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Abstract—Scale variation of pedestrians in a crowd image
presents a significant challenge for vision-based people counting
systems. Such variations are mainly caused by perspective-related
distortions due to the camera pose relative to the ground plane.
Following the density-based counting paradigm, we postulate that
generating density values adaptive to object scales plays a critical
role in the accuracy of the final counting results. Motivated by
this, we distill the underlying information from depth cues to
obtain scale-aware representations that can respond to object
scales considering the fact that the scale is inversely proportional
to the object depth. Specifically, we propose a depth embedding
module as add-ons into existing networks. This module exploits
essential depth cues to spatially re-calibrate the magnitude of the
original features. In this way, the objects, although in the same
class, will attain distinct representations according to their scales,
which directly benefits the estimation of scale-aware density
values. We conduct a comprehensive analysis of the effects of
the depth embedding module and validate that exploiting depth
cues to perceive object scale variations in convolutional neural
networks improves crowd counting performances. Our experi-
ments demonstrate the effectiveness of the proposed approach
on four popular benchmark datasets.

Index Terms—Crowd counting, depth embedding, perspective
distortion, scale variation

I. INTRODUCTION

STIMATING the number of people in crowded scenes is

an essential task in a wide spectrum of video surveil-
lance applications such as physical security, public space
management, and retail space design [1]. It also provides
an indispensable cue for higher-level scene understanding
tasks including crowd behavior analysis and surveillance event
recognition [2], [3]. These practical ramifications have brought
increasing attention to visual crowd counting research in the
recent past.
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Fig. 1. Motivation (best viewed in color): Due to scale changes of pedestrians,
the three regions (black, orange and red circles) that occupy the same number
of pixels have different crowd counts; six in the far field (black), three in
the midway (orange), and one in the near field (red) respectively. Since these
three regions have the same area, the density values within the farthest circle
should be larger than the ones in the nearer circles. In other words, objects
with smaller scales should have larger density values and vice versa. This can
be interpreted as scale-aware density values.

Due to magnifications and perspective-related distor-
tions [4], images depicting crowed scenes often contain people
with extreme scale variations, posing great challenges for
general counting systems that operate on uncalibrated camera
systems. In Fig. 1, we show a sample crowd image where
objects closer to the camera appear significantly larger com-
pared to the objects at farther distances. Roughly speaking, the
scales of objects are inversely proportional to their distances
to the camera imaging plane [5].

The popular density-based approaches [1], [6] generally
determine crowd count by summation of the density values
over specific regions in an estimated 2D density map. Fol-
lowing this paradigm, we postulate that a counting model
should compensate for the object scale variations and work
on scale-aware density values to achieve accurate estimates.
As illustrated in Fig. 1, three different regions in the crowd
image (marked with black, orange, and red circles) contain the
same number of pixels. However, due to perspective-related
distortions, each region contains a different number of people,
i.e., there are six, three, and one pedestrian in the farthest
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(black), medium (orange), and the nearest (red) circle, respec-
tively. Since three regions have the same area, the density
values at these three positions should vary accordingly to
generate the correct estimates when we sum the density values
over each region. More specifically, the density values in the
farthest circle should be larger than those in the nearer regions.
This suggests that a counting system should infer scale-aware
density values and compensate for the scale variations caused
by magnification or perspective-related distortions.

To compensate feature disparities between varying-sized
objects, recently various deep-learning based counting meth-
ods using convolutional neural networks (CNNs) have been
proposed. Most of them [7]-[11] are based on multi-scale
features. For example, Zhang ef al. [7] propose a multi-column
network to generate features from each column and fuse
these multi-scale features for crowd density estimation. Di et
al. [11] input the pyramid of an image and adaptively fuse
the multi-scale predictions for crowd counting. These multi-
scale feature based methods rely on information from adjacent
scales to compensate for the inability of the base CNN model
to directly perceive scale variations of objects. However, at
each image location there will be only one best-suited scale
to the corresponding object. This implies the fusion processing
will inevitably bring in interruptions from adjacent scales and
may adversely affect the accuracy. In contrast, in this paper we
propose to integrate the scene’s geometric information into the
feature manipulation and directly generate scale-aware features
to mitigate the scale variation problem explicitly. Generally,
the depth values at various positions can be viewed as inversely
proportional to the scales of the corresponding objects. With
the scale-related depth information, features can be tuned
smoothly across the object scale space and the resulted scale-
aware features will thus better benefit the scale-aware density
estimation and crowd counting. Furthermore, considering that
most existing counting datasets contain only single images,
we infer depth results from a pre-trained depth prediction
model [12], which makes our method more applicable.

The depth information is quite often utilized to help vision
tasks [13]-[15]. The most straightforward approach is to stack
the depth image as a four-channel of the input for networks.
However, in experiments we found this leads to limited
benefits, which has also been validated in [15] with even
degraded performances. Alternatively, we propose a depth
embedding module which integrates the depth information
and spatially re-calibrates the magnitude at individual feature
map location to generate the desired scale-aware representa-
tions. An encoding layer first encodes the depth image into
the feature space. Although the encoded depth can provide
geometric information, it does not help differentiate between
the foreground and background areas. To specifically highlight
the attentive foreground objects and avoid the distraction from
the background areas, a rectify layer follows to refine the
encoded depth map and generate scale-aware weights. Finally,
an embedding layer applies the inferred weights to re-calibrate
the magnitude of the original features at different locations for
scale-aware representations.

We highlight the main contributions of this work as follows:

o Observing the effects of intra-image scale variations on

density values, we propose to exploit the depth cues to
directly generate scale-aware feature representations to
improve the crowd density estimation.

e A depth embedding module is developed as add-ons
to process the depth information and perform spatial
recalibration on the features.

o With the proposed module, we implement Depth Embed-
ded Networks (DeemNet) for crowd counting and demon-
strate their effectiveness on four benchmark datasets.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III describes the proposed
method. Section V presents detailed experiment results, and
finally we conclude the paper in Section VII.

II. RELATED WORK
A. Crowd Counting

Due to the limited objects’ sizes and severe occlusions
in modern crowd scenarios, detection-based counting meth-
ods [16]-[18] have been largely replaced by the regression-
based approaches [19]-[21] to learn a mapping between the
features and the crowd count. The density-based method [1]
further proposes to exploit the spatial information and predict
a density map whose summations across the image will report
the total count. However, due to the usage of traditionally
hand-crafted features, the capacity of the early counting meth-
ods have been largely limited.

Recently, the prevalence of deep learning techniques [22]
has triggered a flurry of work exploring CNN-based models
to improve the counting task. Zhang et al. [23], as the
very first ones, successfully apply a seven-layer CNN for
crowd counting and density estimation. Among the several
factors that influence the counting accuracy, handling of the
intra-image scale variations caused by the perspective-related
distortions has been drawing extensive attention due to its
extremely challenging situations [2]. The related methods can
be mainly divided into two categories, which are summarized
in Fig. 2. The first category is based on multi-scale features.
Due to the presence of scale variations, the fusion of features
from multiple scales would potentially cover the variations
and thus improve the counting results. There are mainly two
key components when utilizing multi-scale features: the multi-
scale feature construction and their fusion. An intuitive method
for multi-scale feature generation is based on the image
pyramid [8], [11] that considers input images in multiple scales
(Fig. 2 (a)). For example, Daniel et al. [8] construct a pyramid
of image patches as inputs to the CNN model to emit feature
maps at multiple scales. Other methods to construct multi-
scale features generally based on the feature hierarchy of the
deep neural networks (Fig. 2 (b)). In this situation, features are
usually aggregated from sub-networks with multiple receptive
fields [7], layers at an increasing depth of a CNN model [24],
[25], or from the spatial pyramid pooling layer [10] for multi-
scale representations. For the multi-scale feature fusion, initial
methods [7], [8] treated the multi-scale features equally and
simply sum/concatenate them for final prediction (Fig. 2 (c)).
To further improve the fusion efficiency, later methods [9]-
[11] exploit the weighted fusion mechanism and propose
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Fig. 2. Illustration of representative methods handling the scale variation problem for crowd counting.

various methods to generate adaptive weights. The learned
weights can be either in the form of scalers [9] that only
measure the importance of features across scales (Fig. 2 (d)),
or in the form of tensors [10], [11] to measure the importance
across both scales and locations of the multi-scale features
(Fig. 2 (e)). For example, in [9] two additional attention
models are built and learned to generate local and global
scaling factors which adaptively fuse the multi-scale features
for density estimation. Liu et al. [10] learn weighting maps to
combine features emitted from the spatial pyramid layers for
multi-scale representation and density estimation.

These multi-scale feature based methods rely on the infor-
mation from adjacent scales to compensate for the inability
of the base CNN model to directly perceive scale variations
of objects. However, for a certain object there is only one
best-suited scale, and thus incorporation of information from
adjacent scales may bring in interruption and adversely affect
the counting accuracy. As a result, the second category of
methods to handle the scale variations aims to generate scale-
specific features that could respond to the corresponding sizes
specifically. A first attempt has been made in [26], where a
switch module is built to control the selection of the best-
suited features among several scales. Only features that are
selected will be involved in final density estimation (Fig. 2
(f)). This method waivers the interruption from multi-scale
fusion. However, the scale-space of objects here is discretely
divided in advance with three regression models and thus
the ability of the model to handle scale variations is limited
by the number of the pre-defined scales. Later, Shen et
al. [27] propose a scale-consistency loss function to drive
the network to understand the scale variations and achieve
counting consistency across inputs in various scales. This can
be viewed as to generate scale-specific features in an implicit
way. Differently, our model directly and explicitly generates
scale-aware features to handle scale variations (Fig. 2 (g)).
With the naturally scale-related depth maps, features can be
tuned smoothly across the object scale space and the resulted
scale-aware feature maps will thus better benefit the scale-
aware density estimation and crowd counting.

There are also a few methods which exploit the side

information of depth cues to improve crowd counting. For
example, Xu et al. [28] use the depth of an image to guide the
segmentation of the scene into a far-view region and a near-
view region, and then apply different mechanisms (density-
based and detection-based) to estimate counting results in
the two regions. More recently, Kang et al. [29] propose
an adaption CNN whose filter weights are derived from the
central perspective value of the input patch, which disentangles
the variations related to the scene perspective into model
parameters. Alternatively, in this paper we directly embed the
depth into the feature generation process, which models the
scale variations in the input image explicitly via the generation
of scale-aware representations.

B. Feature Map Attention and Scaling

The attention mechanism can perform soft selection on the
relevant parts of the input to improve the representations,
which has been exploited in a wide range of tasks [30],
[31]. Recently, applying the attention mechanism to manip-
ulate the feature maps in CNNs has shown to be effective.
For example, Spatial Transformer Network [32] learns an
in-network transformation of feature maps which can act
as selectively attention to emphasize specific features. The
EncNet [33] applies the channel-wise attention to emphasize or
de-emphasize individual feature maps conditioned on the scene
context to improve semantic segmentation. For the crowd
counting, Sam et al. [34] also exploit top-down feedback
to correct features to improve the counting performances.
However, their main aim is to help differentiate between the
foreground/background areas and correct the initially false
positive responses, which are not specifically for the scale
variation problem. In our paper, we incorporate depth cues
to predict scaling factors to re-calibrate the magnitude of
individual features for scale-aware representations and density
estimation.

III. APPROACH
A. Overview

We adopt the popular encoder-decoder framework [27],
[35] for crowd density estimation, where a CNN encoder
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Fig. 3. Overview of the proposed Deem-CNN. For the I-the layer in the CNN encoder, initial feature maps Z! is the output of the previous (I — 1)-th layer.
We build a Depth Embedding Module on top, including a depth encoding layer, a depth rectifying layer and a depth embedding layer to capture essential
geometric depth cues to predict attentive scale-aware scaling weights v that are conditional on the initial feature maps and the predicted depth result. The
learned weights re-calibrate the magnitude of Z' at each individual location, resulting in a weighted scale-aware feature map X,

transforms an input image to high-level multi-layer feature
maps and then a CNN decoder decodes the feature maps
into a spatial density map. As illustrated in Fig. 3, our depth
embedded network (DeemNet) aims to modulate the original
features to embed essential geometric attribute through a depth
embedding module which produces scale-aware scaling factors
for individual locations on the feature maps.

Formally, suppose for the input image I we have its depth
image D at hand. At the [-th layer of the encoder, the scaling
factors, dubbed as scale-aware weights +!, is a function of D
and the current CNN features Z' at layer I. Thus, DeemNet
re-calibrates current features Z' using the scale-aware weights
+" in a recurrent fashion as:

Z' = CNN(X'T1)
' =T'Z',D)
X' = f(Z' ),

(D

where Z! is the output from previous convolution (conv) layers
in the CNN model, D is the predicted depth image using pre-
trained models (Section III-B), 7" denotes the transformation
function that generates the scale-aware weights in the depth
embedding module (Section III-C), f(-) denotes the weighting
function that modulates CNN features with the generated
weights (Section III-C), and X' is the weighted feature after
re-calibration. The output features will be taken as input of
the next layer and proceed until the decoder which maps the
scale-aware representations into scale-aware density values.

B. Depth Prediction

As an object’s scale is closely related to its distance from the
camera, we exploit the depth cues of an image to help model
the scale variations between objects at different locations.
However, currently most existing counting benchmarks contain
only single RGB images. Inspired by the recent success of
CNN-based depth prediction approaches, we resort to the work
of Liu ef al. [12] which learns a deep convolutional neural
fields (DCNF-FCSP) model for depth prediction. This depth
predictor provides an indoor version trained using NYU?2 [36]
dataset and an outdoor version trained using Make3D [37]
dataset. In the experiments, we exploit the indoor version for
the Mall [20] dataset of an indoor scene while the outdoor
version for another three datasets [7], [23], [38] with outdoor
scenes. We apply this pre-trained model without any changes
or finetuning on the counting scenes and achieve surprisingly
reasonable results. Fig. 4 visualizes the predicted depth maps
for sampled crowd images. As observed, the predicted depth
images can well adapt to various scene layouts and depict the
distance variations at different positions to the camera imaging
plane.

C. Depth Embedding Module

As depicted in Fig. 3, the depth embedding module mainly
consists of three parts: depth encoding, rectifying and embed-
ding. Each of these submodules will be described in detail in
the following article.

Depth encoding Suppose for the input image I,I €
RAXWx3 "jts depth result inferred from the depth prediction
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Fig. 4. Visualization of predicted depth maps from the pre-trained depth
prediction model [12]. The first row shows sample images from four crowd
counting datasets [7], [20], [23], [38] and the second row visualizes their
depth maps, respectively.

model [12] is D,D € R¥*W_ For the depth embedding
module at layer [, the depth image is first resized to match
the size of feature maps Z' at the corresponding layer. For
scale-aware features, larger weights need to be assigned to
farther, smaller-scaled objects. Considering that the desired
distance information has been readily available in the depth
map, we then simply employ a non-linear encoding with the
parameterized sigmoid function [39] to normalize the depth
values into (0,1):

1
u' = g(D) = 14 oD (2)

where o and 3! are learnable parameters to tune the encoding
function. This function is differentiable and hence it can be
trained with the standard stochastic gradient decent (SGD)
algorithms. The partial derivatives of the objective function
L with respect to the parameters o! can be written according
to the chain rule as:

oL 0L oul
Aol Oul dal
oL aué
=2 5l B0l )
7 J

=3 25 D,9(D,)(1 - (D)

where ué and D; are the j-th element of u! and D, and the
objective function L will be described in Section IV. Similarly,
the partial derivatives of the objective function L with respect
to B! can be written as:

oL oL
Tﬁl :—;@9(133')(1_9(])1‘)) “4)
Depth rectification While the depth provides information
on scale variation, it is blind to the whole scene and does
not specifically differentiate between foreground objects and
background. With this raw depth map, features at background
areas will also be inevitably re-calibrated, which is undesirable
and may disrupt the originally learned feature representations.
For example, the features towards the background sky at
remote places (with larger depth values) will be assigned with
very large weights upon a direct application of the initially
encoded depth, which is irrelevant in the measurement of scale

Fig. 5. Visualization of attention masks. The first column shows two sample
images. The second and the third column respectively visualize the learned
attention masks when the attention module is set at increasing depths of the
backbone model. In all the heat maps from blue to red, the underlying value
becomes larger.

variations among target objects and also may introduce addi-
tional background noises. Towards more effective utilization
of the predicted depth, we propose a rectification layer for
depth refinement.

Intuitively, prior information on the potential crowd regions
would be beneficial. However, at hand we only have the label
of dotted annotations of pedestrians, and it is expensive to
label additional crowd segments. In contrast, we introduce the
spatial attention mechanism [31] to tell where the foreground
objects are located in with a soft attention mask v' for the
depth embedding module at layer [. This attention mask, which
de-emphasize the background areas, will act as a guide to help
the model to selectively focus on the depth distinction among
those targeted objects. This mask v' € RM*N can be written
as a function of the feature maps Z! € RM*NxC:

v! = sigmoid(®(Z!)) Q)

where @, represents a CNN-based attention model which is
composed of two convolution layers with a kernel size of 3 x 3
(the first layer has 512 filters and the second layer has 1 filter).
The attentive weights are further computed by element-wise
sigmoid function on the output score map from @, to highlight
the most relevant regions across the whole spatial areas. In
our case for crowd counting, it will learn to attend to the
foreground pedestrian regions.

Fig. 5 visualizes some examples of learned attention masks.
The second and the third columns respectively show the results
when the input feature maps are from different layers at
increasing depths of the backbone model. It can be observed
that the attention masks can effectively highlight the fore-
ground crowd areas from the background. It is also notable
that with hierarchical feature representations enabled by the
CNNeg, it is possible to generate attention masks at different
semantic levels. As observed, attention masks at increasing
depths concentrate on more abstract representations, i.e., from
global crowd regions to isolated head locations.

Further, the encoded depth is rectified using the attention
mask to obtain the attentively scale-aware weights ~':

V' =Tz D)=v' o ©)

where ® denotes the Hadamard matrix product operation ((A®
B)i;j = (A)i;(B)i,). With the multiplicative combination,
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Fig. 6. Visualization of the image (first row), the depth map (second row), the
attention mask (third row) and the generated attentively scale-aware weight
maps after depth rectification (last row).

attention masks v' will help rectify and suppress irrelevant
signals in the background areas of the encoded depth u'. Fig. 6
shows the effects of the depth rectification layer. As observed,
after rectification the background areas are de-emphasized,
whereas depth disparities among the foreground objects are
still preserved and highlighted, implying the effectiveness of
the rectification towards attentive scale-aware weights.

Depth embedding With the scale-aware weights, the orig-
inal feature Z' is tuned using a linear weighting function
f(+) as a feedback loop. Different from the existing popular
modulating strategy that aggregates features across spatial
locations based on the generated weights, function f(-) ap-
plies element-wise multiplication. As a consequence, feature
activations at different positions are re-calibrated considering
both the geometry information and the semantic information at
one specific position. The newly derived scale-aware feature
X! with highlighted scale variations among the foreground
objects can be written as:

X'=[f(z'y)=2" & ()

where ® denotes channel-wise Hardmard matrix product op-
eration.

D. Depth Embedded Network (DeemNet)

The depth embedding module is self-contained with the
same input and output dimension, and hence can be freely
dropped in a standard CNN architecture to augment the repre-
sentation ability, without any additional supervision or modifi-
cation to the original architecture. To examine its effectiveness
on backbone models with various complexity, we develop
the depth embedded network (DeemNet) by integrating the
proposed module into the encoder part of different backbone
models. We first devise a lightweight model that has three

TABLE I
DIFFERENT ENCODER-DECODER ARCHITECTURES EVALUATED IN
EXPERIMENTS.

Architecture CFCN CSRNet

(3%x3x64 conv)x2, stride 2
7TX7x32 conv, stride 2 (3x3x128 conv)x2, stride 2
Encoder TXTx64 conv, stride 2 (3%x3x256 conv)x2, stride 2
5x5x128 conv (3%3x512 conv)x2, stride 2
S3¢5%64 conv (3x3x512 conv, dilz'ne 2)x3

7x7x32 deconv, upsample 2 3x3x256 conv, d%late 2

Decoder 7x7x1 deconv, upsample 2 3%3x128 conv, 41late 2

3x3x64 conv, dilate 2

Ix1x1 conv

convolution layers both in the encoder and decoder parts. This
counting model is in the fully convolutional fashion and is
able to accept arbitrary-sized inputs at inference, dubbed as
CFCN. For the deeper counterpart, we exploit the most recent
CSRNet [40] which adapts the VGG network [41] for crowd
counting with dilation processing. Detailed architectures of
two backbone models are shown in Table I. Besides, each
convolutional layer is followed by a rectified linear unit
(RELU) (omitted in the table), and is accordingly padded
to keep the spatial resolution. With the two baseline CNNs,
we can construct two variants of DeemNet: Deem-CFCN and
Deem-CSRNet, which will be investigated in Section V.

IV. MODEL TRAINING

The DeemNet can be trained with the pixel-wise Euclidean
loss: L = |Y — Ygt||2, where Y and Y, are the predicted
and the ground-truth density map, respectively. For an image I
with its dotted annotation set Ay, the ground-truth density map
is defined as a summation of a set of 2D Gaussian functions
centered at each dot, i.e., Vp € I Yy (p) = ZueAI N(p; u, X),
where N(p; i, Y2) denotes a normalized 2-D Gaussian kernel
evaluated at p, with mean p and isotropic covariance matrix
Y. Training proceeds in three phases: first the baseline model
is optimized using objective L; then the attention model is
firstly added and trained to provide better initialization; finally
the complete depth embedding module is built and the whole
model is trained end-to-end using L.

V. EXPERIMENTS
A. Implementation

Our system is implemented with the publicly available
Matconvnet toolbox [42] with an Nvidia GTX Titan X GPU
and Intel Core i7 6700 processor. We set the momentum
to 0.9 and the weight decay to 0.0005. The initial learning
rate is set to 107° and is divided by 10 when the validation
loss plateaus. For each evaluation dataset, image patches are
randomly cropped from the training images to augment the
training data, and randomly flipped for data augmentation.
At inference, summation of density values across the whole
image will report the final counting numbers. Following the
convention of most existing work [7], [23], We use the mean
absolute error (MAE) and the mean square error (MSE) to
evaluate and compare the counting performances. Training the
whole network of Deem-CSRNet takes around 22, 35, 25 and
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12.7 hours on the ShanghaiTech_B [7], worldExpo’2010 [23],
UCF_CC_50 [38] and the Mall [20] dataset, respectively. At
inference, it takes ~0.1 s of the Deem-CSRNet and ~0.05 s of
the Deem-CFCN for one network forward pass to do density
estimation if the depth maps are available. We will further
discuss the depth efficiency and the robustness of our model
in terms of the depth variation in Section VI.

B. Datasets

ShanghaiTech-B ShanghaiTech-B is a part of Shang-
haiTech dataset which is proposed in [7] and is among the
largest datasets captured in real outdoor scenes. It consists
of 716 annotated images, which are taken by surveillance
cameras from different crowd scenes. The perspective distor-
tion in each image is pretty severe, which leads to drastic
pedestrian scale variations. In our experiments, we follow the
train/test splits (400 for training, 316 for testing) in the original
paper [7]. 20 patches are randomly cropped from each original
image for model training, each with a size of 224 x224.

WorldExpo’2010 The WorldExpo’10 dataset was firstly
introduced in [23]. It consists of 1132 annotated video se-
quences captured with 108 surveillance cameras. 3980 frames
are selected and labeled with dotted annotations at the center
of pedestrians’ heads for evaluation of the crowd counting
algorithms. Among all the images 3380 frames from 103
scenes are split as training data, and the left 600 frames from
another five different scenes are held out for testing. The region
of interest (ROI) and a perspective map are provided for each
scene. We randomly crop 20 patches with a size of 224 x224
from each training image for model learning. The ROI is used
to mask the predicted density map, and only the predictions
within the ROI will be considered.

UCF_CC_50 UCF_CC_50 [38] contains 50 crowd images
which are crawled from the Internet. The dataset exhibits a sig-
nificant variance in the counting numbers with counts varying
between 94 and 4543. The limited number of training images
and the drastic variability between different scenes make this
dataset very challenging for the counting task. We follow the
approach of other state-of-the-art methods [7], [23], [26] and
use 5-fold cross-validation to validate the performance of our
method on UCF_CC_50. The cropped training patch size is
224 %224 in each image.

Mall The Mall dataset [20] contains 2000 frames collected
in a shopping mall. As an indoor scene, the pedestrian numbers
in the images of this dataset are much smaller compared to
the ShanghaiTech dataset [7], with the maximum and the
minimum number of people in the ROI regions being 13
and 53, respectively. However, this dataset also experiences
apparent perspective distortion and illumination variations,
which cause significant changes in the size and appearance
of objects at different positions of the scene. Following the
original experiment settings in [20], the first 800 frames are
used for training, and the remaining 1200 frames are kept for
testing. 12 patches are randomly cropped from each image for
model training, each with a size of 160x 160.

TABLE II
COMPONENT ANALYSIS ON SHANGHAITECH-B. IN EACH STAGE THE
BEST MAE/MSE 1S INDICATED AS BOLD AND THE SECOND BEST AS

ITALIC.
Stage
Model i ‘ 3 ‘ 3
CFCN 13.05/21.88 (MAE/MSE)
CFCN with RGB-D input 12.63/21.13
A-CFCN 12.67/22.13 | 12.91/22.44 | 12.77/22.41
D-CFCN 12.25/21.09 | 11.95/21.09 | 12.09/20.14
Deem-CFCN 11.82/19.77 | 11.86/20.48 | 12.25/20.05
TABLE III
COMPONENT ANALYSIS ON MALL.
Stage
Model i ‘ 3 ‘ 3
CFCN 3.14/3.90 (MAE/MSE)
CFCN with RGB-D input 2.23/2.89
A-CFCN 3.13/3.89 | 2.16/2.79 | 2.22/2.87
D-CFCN 2.22/2.88 | 2.142.72 | 2.18/2.81
Deem-CFCN 2.14/2.73 | 2.11/2.71 | 2.12/2.74

C. Diagnostics Experiments

In this section, we conduct extensive experiments to analyze
the effects of the proposed depth embedding module. on two
datasets: ShanghaiTech-B [7] and the Mall dataset [20].

Component analysis To investigate the effects of each
component in the depth embedding module, we conduct
experiments with two variants of the proposed module. The
first one preserves the depth encoding and embedding layers
however remove the depth rectifying layer, dubbed as D-
CNN. The other one only contains the attention model in the
depth rectification layers and abandon the depth information,
dubbed as A-CNN. To further understand the effects of the
feature modulation at different positions, the depth embedding
module and its variants are also applied at different stages
of the base model. In particular, we denote the stage where
features emitted from the n-th conv-relu-pool (or conv-relu)
group as stage n. For example, for CFCN the Ist, 2nd
and 3rd stage indicates the pooll, pool2 and conv3 layer,
respectively. Experiment results are shown in Table II and
Table III. Besides, we also include another approach which
directly stacks the predicted depth map as the fourth-channel
of the RGB input (RGB-D input) for comparison.

From Table II it can be observed that with merely the
depth information, the D-CFCN already improves over the
baseline CFCN no matter whichever stage the feature is aug-
mented, which validates the efficacy of explicitly exploiting
the predicted depth to assist the crowd counting task. When
adding the depth rectification layer, the Deem-CFCN further
augment the performance based on D-CFCN, implying the
effectiveness to selectively highlight the attentive depth areas
to avoid disruptions from the background. Besides, with only
the attention model, the A-CFCN is inferior compared to
Deem-CFCN. This implies that the benefits of the depth
embedding module are mainly owing to the overall mechanism
to encode, rectify and embed the depth information, other
than the increased parameters brought by the attention block.
Moreover, although exploiting the depth maps as RGB-D input
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TABLE IV
DIAGNOSTIC EXPERIMENTS ON MULTI-STAGE DEPTH EMBEDDING ON
SHANGHAITECH-B.

Stage
Model i [ s [ 3
CFCN 13.05/21.88 (MAE/MSE)
Deem-CFCN | 11.82/19.77 | 11.34/18.60 | 11.65/18.39
CSRNet 10.6/16.0 (MAE/MSE)
Deem-CSRNet | 8.09/12.98 | 8.05/13.48 | 8.24/14.40

TABLE V
DIAGNOSTIC EXPERIMENTS ON MULTI-STAGE DEPTH EMBEDDING ON
MALL.
Stage
Model i [ ) [ 3
CFCN 3.14/3.90 (MAE/MSE)
Deem-CFCN | 2.14/2.73 | 2.10/2.66 [ 2.11/2.72
CSRNet 3.36/4.11
Deem-CSRNet | 2.31/2.94 [ 2.34/2.96 | 2.39/3.04

also improves the performances, it is not as effective as the
proposed method. Similar conclusions can also be drawn from
Table III for the Mall dataset.

Multi-stage depth embedding To further investigate the
effects of applying multiple depth embedding modules on the
counting accuracy, we add n (n > 1) proposed modules at
each of the first n stages in the base model. As observed in
Table IV for the ShanghaiTech-B dataset, with the baseline
model of CFCN, adding two modules in the first two stages is
better than only using one. The performances plateau out when
the third module is added, where the MSE is slightly enhanced
while the MAE is degraded. For the deeper CSRNet [40],
the performance stops improving when two modules being
integrated and becomes even worse with the third module.
It is notable that the same stage indicates layers at different
depths of the CFCN and the CSRNet. Specifically, the stage 1,
2, and 3 just indicates the first, second and third convolution
layer in the CFCN, whereas in CSRNet it denotes the second,
fourth and sixth convolution layer, which is much deeper than
CFCN. Combining the results both on CFCN and CSRNet,
we found that it will be beneficial to add depth embedding
modules at earlier stages to inject the scale-related information.
When more modules are added at increasingly deeper layers,
the higher-level representations tend to be interrupted and may
adversely affect the performances. From Table V for the Mall
dataset, similar observations can be drawn.

D. Comparison with State-of-the-art

The proposed method is compared with several state-of-
the-art methods on four challenging benchmarks for crowd
counting, as shown in Table VI, VII, VIII, IX. Since the
Mall [20] dataset contains only one scene and also contains
a few images, we use the Deem-CFCN with two depth
embedding modules added on stage 1 and 2 to benchmark the
performance on this dataset. For other datasets, Deem-CSRNet
with one depth embedding module integrated on stage 1 is
applied for comparison.

TABLE VI

COMPARISON RESULTS OF MAE AND MSE ON SHANGHAITECH-B.

Method [ MAE [ MSE

LBP + RR [43] 59.1 81.7

Crowd-CNN [23] 32.0 49.8

MCNN [7] 26.4 41.3

Switch-CNN [26] 21.6 334

CP-CNN [44] 20.1 30.1

DecideNet [45] 20.7 294

TDF-CNN [34] 20.7 32.8

ACSCP [27] 17.2 27.4

IG-CNN [46] 13.6 21.1

RReg [47] 8.7 13.5

CSRNet [40] 10.6 16.0

Deem-CSRNet 8.09 12.98

TABLE VII
COMPARISON RESULTS OF MAE ON WORLDEXP0O’2010.

Method [ S1 [ S2 [ S3 [ S4 [ S5 [ Avg
LBP + RR [43] 13.6 59.8 37.1 21.8 234 | 31.0
Crowd-CNN [23] 9.8 14.1 14.3 22.2 3.7 12.9
MCNN [7] 3.4 20.6 12.9 13.0 8.1 11.6
Switch-CNN [26] 4.4 15.7 10.0 11.0 5.9 9.4
CP-CNN [44] 2.9 14.7 10.5 10.4 5.8 8.86
DecideNet [45] 2.0 13.14 8.9 17.4 475 | 9.23
CSRNet[40] 2.32 | 1296 | 14.19 | 10.50 | 3.51 8.7
Deem-CSRNet 2.08 | 14.14 12.72 9.37 3.37 | 8.34

 This is our re-implementation of the CSRNet [40]. Close average
MAE (8.7) has been achieved compared to the reported MAE (8.6)
in the original paper [40], however with different result on each
separate scene. For comparison, we base the Deem-CSRNet on our
own-implemented CSRNet.

ShanghaiTech-B As observed in Table. VI, our method
outperforms the recent state-of-the-art approaches on this
dataset. Especially, compared to those methods which handle
scale variations mainly by employing multi-scale features [7],
[23], [26], our method with the proposed depth embedding
module achieve better performance, which demonstrates the
efficacy to exploit the depth to model scale variations explicitly
for crowd counting.

WorldExpo’2010 Table VII compares the MAE with other
methods on each test scene as well as the average MAE across
all the scenes. As observed, our approach outperforms previous
methods with an average MAE of 8.34, demonstrating the
effectiveness of the proposed method on cross-scene counting.
We have noticed that with the depth embedding module, the
counting errors of scene 2 increases. Based on our analysis,
in this scene, the ROI regions are almost directly under the
surveillance camera, where the perspective distortion and the
scale variation are not the dominant factors influencing the
counting accuracy. Thus, the ability of the proposed method
that mainly tackles the scale variations is limited in this scene.

UCF_CC_50 Images in this datasets exhibit a large diver-
sities of crowd densities, which make it very challenging for
a method to successfully adapt to such variations without any
prior information. As observed in Table VIII, Deem-CSRNet
improves over the baseline model and achieves the best
MAE compared to other state-of-the-art methods, implying
the effectiveness of the proposed method on extreme dense
scenes. The CP-CNN [44] achieves the best MSE. This method
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Fig. 7. Qualitative visualization. From the first to the last column are: the images, estimated density maps of the baseline model CSRNet, estimated density
maps of model Deem-CSRNet with the depth embedding module, and the ground truth density maps. Crowd counts are labeled on the top for illustration.

TABLE VIII

COMPARISON RESULTS OF MAE AND MSE oN UCF_CC_50.
Method ‘ MAE ‘ MSE
Lempitsky et al. [1] 493.4 487.1
Idrees et al. [38] 419.5 541.6
Crowd-CNN [23] 467.0 498.5
MCNN [7] 377.6 509.1
MoCNN [48] 361.7 493.3
Hydra2s [8] 333.7 425.3
Switch-CNN [26] 318.1 439.2
CP-CNN [44] 295.8 320.9
ACSCP [27] 291.0 404.6
Mohammad et al. [9] 271.60 391.00
PACNN [49] 267.9 357.8
CSRNet [40] 266.1 397.5
Deem-CSRNet 253.4 364.4

incorporates prior information on the density levels of an input
image and its sub-patches, which makes it especially beneficial
for datasets with large density diversities.

Mall As observed in Table IX, with two depth embed-
ding modules injected in the baseline model, the perfor-
mance improves and is comparable with other methods, which

TABLE IX
COMPARISON RESULTS OF MAE AND MSE ON MALL.
Method ‘ MAE ‘ MSE
Ridge Regression [43] 3.59 19.0
MORR [20] 3.15 15.7
Count Forest [50] 4.40 2.40
Weighted VLAD [21] 241 9.12
Exemplary Density [51] 1.82 2.74
Boosting CNN [52] 2.01 N/A
MOoCNN [48] 2.75 13.4
DecideNet [45] 1.52 1.90
CFCN 3.14 3.90
Deem-CFCN 2.10 2.66

demonstrates the effectiveness and robustness of the proposed
approach on small datasets with fewer people.

Fig. 7 qualitatively visualizes and compares the density
maps and estimated counts of models with (Deem-CSRNet)
and without (CSRNet) the depth embedding module. As
observed, with the proposed module the estimated density map
become more close to the ground truth, and also the estimated
counts become more accurate. For example, for the second
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sample image after depth embedding the response in lower-
right regions are weakened and become more close to the
ground truth, implying the ability of the Deem-CSRNet to
perceive and adapt to object scales.

VI. DEPTH EFFICIENCY AND MODEL ROBUSTNESS

In this paper, we input the RGB crowd images into the
depth prediction model and exploit the predicted depth in our
counting algorithms. However, the depth estimation, as a dense
prediction task, requires a large number of computational
resources. Although the depth predictor [12] has been sped
up to reduce the computational burden, it is still rather time-
consuming. Take the shanghaiTech-B [7] for example, it takes
4.2 s to estimate a depth map for an image in a resolution of
1024 x768.

At the training stage, since the depth prediction model
is fixed and does not involve in the learning process, we
can collect the depth maps off-line to avoid on-line depth
estimation and save the training time. However, at inference
this time cannot be neglected anymore. Considering that in
most real-world applications, the surveillance cameras are
stationary for a certain scene with a fixed viewpoint, the
depth relationships at different positions can be hence regarded
unchanged across different frames. In this situation, the depth
map used in the counting model can be predicted for just once
when the system starts up or predicted every a few frames, thus
avoiding a large proportion of time spent for depth inference.

Beyond this engineering solution, we also study another
method to improve the efficiency to facilitate the utilization
of predicted depth information. We find that the time for
depth prediction is significantly influenced by the image size
fed into the depth prediction model [12]. Table X shows the
depth inference time and the corresponding counting results
with downsampled depth results on the ShanghaiTech-B [7]
dataset. It can be observed that generally the larger the image
size, the more time it takes to do the depth estimation.
Intuitively, we consider use downsampled crowd images for
depth prediction to save time. The output depth map, which
is also downsampled, will be bilinearly upsampled to recover
their full resolution as the original crowd image before they
are accepted by the depth embedding module. As observed
from Table X, a suitable choice for the ShanghaiTech-B dataset
at inference would be the usage of a downsampled crowd
image with a downsampling factor £ between 0.4-0.6. This
will maintain most of the performance but take much less
time for the depth estimation compared to using the full-
sized images. Thus, in practical applications, when higher-
resolution inputs hinder the test efficiency, the time for depth
inference can also be saved with resized images. The suitable
sizes may dependent on each dataset and need to be chosen
accordingly. Furthermore, as observed from Table X, the
proposed method takes effects and improves over the baseline
even with downsampled depth maps at a wide range of sizes,
which to some extent can demonstrate the robustness of our
system to the depth variations.
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TABLE X
INFERENCE TIME AND COUNTING PERFORMANCES USING
DOWNSAMPLED DEPTH MAPS AT MULTIPLE DOWNSAMPLING FACTORS.
ASSUMING THE ORIGINAL IMAGE SI1ZE 1S M X N, WITH DOWNSAMPLING
FACTOR k, THE RESIZED IMAGE WILL BE (M - k) X (N - k).

. . Deem-CFCN
Downsampling factor k£ | Time (s) NAE MSE
Baseline (CFCN) - 13.05 | 21.88

1 (default) 4.2 11.34 | 18.60

0.8 2 11.35 | 18.72

0.6 0.8 11.56 | 18.50

0.4 0.3 12.02 | 19.47

0.2 0.07 13.31 | 20.97

VII. CONCLUSION

To handle the intra-image scale variations of pedestrians
in the visual crowd counting task, we propose a novel depth
embedding module to improve the representation capacity on
scale variations of a network by dynamically spatial-wise
feature recalibration with rectified depth cues. The proposed
depth embedding module is fully differentiable and compatible
with existing CNN-based approaches. Extensive experiments
demonstrate the effectiveness of the depth embedded networks
(Deem-CNN) which achieve state-of-the-art performance on
multiple datasets. The contribution of Deem-CNN is not only a
more powerful counting model but also are some insights into
the limitations of plain CNN architectures in perceiving and
modeling the scale variations to generate scale-aware features,
which we hope may be useful for other tasks requiring aware-
ness to the scene geometrics. Finally, we expect the strategy
of depth embedding can be beneficial to vehicle counting and
other general object counting tasks.
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