tracking method has not been well studied.

III. Label Propagation using Gaussian Fields Harmonic Functions

Now, we focus on the label propagation of unlabeled samples from labeled ones on an embedding manifold space using Gaussian fields harmonic. Suppose that we are given l labeled samples $(\{x_i, y_i\} | x_i \in \mathbb{R}^d, y_i \in \{0, 1\})_{i=1}^l$ where x_i is the d-dimensional data point and y_i is its corresponding label, and we obtain u unlabeled samples $(x_i)_{i=l+1}^{l+u}$. A graph Laplacian indicates that neighboring samples should share similar labels.
on the manifold space, which could be formulated as
\[
\min_{\mathbf{y}_{l+1}, \ldots, y_{l+u}} \sum_{i=1}^{l+u} \sum_{j=1}^{l+u} w_{ij} (y_i - y_j)^2 ,
\]
(1)
where \(w_{ij} \) denotes the similarity weight between samples \(x_i \) and \(x_j \). Generally, the similarity is only relevant to the spatial distance between a sample pair. In practice, we calculate the weights of two samples only if they lie in the \(k \) nearest neighbors of each other, i.e.,
\[
w_{ij} = \begin{cases}
\exp(-||x_i - x_j||^2/\delta), & x_i \in \mathcal{N}_k(x_j) \\
\exp(-||x_j - x_i||^2/\delta), & x_j \in \mathcal{N}_k(x_i) \\
0, & \text{otherwise}
\end{cases}
\]
(2)
where \(\mathcal{N}_k(x_i) \) is a set including the \(k \) nearest neighbors of sample \(x_i \). Eq.(1) can be reorganized as
\[
\min_{\mathbf{y}} \text{tr} (\mathbf{y}^T \mathbf{L} \mathbf{y}) ,
\]
(3)
where \(\mathbf{y} = [y_1^T, \ldots, y_u^T]^T \) with \(y_l = [y_1, y_2, \ldots, y_l] \) represents the labels of labeled samples and \(y_u = [y_{l+1}, \ldots, y_{l+u}] \) denotes the labels of unlabeled samples. And the Laplacian matrix \(\mathbf{L} = \mathbf{D} - \mathbf{W} \) is calculated from similarity matrix \(\mathbf{W} \) whose elements are \(w_{ij} \), and the diagonal elements of \(\mathbf{D} \) are obtained by \([\mathbf{D}]_{ii} = \sum_{j=1}^{l+u} w_{ij} \).

To deduce \(y_u \), Eq.(3) could be reformulated as
\[
\min_{\mathbf{y}} \left(y_1^T \ y_u^T \right) \begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{ul} & \mathbf{L}_{uu} \end{bmatrix} \begin{bmatrix} y_l \\ y_u \end{bmatrix} ,
\]
(4)
where \(\mathbf{L}_{ll} \) denotes the Laplacian matrix of labeled samples, and \(\mathbf{L}_{uu} \) is the Laplacian matrix of all unlabeled samples, and \(\mathbf{L}_{lu} = \mathbf{L}_{ul}^T \) represents the Laplacian matrix for labeled and unlabeled samples. The above minimization problem could be solved based on Gaussian fields harmonic functions [42]. Assuming that we have a function \(f \) to predict the label \(y_i \) of sample \(x_i \), it is formulated as \(f(x_i) = y_i \). The function \(f \) is assigned with a Gaussian field probability distribution
\[
p(f) = \frac{\exp(-\beta E(f))}{\int_{f|L=f_1} \exp(-\beta E(f)) df} ,
\]
(5)
where \(\beta \) is a constant parameter, \(L \) indicates the set of labeled samples, and the constraint \(L = f_1 \) indicates that the predictions of labeled samples calculated by function \(f \) should be consistent with their true labels, and \(E(f) = \sum_{i=1}^{l+u} \sum_{j=1}^{l+u} w_{ij} (f(x_i) - f(x_j))^2 \). It can be proved that the optimal prediction function \(f = \arg \min_{f|L=f_1} E(f) \) is harmonic, i.e., \(\Delta f = 0 \) for unlabeled data set where \(\Delta \) denotes the combinatorial Laplacian operation, and \(f = f_1 \) for labeled samples [37]. This property means that the label of each unlabeled sample is the weighted average of its labeled neighbors. Thus, the optimal label vector \(y_u^* \) for unlabeled sample is calculated as
\[
y_u^* = \mathbf{P} y_l ,
\]
(6)
From this equation, the matrix \(\mathbf{P} \) can be viewed as a projection matrix for label propagation. And \(y_u^* \) could be regarded as the deduced label vector for an unlabeled sample. But this label vector may not be accurate enough since it only takes the spatial structure of the embedding manifold into consideration and neglects the discriminative information of labeled samples. Thus, we train CNNs using both the spatial structure constituted by all samples and the discriminative information of labeled samples in the next section.

IV. MANIFOLD REGULARIZED CNNS FOR ONLINE VISUAL TRACKING

A. Model Overview

As provided in the leftside of Fig.1, we show the proposed manifold regularized CNNs architecture trained with labeled and unlabeled data, where the first three convolutional layers of this network are taken from VGG-net [7] with a resized RGB input. Followed by the convolutional layers, we append three fully connected layers. In our settings, different convolutional layers are usually connected by ReLUs, normalization, and max pooling, and fully connected layers are connected by ReLUs and dropout. The softmax loss is applied as the loss function to train this network for separating targets from the complex background. The design of this network is different from existing deep networks for tracking. Firstly, the present network receives both accurately labeled samples and unlabeled samples with the deduced labels as its inputs, which takes full advantage of the abundant unlabeled samples arising during tracking. Secondly, the network model needs no change
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2018.2859831, IEEE Transactions on Multimedia

softmax loss in classical deep neural networks can be written

\[y \}_{i \in \{0, 1\}^{C}}^{l+u} \] indicate the label vector of these unlabeled samples using Eq.(6). Thus, a regularization term is defined after Eq.(7), i.e.,

\[\mathcal{L} = (1 - \lambda)\mathcal{L}_l + \lambda\mathcal{L}_u, \] (8)

\[\mathcal{L}_u = -\frac{1}{u} \sum_{i=l+1}^{l+u} \sum_{j=1}^{C} y_{i \rightarrow j} \log (p(x_i)), \] (9)

where \(y_{i \rightarrow j} \) denotes the \(j \)-th element of the deduced label vector for unlabeled sample \(x_i \) calculated by Eq.(6). The function in Eq.(8) is named as a manifold regularized softmax loss function, and its derivative with respect to \(x_i \) is ready to be obtained. If \(x_i \) denotes the labeled samples, only partial derivative of \(\mathcal{L}_l \) should be computed, and \(\mathcal{L}_u \) otherwise. Let \(f \) be the softmax function, and \(z_i \in \mathbb{R}^C \) be the input of softmax loss with respect to sample \(x_i \), i.e., \(p_j(x_i) = f(z_{i \rightarrow j}) \) where \(z_{i \rightarrow j} \) represents the \(j \)-th element of \(z_i \). The final derivative consists of the two parts, and it is balanced by a preset constant factor \(\lambda \), i.e.,

\[\frac{\partial \mathcal{L}}{\partial z_{i \rightarrow j}} = (1 - \lambda) \frac{1}{l} \sum_{i=1}^{l} \sum_{j=1}^{C} y_{i \rightarrow j} \left(f(z_{i \rightarrow j}) - 1 \right) + \lambda \frac{1}{u} \sum_{i=l+1}^{l+u} \sum_{j=1}^{C} y_{i \rightarrow j} \left(f(z_{i \rightarrow j}) - 1 \right). \] (10)

The CNN model designed in Sec.IV-A is therefore trained with both labeled and unlabeled samples with the back propagation method in a supervised manner.

The presented manifold regularized CNNs are trained by the mini-batch stochastic gradient descent method. The labeled

\[\frac{\partial \mathcal{L}^i}{\partial z_{i \rightarrow j}} = (1 - \lambda) \frac{1}{l} \sum_{i=1}^{l} \sum_{j=1}^{C} y_{i \rightarrow j} \left(f(z_{i \rightarrow j}) - 1 \right) + \lambda \frac{1}{u} \sum_{i=l+1}^{l+u} \sum_{j=1}^{C} y_{i \rightarrow j} \left(f(z_{i \rightarrow j}) - 1 \right). \] (10)
training samples are cropped from previous frames. And we take the candidates sampled in the current frame around the previous target location as unlabeled samples. In fact, the number of these samples is quite small in contrast to the complex deep neural networks. It not only may cause overfitting when training the whole network using these samples, but also increases the computational complexity which makes it impractical for online tracking. Thus, we only update the weights of the last three fully connected layers for computational efficiency and keep the weights of other layers unchanged.

C. Offline Pre-training

The three convolutional layers of this network are taken from VGG-net trained with classification data (ImageNet), which may not be appropriate for visual tracking problems. Therefore, we collect training samples from VOT2015 [18], and learn the model parameters with these samples. The positive and negative samples are sampled from every annotated frame in the datasets. The positive samples and negative samples are collected in each frame from the training dataset. The samples are collected around the target region according to a Gaussian distribution, and we choose 50 of those samples whose overlap with ground-truth is larger than a fixed threshold as positive samples and 200 of those ones with their overlap rates that are smaller than a preset constant as negative samples. The network in Fig.1 is only pre-trained with labeled samples, and all the parameters in it will be updated including the convolutional layers and the fully connected layers. However, this may cause the training ambiguity when sample different targets from the same sequence (like Jogging-1,2) as suggested by [25]. The weights in the convolutional layers are initialized using the corresponding part in VGG-net, and the parameters in the fully connected layers are preset randomly. We employ the softmax loss mentioned in Eq.(7). This model is also trained using the min-batch stochastic gradient descent method.

D. Tracking Approach

The introduced visual tracking method is implemented under the framework of particle filters [24]. The goal is to estimate the maximum of a posterior of an object state \(s_t \) which is modeled by the target central coordinate, height and width, in frame \(t \). It can be formulated as

\[
\arg \max_{s_t} p(s_t | o_{1:t}),
\]

where \(o_{1:t} = \{o_1, \ldots, o_t\} \) represents the observation sample set up to frame \(t \). According to the Bayesian theorem, the maximum a posterior is proportional to

\[
p(o_t | x_t) \int p(s_t | s_{t-1})p(s_{t-1} | o_{1:t-1})ds_{t-1} = \int p(s_t | s_{t-1})p(s_{t-1} | o_{1:t-1})ds_{t-1}.
\]

In this equation, the motion model \(p(s_t | s_{t-1}) \) is modeled by a Gaussian distribution, and the posterior \(p(s_t | o_{1:t}) \) is approximated by a set of sampled candidates based on an assumed proposal distribution which is the same as the motion model. We take the positive score in the outputs of manifold regularized CNNs as the likelihood value of a candidate. To be more specific, we crop a set of candidate samples whose positions obey a Gaussian distribution with the previous target state as its mean value. We first update the proposed manifold regularized CNN model with both candidates and labeled samples. And then, the candidates are transferred into the updated deep model, and a confidence value is obtained for each candidate. We could choose the candidate with the highest confidence as the current target. The tracking flow is summarized in Algorithm 1.

Algorithm 1 Manifold Regularized CNNs Based Online Visual Tracking Algorithm

Input: The pre-trained CNN model, the target state \(s_1 \) of the first frame in a video.

Output: The target states \(s_2, \ldots, s_n \) of the subsequent frames.

1: Crop positive and negative samples \(X_{1:t} = \{(x_i, y_i)\}_{i=1}^t \) in the first frame.
2: **for** \(t = 2 : n \) **do**
3: Sample target candidates \(X_u = \{x_i\}_{i=1}^{t+u} \) in the \(t \)-th frame around target state \(s_{t-1} \).
4: Calculate the deduced the labels for target candidates using Eq.(6).
5: Update the last three layer of CNNs model with manifold regularized loss in Eq.(8) with its derivative Eq.(10) using both the labeled and unlabeled samples \(\{X_{1:t}, X_u\} \) until convergence.
6: Assign confidence value for each candidate using the updated CNNs.
7: Determine the current target state \(s_t \) with the highest confidence using Eq.(11).
8: Collect positive and negative samples \(X_{t} = \{(x_i, y_i)\}_{i=1}^t \) based on current target state.
9: **end for**

Occlusion Handling Strategy: It may not be enough to handle local target appearance changes caused by occlusion during tracking, if we only establish the target model with holistic templates. Hence, we further model global and local target appearances at the same time. As shown in Fig. 2, the holistic templates are divided into several overlapping image parts, and different image parts corresponding to different relative positions on the holistic templates are collected. And then, we train several different CNNs for every local target model with those local samples. Since we only update the parameters in the fully connected layers, the time complexity of tracking is acceptable. Suppose that the global template \(z_g \) is separated into \(k \) image patches \(\{z_g^{(1)}, z_g^{(2)}, \ldots, z_g^{(k)}\} \), their corresponding confidence scores \(s_g \) and \(\left\{s_b^{(1)}, s_b^{(2)}, \ldots, s_b^{(k)}\right\} \) are obtained with global and local CNN models. The final confidence \(s_f \) of a candidate can be computed as

\[
s_f = (1 - \gamma)s_g + \gamma \frac{1}{k} \sum_{i=1}^{k} s_b^{(i)},
\]

where \(\gamma \) is a constant to balance the impacts of global and local models. Once a target is partially occluded, the confidence of occluded parts will decrease, but the confidence
of unoccluded parts still maintain high scores, which is helpful for target localization accurately. Finally, the candidate with the highest confidence is selected as the current target. In our implementation, we divided the target into four local patches for efficient computation. We believe that the max pooling or ranked-pooling in [35] will be helpful and improve the tracking performance especially in case of larger number of local separations. The structure and training procedure of local networks are just similar with the holistic networks, except for the training samples. The training samples of local networks are local patches cropped from a target.

V. EXPERIMENTAL RESULTS

The proposed tracking method is verified on two popular visual tracking datasets, namely, OTB [36] and TB-100 [38]. The manifold regularized CNNs are trained with samples collected from VOT2015 [18], and implemented based on MatConvNet toolbox\(^1\). Our tracker runs about 1.2 fps using the un-optimized Matlab implementation on an Intel(R) Core i7 CPU with 3.5GHz and GeForce GTX 1080 GPU.

\(^1\)http://www.vlfeat.org/matconvnet/

\(^2\)http://visual-tracking.net/

TABLE I
THE DETAILED PARAMETERS FOR EACH LAYER OF THE PROPOSED MANIFOLD REGULARIZED CNNS. (THE ‘CONN’ INDICATES THE CONVOLUTIONAL LAYER, AND ‘MAXPOOL’ IS THE MAX POOLING LAYER, AND ‘FC’ REPRESENTS THE FULLY CONNECTED LAYER. THE SYMBOL ‘-’ MEANS THAT NO PARAMETERS EXIST IN THIS FIELD.)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Kernel Size</th>
<th>Feature Maps</th>
<th>Stride</th>
<th>Padding</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv1</td>
<td>7 x 7</td>
<td>-</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>maxpool1</td>
<td>3 x 3</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>conv2</td>
<td>5 x 5</td>
<td>256</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>maxpool2</td>
<td>3 x 3</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>conv3</td>
<td>3 x 3</td>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>fc4</td>
<td>-</td>
<td>512</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fc5</td>
<td>-</td>
<td>512</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fc6</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

A. Implementation Details

The detailed parameters of each layer for the proposed manifold regularized CNNs are shown in Table I. Besides, the rectified linear units (ReLU) and local response normalization (LRN) are added after ‘conv1’ and ‘conv2’. And ‘conv3’ is only followed by the ReLU layer. The ‘fc4’ and ‘fc5’ layers are followed by ReLU and the dropout layer.

Our tracker runs under the particle filter framework, and the covariances of the target location and scale are set to \((0.6, 0.6, 1.0)\) which is formulated as a diagonal matrix for Gaussian distribution. For each frame, 50 positive samples and 250 negative samples are collected which means that \(l = 300\), and the number of candidates \(u = 400\) is the number of particles. In our method, three color channels of CIE Lab are combined row by row of the target as the sample feature. As described in Algorithm 1, the manifold regularized CNNs are updated every frame. But in our implementation, we update this model every three frames, and we could collect more labeled samples to update our deep model and make tracking more efficient. Additionally, a bounding box regression technique [9] is utilized to improve the accuracy of the target location. Refer to [25] for more details about the bounding box regression.

B. Results on OTB

OTB [36] contains 50 video sequences, and each video is annotated by different types of difficulties including out-of-view, occlusion, fast motion, motion blur, and illumination variations. All these sequences and their corresponding ground truth are available online\(^2\). It is one of the most commonly used tracking benchmarks to verify the tracking performance of a tracker.

We compare the proposed tracking method with several classical trackers such as MDNet [25], Struck [11], WCO [45], CSK [12], SCM [41], KCF [13], and MEEM[40] and some recently proposed deep learning based visual tracking.
algorithms including HCF [23], HDT [27], SINT [30], CNN-SVM [14] and DeepSRDCF [8]. For performance evaluation, the tracking results obtained from different trackers are estimated by distance precision (DP) and overlap precision (OP) using one-pass evaluation. DP is a measurement which shows the relative number of frames when the center location error is smaller than a threshold (20 in general) in a video sequence, while OP is employed to measure the percentage of frames that the overlap rate between ground truth and the tracked bounding box is larger than a threshold. More details about these measurements can be found in [36]. The pre-training videos are collected from VOT2015 [18], which excludes the sequences arising in OTB.

1) Overall Comparisons: As shown in Fig.3, the DP and OP comparisons on OTB are illustrated. From it, we find that the performance of the proposed tracker is better than that of existing deep learning based tracking approaches (such as HCF and HDT), as well as traditional trackers. The DP score of our method is 0.931, which is 27.7 percent higher than the Struck tracker (which performed the best on this benchmark in 2013). The OP score on the success plots for the proposed tracking method is 0. HCF, HDT, CNN-SVM and SINT perform roughly the same on DP score and OP score, which have a small gap with the proposed tracking method.

2) Attribute-Based Comparisons: To test the tracking performance under different scenes for these trackers, we compare
them according to several annotated attributes. Fig. 4 illustrates
the ranking of different tracking algorithms under eight attributes: deformation, occlusion, illumination variation, out-of-plane rotation, in-plane rotation, out-of-view, motion blur, and scale variation. These tracking algorithms are ranked by DP and OP scores on the OTB dataset, and the detailed scores are shown in the legends of each subfigure. Overall, deep learning based tracking methods, such as MDNet, DeepSRDCF, HCF, and HDT, behave better than traditional trackers on these attributes. The proposed method performs the best on the total eight attributes compared with those popular trackers.

C. Results on TB-100

TB-100 [38], as an extended tracking dataset of OTB, adds about 50 annotated videos. We compare the proposed tracking method with the same popular trackers mentioned in the previous section and the same comparison metrics. The pre-training videos are collected from VOT2015 [18], which excludes the sequences arising in TB-100.

1) Overall Comparisons: To verify the performance of our method on a larger video dataset, we compare the proposed approach on TB-100 with those tracking algorithms mentioned above using the same performance evaluation criteria and the same pre-trained deep CNN model. Fig. 5 shows the overall estimations for those trackers on this benchmark. The DP and OP scores of our method are 0.886 and 0.658 respectively, which are higher than those of the compared deep learning based tracking methods, such as HDT, HCF, CNN-SVM, and those traditional trackers. The DeepSRDCF, HDT, HCF, CNN-SVM tracking methods perform well among these methods, which demonstrates that deep learning could improve the performance of traditional trackers greatly.

2) Attribute-Based Comparisons: As shown in Fig. 6, we also compare our method with those popular trackers under deformation, occlusion, illumination variation, out-of-plane rotation, in-plane rotation, out-of-view, motion blur, and scale variation. These tracking algorithms are ranked by DP and OP scores on the TB-100 dataset, and the detailed scores are shown in the legends of each subfigure. From these figures, we find that our tracker behaves better on these attributes than both deep trackers and conventional trackers. Nonetheless, the tracking performance scores still have room for improvement.

D. Component Analysis

1) Effectiveness of Manifold Regularization: To verify the effectiveness of the manifold regularization item in the proposed method, we implement the experimental comparisons of our tracker with different numbers of nearest neighbors mentioned in Eq. (2) on OTB. As shown in Fig. 7, the DP scores (vertical axis) of our method with neighbors \(k = 0, 3, 5, 7, 10 \) (horizontal axis) are illustrated in the histogram. It is noted that the performance will be improved when the manifold regularization item is removed, and the experimental results are shown in Fig. 7 when \(k = 0 \). Here, we did not implement the tracking experiment by just setting \(k = 0 \) since it would cause program error. It is just a representation of experimental results without manifold regularization. From the figure, the worst tracking performance is produced using our method with \(k = 0 \), which means that the proposed manifold regularization item works in our setting. The highest DP score is obtained when \(k = 5 \). Hence, we choose 5 as the number of nearest neighbors in our tracking algorithm. The performance declines with the increase of the number of neighbors, which means that a suitable number of neighbors benefits the tracking performance. In principle, a larger number of neighbors will bring more information that is beyond a local region of a sample, and it will violate the assumed manifold structure. Therefore, \(k = 5 \) is the best choice for the spatial structure of manifold and tracking performance through our experiments.

2) Influence of Global and Local Models: To test the influence of global and local models in the proposed method, we implement the experimental comparisons of our tracker with the increase of \(\lambda \) in Eq. (13) from 0 to 1 on OTB. As shown in Fig. 8, the DP scores (vertical axis) of our method with \(\lambda = 0, 0.1, 0.25, 0.75, 1 \) (horizontal axis) are illustrated in the histogram. From the figure, the best tracking performance is obtained when \(\lambda = 0.5 \), which is 0.931 for DP score. Hence, we set the value of \(\lambda \) to 0.5 of Eq. (13) in our tracking.
algorithm. Therefore, the local model could bring a certain performance improvement for tracking. But the drawback is that the tracking time increases with the rise of image patches.

3) Effectiveness of Pre-training and Bounding Box Regression Strategy: We also carry out a comparison experiment with the tracking algorithm without offline pre-training strategy presented in Sec.IV-C and the bounding box regression Strategy to have a more comprehensive understanding of the presented tracker. As shown in Table II, a CNN model without pre-training (only random weights in different layers) based tracker performs pretty bad. For a complex CNN, training samples extracted from the first frame only are far from enough. Thus, the DP and OP scores are pretty low, and most targets couldn't be located accurately. The bounding box regression strategy is useful for our tracking to improve the tracking performance. The DP and OP scores increase about 2.9 and 1.1 percent respectively.

E. Visual Comparisons

Fig.9 and Fig.10 show the qualitative comparisons of our tracking algorithm with the state-of-the-art trackers.

1) Occlusion: Target occlusion is one of the most challenging factors during tracking. It brings difficulties for accurate target locating because of the missing of target appearance information. Fig. 9 (top two rows) shows part of the tracking results of different trackers under partial occlusion.
Fig. 9. The visual comparison under partial occlusion (top two rows) and deformation (bottom two rows). The names of these sequences are “Dude”, “Suv”, “BlurBody”, and “Bolt” from top to bottom.

Fig. 7. The experimental comparisons with different numbers of nearest neighbors k.

Fig. 8. The analysis of global and local models.
sequences “Dude”, and “Suv”, the interesting targets are occluded by background objects occasionally. In this work, we train multiple CNNs for different image parts and decide the final target according to global and local confidences, which alleviates the adverse impacts caused by partial occlusion and verifies the effectiveness of our tracking for handling occlusion. Some trackers (like MEEM) could track interesting targets precisely and even drift under occlusion scenarios.

2) Deformation: The rigid and non-rigid deformation of the target during tracking often leads to the missing of existing appearance information and the addition of new appearance information. As shown in Fig. 9 (bottom two rows), the postures of human bodies in the four videos are changing with the swinging of limbs. In addition, motion blur exists in sequences such as “BlurBody”, which causes the target appearance changes. From this figure, we find that algorithms like ours and CNN-SVM could address target deformation. It can be seen that discriminative appearance modeling benefits tracking. And our tracking approach that is trained on CNNs with both labeled and unlabeled samples could improve the accuracy of classification for unlabeled samples containing deformed targets. Thus, the proposed method could handle the deformation problem very well.

3) Illumination Variation: The target appearance will have shading due to the change of illumination in the surroundings. For example, the target appearance in “Basketball” (#700) or
“Coke” in Fig. 10 are influenced by the lights, and both the global and local appearances are changed constantly. From the tracking results, we find that our tracker could resist the illumination variations in the tracking procedure, and most deep learning based trackers have good capacity to handle this challenge. But traditional trackers (such as SCM) could not track the target well from the beginning to the end. It is clear that CNNs have certain advantages for illumination variations.

4) Rotation: As shown in Fig. 10, targets in “DragonBaby”, “Ironman”, etc. experience in-plane or out-of-plane rotation. Moreover, the background in most videos are cluttered, which is unfavorable for tracking. Our tracker could update the CNN models only with samples obtained from the current frame online, and make them adapt to appearance changes rapidly caused by rotation. The tracking results also prove that our tracker could handle rotation well, while other trackers (such as HCF and MEEM) drift more or less during tracking.

VI. CONCLUSION

We have presented an online visual tracking algorithm based on manifold regularized CNNs using the Gaussian fields harmonic function. The labels of unlabeled samples were first calculated using their local neighbors with graph Laplacian, and then the proposed deep model was trained online with both labeled and unlabeled data. It is a relatively simple network architecture and pre-trained using the samples collected from a public tracking benchmark. The proposed deep tracker was tested on several popular tracking datasets and achieved better tracking performance compared with different tracking approaches.

REFERENCES

Hongwei Hu is currently pursuing the PhD degree in the School of Computer Science, Beijing Institute of Technology, Beijing, China. His current research interests include visual object tracking algorithms.

Bo Ma received the Ph.D. degree in computer science in 2003 from Harbin Institute of Technology, Harbin, China. From 2004 to 2006, he was with the Department of Computer Science, City University of Hong Kong, Hong Kong, China, working on research projects in computer vision and pattern recognition. In June 2006, he joined the Department of Computer Science, Beijing Institute of Technology, Beijing, China, where he is now an associate professor. Prof. Bo Ma has published about 40 journal and conference papers such as *IEEE Transactions on Image Processing* and *IEEE ICCV*. His current fields of interest include statistical pattern recognition and computer vision.

Jianbing Shen (M’11–SM’12) is a Professor with the School of Computer Science, Beijing Institute of Technology, Beijing, China. He received his Ph.D. degree in Computer Science from Zhejiang University in 2007. He has published about 100 journal and conference papers such as *IEEE Transactions on Pattern Analysis and Machine Intelligence*, *IEEE Transactions on Multimedia*, IEEE CVP, and IEEE ICCV. He has also obtained many flagship honors including the Fok Ying Tung Education Foundation from Ministry of Education, the Program for Beijing Excellent Youth Talents from Beijing Municipal Education Commission, and the Program for New Century Excellent Talents from Ministry of Education. His research interests include computer vision and machine learning. He serves as associate editors on the editorial boards of *Neurocomputing*.

Hanqiu Sun (M’98) received the M.S. degree in electrical engineering from University of British Columbia, Vancouver, BC, Canada, and the Ph.D. degree in computer science from University of Alberta, Alberta, ON, Canada. She is an Associate Professor with the Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong. Her current research interests include virtual reality and interactive graphics.

Ling Shao (M’09–SM’10) is the Chief Scientist of JD Artificial Intelligence Research (JDAIR), Beijing, China, and is also a Professor with the School of Computing Sciences, University of East Anglia, Norwich, UK. His research interests include Computer Vision, Image Processing, Pattern Recognition and Machine Learning. He has organized a number of international workshops with top conferences including ICCV, ECCV and ACM Multimedia. He is an Associate Editor of *IEEE Transactions on Circuits and Systems for Video Technology*, *IEEE Transactions on Image Processing*, *IEEE Transactions on Neural Networks and Learning Systems*.

Fatih Porikli (M’96, SM’04, F’14) is an IEEE Fellow and a Professor in the Research School of Engineering, Australian National University (ANU). He is also acting as the Chief Scientist at Huawei, Santa Clara. He has received his Ph.D. from New York University in 2002. Previously he served Distinguished Research Scientist at Mitsubishi Electric Research Laboratories. His research interests include computer vision, pattern recognition, manifold learning, image enhancement, robust and sparse optimization and online learning with commercial applications in video surveillance, car navigation, intelligent transportation, satellite, and medical systems. Prof. Porikli is the recipient of the R&D 100 Scientist of the Year Award in 2006. He is serving as the Associate Editor of five journals including *IEEE Trans. on Multimedia* and *IEEE Signal Processing Magazine* during the past 10 years.