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a b s t r a c t 

In underwater scenes, wavelength-dependent light absorption and scattering degrade the visibility of im- 

ages and videos. The degraded underwater images and videos affect the accuracy of pattern recognition, 

visual understanding, and key feature extraction in underwater scenes. In this paper, we propose an un- 

derwater image enhancement convolutional neural network (CNN) model based on underwater scene 

prior, called UWCNN. Instead of estimating the parameters of underwater imaging model, the proposed 

UWCNN model directly reconstructs the clear latent underwater image, which benefits from the under- 

water scene prior which can be used to synthesize underwater image training data. Besides, based on 

the light-weight network structure and effective training data, our UWCNN model can be easily extended 

to underwater videos for frame-by-frame enhancement. Specifically, combining an underwater imaging 

physical model with optical properties of underwater scenes, we first synthesize underwater image degra- 

dation datasets which cover a diverse set of water types and degradation levels. Then, a light-weight 

CNN model is designed for enhancing each underwater scene type, which is trained by the correspond- 

ing training data. At last, this UWCNN model is directly extended to underwater video enhancement. 

Experiments on real-world and synthetic underwater images and videos demonstrate that our method 

generalizes well to different underwater scenes. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Acquisition of clear underwater images and videos is of great

mportance for underwater scene perception and understanding

here autonomous and remotely operated underwater vehicles are

idely used to explore, recognition, and interact with marine en-

ironments. However, raw underwater images and videos seldom

eet the expectations concerning the visual quality and further

hallenge the performance of pattern recognition, object detection,

ey feature extraction, to name a few. This is because most deep

etworks are trained by high-quality images or the algorithms as-

ume the inputs are clear images. Naturally, underwater images are

egraded by the adverse effects of light absorption and scattering

ue to particles in the water, including micro phytoplankton, col-

red dissolved organic matter, and non-algal particles. Additionally,

hen the light propagates in the underwater scenario, it has the

haracteristic of selective attenuation with respect to the wave-
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ength of light [1] . Fig. 1 presents a diagram of light attenuation

ith respect to the wavelength of light. 

These absorption and scattering problems hinder the perfor-

ance of underwater scene understanding and recognition, such

s aquatic robot inspection and marine environmental surveillance.

oreover, traditional image enhancement methods [2,3] show lim-

tations when they are used to process underwater image and

ideo. Additionally, lacking sufficient and effective training data,

he performance of deep learning-based underwater image and

ideo enhancement methods does not match the success of re-

ent deep learning-based solutions such as classification [4] , analy-

is [5] segmentation [6] , super-resolution [7] , recognition [8] , etc. It

s necessary to develop underwater image synthesis and enhance-

ent methods for superior underwater visual quality and improve

he performance of high-level vision tasks. 

In recent years, more and more deep learning-based methods

10,11] have been proposed. The deep models have some advan- 

ages than the traditional non-learning-based methods: (i) deep

earning provides a strong modeling capability of the distortions

nd facilitates discriminative prior learning, and (ii) the inference

f deep models can be made efficiently by exploiting the parallel

https://doi.org/10.1016/j.patcog.2019.107038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107038&domain=pdf
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Fig. 1. Wavelength-dependent light attenuation coefficients β of Jerlov water types 

from [9] . Solid lines mark open ocean water types while dashed lines mark coastal 

water types. The Jerlov water types are I, IA, IB, II and III for open ocean waters, 

and 1 through 9 for coastal waters. Type-I is the clearest and Type-III is the most 

turbid open ocean water. Likewise, for coastal waters, Type-1 is clearest and Type-9 

is the most turbid. 
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processing platforms. Inspired by the recent success of deep learn-

ing in pattern recognition and visual understanding [12] , we pro-

pose a new underwater image synthesis algorithm using underwa-

ter scene prior, and then design to offer a robust and data-driven

solution to underwater image and video enhancement. The pro-

posed method is shown to have superior robustness, accuracy, and

flexibility for diverse water types. 

Contributions: We design an end-to-end solution for the com-

plex and nonlinear underwater image formation model using a

novel CNN architecture trained on the underwater scene prior

based underwater images. Our model robustly restores the de-

graded underwater images and accurately reconstructs underlying

colors and appearance. Besides, the proposed model can be easily

extended to underwater video thanks to the light-weight network

structure. To summarize, 

• We propose a new underwater image synthesis algorithm

based on underwater scene prior that is capable of simu-

lating a diverse set of degraded underwater images. To our

best knowledge, it is the first underwater image synthesis

algorithm that can simulate different underwater types and

degradation levels. Our image synthesis can be used as a

guide for network training and full-reference image quality

assessments. 
• We propose a novel CNN model to reconstruct the clear la-

tent underwater image while preserving the original struc-

ture and texture by jointly optimizing multi-term loss. Ben-

efiting from the light-weight network design and effective

training data, the proposed model can be extended to un-

derwater video for frame-by-frame enhancement. 
• Our method generalizes well both to synthetic and real-

world underwater images and videos with diverse color

and visibility characteristics. In addition, a lightweight net-

work structure also can achieve decent results when effec-

tive prior information is embedded into network, which en-

courages the related designs for pattern recognition, visual

understanding, etc. 

2. Related work 

From different views, the existing underwater image enhance-

ment and restoration methods can be classified into different cate-

gories. In this paper, we classified these methods into one of three

broad categories: underwater image enhancement method, under-

water image restoration method, and supplementary-information

specific method. Since there is little work for underwater video en-

hancement and restoration, we mainly introduce image processing

methods in this section. 
.1. Underwater image enhancement method 

In this line of research, Li et al. [13] treated the problem of

nderwater image enhancement as an image dehazing step and a

olor correction step. Ancuti et al. [14] fused a contrast improved

nderwater image and a color corrected underwater image ob-

ained from an input. In the process of mulit-scale fusion, four

eights are used to determine which pixel is advantaged to appear

n the final image. A hybrid method based on color correction and

nderwater image dehazing was proposed in [15] , which corrects

he color casts of the underwater image using image color prior

nd improves the visibility by a modified image dehazing algo-

ithm. Li et al. [16] proposed an underwater image color correction

ethod based on weakly supervised color transfer, which learns a

ross-domain mapping function between underwater images and

ir images. Inspired by the generative adversarial networks (GANs),

uo et al. [17] proposed a multiscale dense GAN for underwa-

er image enhancement, which boots the performance of under-

ater image enhancement by introducing multiscale, dense con-

atenation, and residual learning strategies. Ancuti et al. [18] mod-

fied their previous work [14] to reduce the effects of the over-

nhancement and over-exposure. More recently, Li et al. [19] pro-

osed a deep baseline model trained on the paired underwater im-

ges and the corresponding reference images. These reference im-

ges are subjectively selected from the enhanced results by differ-

nt methods. 

.2. Underwater image restoration method 

Underwater image restoration methods usually consider the

hallenge at hand as an inverse problem, and then construct phys-

cal models of the degradation, at last estimate the model param-

ters. Chiang and Chen [20] combined an image dehazing algo-

ithm with a wavelength dependent compensation algorithm to re-

tore underwater image, which can remove the bluish tone of un-

erwater images and the effects of artificial light. A Red Channel

ethod [21] recovered the lost contrast of the underwater image

y restoring the colors associated with short wavelengths. Drews

t al. [22] proposed an underwater dark-channel prior called UDCP

hich modifies the previous dark channel prior [23] . With the pro-

osed UDCP, the medium transmission can be estimated in some

ases; however, the UDCP does not always hold when there are

hite objects or artificial light in the underwater scenes. Li et al.

24,25] combined an underwater image dehazing algorithm with

 contrast enhancement algorithm. Peng et al. [26] restored un-

erwater images based on image blurriness and light absorption,

hich is a prior-based method. Li et al. [27] proposed a CNN based

nderwater image color correction model based on synthetic un-

erwater images generated in a weakly supervised learning man-

er. 

.3. Supplementary-information specific method 

Supplementary-information specific methods usually take ad-

antage of the additional information obtained from polarization

lters, stereo images, rough depth of the scene, etc [28] . 

. Underwater image formulation model 

We follow the underwater image formulation model proposed

n [20] . This underwater image degradation model has been widely

sed in traditional underwater image restoration methods and can

e expressed as: 

 λ(x ) = I λ(x ) · T λ(x ) + B λ ·
(
1 − T λ(x ) 

)
, (1)
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Fig. 2. Our UWCNN model where ‘Conv’ represents the convolutional layer, ‘Concat’ represents the stacked convolutional layers, and ‘ReLU’ represents the rectified linear 

unit. 
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here U λ( x ) is the captured underwater image; I λ( x ) is the clear

atent image, also called as the scene radiance, that we aim to re-

over; B λ is the homogeneous global background light; λ is the

avelength of the light for the red, green and blue channels; and x

s a point in the underwater scene (for clarity, images are denoted

n bold capital letters). The medium energy ratio T λ( x ) represents

he percentage of the scene radiance reaching at the camera after

eflecting from the point x in the underwater scene, which thereby

auses color cast and contrast degradation. In other words, T λ( x ) is

 function of the wavelength of light λ and the distance d ( x ) from

cene point x to the camera: 

 λ(x ) = 10 

−βλd(x ) = 

E λ
(
x, d(x ) 

)
E λ(x, 0) 

= N λ

(
d(x ) 

)
, (2)

here βλ is the wavelength-depended medium attenuation coef-

cient as shown in Fig. 1 . Assuming the energy of a light beam

manated from x before and after it passes through a transmission

edium at a distance of d ( x ) is E λ( x , 0) and E λ( x, d ( x )), respectively.

he normalized residual energy ratio N λ corresponds to the ratio of

esidual energy to initial energy for every unit of distance propa-

ated. Its value varies in water depending on the light wavelength.

or example, red light possesses a longer wavelength; thus, it at-

enuates faster and gets absorbed more than other wavelengths in

pen water, which results in a bluish tone of most underwater im-

ges. More details can be found in Ref. [20] . 

The underwater image degradation model [20] is different from

he image degradation models which have been widely used in

mage dehazing [29] , image deblurring [30] , and image super-

esolution [31] . Specifically, the underwater image degradation

odel is similar to the image dehazing model; however, it is more

omplex due to the characteristics of wavelength-dependent light

bsorption and scattering. Compared with the image deblurring

odel which simulates the blurred image by doing convolutional

peration between clear image and blur kernels and image super-

esolution model which simulates the low-resolution image by

own-sampling the original image, the underwater image degra-

ation model mainly focuses on the degradation of color and visi-

ility. 

. Proposed UWCNN model 

Here, we discuss the details of the proposed UWCNN model and

hen present a post-processing stage to further improve our en-

anced results. 

.1. Network architecture 

Inspired by the recent success of deep network architectures in

attern recognition [12,32] , we proposed a lightweight network for
nderwater image and video enhancement. Fig. 2 shows the archi-

ecture of our UWCNN model, which is a densely connected FCNN.

s follows, we present its basic building blocks and hyperparame-

ers. The input to our network is an RGB image U . 

.1.1. Residuals 

Unlike the traditional end-to-end approaches such as [3] that

irectly predict the clean latent image I by learning the mapping

unction I = f −1 (U ) , we allow our network to learn the difference

etween the synthetic underwater image and its clean counterpart.

ote that such a synthetic image generation task is a nontrivial

bjective for underwater image enhancement and restoration

eld, and it will be discussed in detail in Section 5 . As underwa-

er image and its feature maps in the subsequent layers are pro-

essed through many convolutional filters before reaching the fi-

al loss layer. Although our network is not intentionally very deep,

here is still a possibility of vanishing or exploding gradients. To

void such issues during the training iterations, we enforce learn-

ng the residual by adding the input of the network, i.e., U to the

utput of the network i.e., �( U , θ ) (see below) before loss function

s: 

 = U + �(U , θ ) , (3)

here ‘ + ’ is the element-wise addition operation. 

.1.2. Enhancement units 

The UWCNN has a modular architecture composed of enhance-

ent units (E-Units) having same structure and components. Sup-

ose r and c are the notation for ReLU and convolution, then the

rst operation of convolution and ReLU pair, in the l -th block, is

iven by 

 l, 0 = r 
(
c(U ) ; θl, 0 

)
, (4)

here z l ,0 is the output of the first convolution-ReLU pairs of l -th

esidual enhancement unit and θ l ,0 is a set of weights and biases

ssociated with it. By composing the series of convolution-ReLU

airs, we obtain 

 l,n = r 
(
c( . . . r(c (U ; θl, 0 )) . . . ) ; θl,n 

)
. (5)

he output of the l -th block is obtained by concatenating along

hird dimension of each individual convolution-ReLU pairs output

 and input image U as: 

 l = h (z l, 0 ; . . . ; z l,n ; U ) . (6)

he output of the (l + 1) -th enhancement unit is obtained by: 

 l+1 = h (z l+1 , 0 ; . . . ; z l+1 ,n ; U ; b l ) . (7)

inally, we chain all enhancement unit and the output of this chain

s convolved with a final convolution layer with parameters θl+ m,n 

o predict the component as �(U , θ ) = c(b l+ m 

, θl+ m,n ) . 
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Fig. 3. Sample results for qualitative assessment. (a) Raw real-world underwater images. (b) Results of UWCNN. (c) Results of UWCNN + . As visible, our methods (i.e., UWCNN 

and UWCNN + ) remove the greenish tone while reconstructing accurate and vivid latent images. 

Fig. 4. Ten types of synthesized underwater images from the NYU-v2 RGB-D dataset [37] using a sample image and its depth map. 
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4.1.3. Network layers 

Our network consists of three different layers indicated by dif-

ferent color as shown in Fig. 2 . The first type is the convolutional

layer represented by ‘Conv’, which consists of 16 convolutional ker-

nels of size 3 × 3 × 3 to produce 16 output feature maps for the

first layer, while subsequent convolutional layers produce 16 maps

each using 3 × 3 × 16 filters. The second type is the activation layer

‘ReLU’ for introducing the nonlinearity. The third type is the ‘Con-

cat’ layer, which is used to concatenate all the convolutional layers

after each block. The last convolutional layer estimates the final

output of the network. 

4.1.4. Dense concatenation 

We stack all convolutional layers at the end of each block. This

technique is different from DenseNet provided in [33] , where each

convolutional layer is connected with other convolutional layers

in the same block. Furthermore, we do not use any fully con-

nected layers or batch normalization steps, which makes our net-

work memory efficient and fast. In addition, we feed the input im-

age to every block. The stacking of the convolutional layers with

input data reduces the need for a very deep network. In summary,

our network is unique since (i) the input image is applied to all

enhancement unit, and (ii) it contains only the fully-convolutional

layers without any batch-normalization steps. 
.1.5. Network depth 

Our network is of modular structure and consists of three en-

ancement units where each unit is again composed of three con-

olutional layers. We have a single convolutional layer at the end

f the network; hence, making the full depth of our network

nly ten layers. This makes our model computationally inexpen-

ive and highly practical in training and inference. Besides, such

 light-weight network structure can be easily extended to under-

ater videos for frame-by-frame enhancement, which is desired in

ractical applications. Such a lightweight network structure mainly

enefits from the embedded prior which boosts the training and

nference of networks, which encourages the designs of similar

etworks for pattern recognition, object detection, and visual un-

erstanding. 

.1.6. Reducing boundary artifacts 

In low-level vision tasks, the output size of the system is

eeded to be equal to the input. This requirement sometimes re-

ults in boundary artifacts. To avoid this phenomenon, we enforce

wo strategies: (i) we do not use any pooling layers in our net-

ork, and (ii) we add zeros before each convolutional layer. As a

onsequence, the final output image of UWCNN network is almost

rtifacts-free around the boundaries and is of the same size as the

nput image. 
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Fig. 5. Qualitative comparisons for samples from test set. (a) Raw underwater images. (b) Results of RED [21] . (c) Results of UDCP [22] . (d) Results of ODM [25] . (e) Results 

of UIBLA [26] . (f) Our results. (g) Ground truth. The types of underwater images in the first column from top to bottom are Type-1, Type-3, Type-5, Type-7, Type-9, Type-I, 

Type-II, and Type-III. Our method removes the light absorption effects and recovers the original colors without any artifacts. 
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.2. Network loss 

To reconstruct an image, we use the � 2 loss as in our observa-

ions it can well preserve the sharpness of edges and details, be-

ause blurring edges results in large errors. We add the estimated

esidual to the input underwater image, then compute the � 2 loss

s: 

 2 = 

1 

M 

M ∑ 

i =1 

∣∣∣
[ 

U (x i ) + �
(

U (x i ) , θ (x i ) 
)] 

− I ∗(x i ) 

∣∣∣
2 

, (8) 

here U (x i ) + �(U (x i ) , θ (x i )) = I (x i ) is the estimated latent image

ixel value at x i , i = 1 , ., M as described in Eq. (3) and I ∗
i 

is the

round truth. 

In addition, we include the SSIM loss in our objective function

o impose the structure and texture similarity on the latent image.

e use gray images to compute SSIM scores. For each pixel x , the

SIM value is computed within a 13 × 13 image patch around the

ixel as: 

SIM(x ) = 

2 μI∗(x ) μI (x ) + c 1 

μ2 ( x ) + μ2 (x ) + c 1 
· 2 σI∗I ( x ) + c 2 

σ 2 ( x ) + σ 2 (x ) + c 2 
, (9) 
I∗ I I∗ I 
here μI ( x ) and σ I ( x ) correspond to the mean and standard devi-

tion of the image patch from the latent image I , similarly, μI ∗ ( x )

nd σ I ∗ ( x ) are for the patch from the ground truth image I ∗. The

ross-covariance σ I ∗I ( x ) is computed between the patches from I

nd I ∗ for the pixel x . We set constants c 1 = 0 . 02 and c 2 = 0 . 03

ased on the default in SSIM loss. Our model is insensitive to these

efaults. Still, we fix them for a fair comparison. The SSIM loss is

xpressed as: 

 SSIM 

= 1 − 1 

M 

M ∑ 

i =1 

SSIM(x i ) . (10)

he final loss function L is the aggregation of MSE and SSIM losses:

 = � 2 + L SSIM 

. (11)

.3. Post-processing 

UWCNN generates enhanced images without color casts and ex-

eptional visibility. However, due to the limitation of our training

ata pairs (an indoors image as the latent image and a synthe-

ized image from the indoors image using the aforementioned un-

erwater image formation model as the corresponding underwater
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Fig. 6. Qualitative comparisons on real-world underwater images. (a) Real-world underwater images. (b) Results of RED [21] . (c) Results of UDCP [22] . (d) Results of ODM 

[25] . (e) Results of UIBLA [26] . (f) Results of our UWCNN. (g) Results of our UWCNN + . Our method (i.e., UWCNN and UWCNN + ) produces the results without any visual 

artifacts, color deviations, and over-saturations. It also unveils spatial motifs and details. 
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image), the enhanced images have lower dynamic range. In prac-

tice, one would expect the enhanced results to have vivid colors

and higher contrast. 

To solve this issue, we employ a simple yet effective adjust-

ment as a post-processing stage. We denote UWCNN with post-

processing as UWCNN + . The image is first transformed to HSI color

space. Then, the ranges of its saturation and intensity components

in the HSI color space are normalized to [0,1] as: 

y out = 

y in − y min 

y max − y 
, (12)
min 
here y max and y min are the maximum and minimum saturation

r intensity values in the UWCNN image. After this simple satura-

ion and intensity normalization, we transform the modified result

ack to RGB color space. 

Sample results are shown in Fig. 3 . As visible, UWCNN effec-

ively removes the dominant greenish color distortion in these

eal-world underwater images and significantly improves the con-

rast while preserving the natural look and authenticity of the im-

ges. Compared to UWCNN, the saturation and intensity normal-

zation in UWCNN + further improves the contrast and brightness,

nveiling more details. 
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Table 1 

N λ values for synthesizing ten underwater image types. 

Types I IA IB II III 

Blue 0.982 0.975 0.968 0.940 0.89 

Green 0.961 0.955 0.950 0.925 0.885 

Red 0.805 0.804 0.830 0.800 0.750 

Types 1 3 5 7 9 

Blue 0.875 0.800 0.670 0.500 0.290 

Green 0.885 0.820 0.730 0.610 0.460 

Red 0.750 0.710 0.670 0.620 0.550 
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Table 2 

Quantitative evaluations on test set. As seen, our method achieves the best scores 

in all metrics on all underwater image types. 

Types RAW RED UDCP ODM UIBLA Ours 

1 2367.3 3489.7 2062.3 2508.6 2812.6 587.70 

3 2676.5 4953.2 3380.6 3130.1 3490.1 747.50 

5 4851.2 8385.8 6708.9 3488.9 4563.7 1295.1 

MSE 7 7381.1 9809.8 8591.6 5337.1 6737.9 2974.1 

9 9060.6 5952.3 9500.1 10634.0 8433.1 4121.5 

I 1449.0 936.9 1020.7 1272.0 1492.2 209.70 

II 941.9 851.3 1466.0 1401.9 1141.4 251.60 

III 1851.0 2240.0 2337.6 1701.1 1697.8 456.40 

1 15.535 15.596 15.757 16.085 15.079 21.790 

3 14.688 12.789 14.474 14.282 13.442 20.251 

5 12.142 11.123 10.862 14.123 12.611 17.517 

PSNR 7 10.171 9.991 9.467 12.266 10.753 14.219 

9 9.502 11.620 9.317 9.302 10.090 13.232 

I 17.356 19.545 18.816 18.095 17.488 25.927 

II 20.595 20.791 17.204 17.610 18.064 24.817 

III 16.556 16.690 14.924 16.710 17.100 22.633 

1 0.7065 0.7406 0.7629 0.7240 0.6957 0.8558 

3 0.5788 0.6639 0.6614 0.6765 0.5765 0.7951 

5 0.4219 0.5934 0.4269 0.6441 0.4748 0.7266 

SSIM 7 0.2797 0.5089 0.2628 0.5632 0.3052 0.6070 

9 0.1794 0.3192 0.1624 0.4178 0.2202 0.4920 

I 0.8621 0.8816 0.8264 0.8172 0.7449 0.9376 

II 0.8716 0.8837 0.8387 0.8251 0.8017 0.9236 

III 0.7526 0.7911 0.7587 0.7546 0.7655 0.8795 
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. Proposed underwater image synthesis algorithm 

Unlike the high-level visual tasks [34–36] where large training

atasets are often available, lacking underwater image dataset with

orresponding ground truth constrains the development of deep

earning-based underwater image enhancement and quality eval-

ation. To fill the gap, we propose an underwater image synthesis

lgorithm based on an underwater imaging physical model and the

ptical properties of underwater scenes. To the best of our knowl-

dge, this is the first physical model based underwater image syn-

hesis algorithm that can simulate a diverse set of water types and

egradation levels, which is a significant contribution for the de-

elopment of underwater image and video enhancement. 

To synthesize underwater image degradation datasets, we use

he attenuation coefficients described in [9] for the different wa-

er types of oceanic and coastal classes (i.e., I, IA, IB, II, and III for

pen ocean waters, and 1, 3, 5, 7, and 9 for coastal waters). As

entioned before, Type-I is the clearest and Type-III is the most

urbid open ocean water. Similarly, for coastal waters, Type-1 is

he clearest and Type-9 is the most turbid. We apply Eqs. (1) and

2) to build ten types of underwater image datasets using the RGB-

 NYU-v2 indoor dataset [37] which consists of 1449 images. We

elect the first 10 0 0 images as the training set and the remaining

49 images as the test set. 

To synthesize an underwater image, we first generate a random

omogeneous global atmospheric light 0.8 < B λ < 1. Then, we mod-

fy the depth d ( x ) from 0.5 m to 15 m, which is followed by the se-

ection of the corresponding N λ values of the red, green, and blue

hannels for the water types presented in Table 1 . For each image,

e generate 5 underwater images based on random B λ and d ( x );

herefore, we obtain a training set of 50 0 0 and a test set of 2495

amples. For computational efficiency, we resize these images to

10 × 230. In total, we synthesize ten underwater image datasets

ccording to different water types. 

Fig. 4 shows these ten different types of underwater images for

 sample. It is evident that the underwater images of Type-I, Type-

A, and Type-IB are similar in their physical appearance and char-

cteristics. Thus, we select a total of eight models out of ten to

isplay the results of synthetic underwater images. 

. Experimental evaluations 

In this part, we perform qualitative and quantitative compar-

sons with the state-of-the-art underwater image enhancement

ethods on both synthetic and real-world underwater images. In

ddition, we also compare the performance of different methods

n underwater videos. These compared methods include UDCP

22] , RED [21] , ODM [25] , and UIBLA [26] . We run the source codes

rovided by the authors with the recommended parameter set-

ings to produce the best results for an objective evaluation. For

eal-world images where the light-attenuation coefficients are not

vailable, we apply each of the ten UWCNN models we learned

nd present the results that are visually more appealing. This pro-

ess can be improved by using a classification stage to choose the
est model, which leave it as future work. For synthetic data, we

resent the results without post-processing since the models are

erived from the synthetic data thus no intensity and saturation

ormalization are required. At last, we conduct an ablation study

o demonstrate the effect of each component in our network. 

.1. Network implementation and training 

We train our model using ADAM and set the learning rate to

.0 0 02, β1 to 0.9, β2 to 0.999. We fix the learning rate in the en-

ire training procedure. The batch size is set to 16. It takes around

hree hours to optimize a model over 20 epochs. We use Tensor-

low as the deep learning framework on an Inter(R) i7-6700k CPU,

2GB RAM, and an Nvidia GTX 1080 Ti GPU. 

.2. Evaluation on synthetic underwater image 

We first present the results of underwater image enhancement

n the synthetic underwater images from our test set. In Fig. 5 (a),

he synthetic underwater images accord with the measurement of

9] . The RED [21] is effective for the clear types, i.e., Type-1, Type-

, Type-5, and Type-I; however, for turbid types, i.e., Type-7, Type-

, Type-II, and Type-III, it leaves the haze on those images, more-

ver, it introduces color deviations. Similarly, UDCP [22] produces

istinctly darkish results while ODM [25] and UIBLA [26] introduce

rtificial color or color deviations. On the other hand, our method

ot only enhances the visibility of the images but also restores

n aesthetically pleasing texture and vibrant yet genuine colors. In

omparison to other methods, the visual quality of our results re-

embles the ground-truth. 

Furthermore, we quantify the accuracy of the recovered images

n the synthetic test set including 2495 samples for each type.

n Table 2 , the accuracy is measured by three different metrics:

ean square error (MSE), peak signal to noise ratio (PSNR), and

he structural similarity index metric (SSIM) [38] . In the case of

SE and PSNR metrics, the lower MSE (higher PSNR) denotes the

esult is closer to the ground truth in terms of image content. In

he case of the SSIM metric, the higher SSIM scores mean the re-

ult is more similar to the ground truth in terms of image structure
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Fig. 7. Comparison with the ODM [25] . (a) Real-world underwater image. (b) Result produced by ODM [25] (incorrect reddish tones). It blindly introduces wrong colors, in 

particular, in red gamut. (c) Result produced by our UWCNN + . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 8. Comparison with the UIBLA [26] . (a) Real-world underwater image. (b) Result produced by UIBLA [26] . It is a failure case since only greenish tones are enhanced. (c) 

Result produced by our UWCNN + . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Real-world underwater images with diverse tones and degradation levels. 
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and texture. Here, the presented results are the average scores. The

values in bold represent the best results. 

As visible, among all underwater image enhancement methods

we tested, our method comes out as the best performer across

all metrics and all degradation types, demonstrating its effective-

ness and robustness. Regarding the SSIM response, our method is

at least 10% better than the second-best performer. Similarly, our

PSNR is higher (less erroneous as indicated by the MSE scores)

than the compared methods. 

6.3. Evaluation on real-world underwater image 

In this part, we evaluate the proposed method on real-world

underwater images. Visual comparisons with competitive methods

are presented in Fig. 6 . The used real-world underwater images

have diverse tone, light, and contrast. 

A first glance at Fig. 6 may give the impression that the results

of ODM [25] and UIBLA [26] might be sharper; however, careful in-

spection reveals that the ODM [25] causes over-enhancement and

over-saturation (besides color casts) because the histogram distri-

bution prior used in the ODM [25] is not always valid. Similarly,

the images produced by the UIBLA [26] are not natural and con-

sist of over-enhancement, a shortcoming of this method as the

robustness of the background light and the medium transmis-

sion score estimated by the prior are suboptimum. Figs. 7 and 8

show the failure cases of the ODM [25] and UIBLE [26] . The RED

[21] and UDCP [22] have little effect on the inputs. In contrast,

our UWCNN + shows promising results on real-world images, with-

out introducing any artificial colors, color casts, over- or under-

enhanced areas. 

Observing the failure cases in Figs. 7 and 8 , one can find that

the ODM [25] tends to introduce extra colors (e.g., the reddish

color around the coral in Fig. 7 ) while our method improves the

contrast, similar performance to the ODM [25] , but maintains a

genuine color distribution of the original underwater image. For

the failure case of the UIBLA [26] in Fig. 8 , it aggravates the green-

ish color and produces visually unpleasing results. In contrast, our

method removes color casts and improves contrast and brightness,

which generates better visibility and pleasant perception. 
We note that the assessments in [39,40] are slanted toward

ver-exposure or over-enhancement, where the histogram equal-

zation method is regarded to yield better scores. For a more ob-

ective assessment, we conduct a user study to provide realistic

eedback and quantify subjective visual quality. We collect 20 real-

orld underwater images from the Internet and related papers. We

how samples from this dataset in Fig. 9 . Some corresponding re-

ults have been presented in Fig. 6 . 

For the user study, we randomize the order of the results and

hen display them on a screen to human subjects. There are 20

articipants with image processing expertise. Each subject ranks

he results based on the perceived visual quality from 1 to 5

here 1 is the worst and 5 is the best. One expects that the
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Table 3 

User study on real-world underwater image dataset. The best result is in bold. 

RED UDCP ODM UIBLA UWCNN + 

Scores 2.95 2.55 3.25 3.20 3.35 

r  

t  

o

c  

t  

e  

p  

v

6

 

e  

t  

i

Table 4 

Average running time of different methods. The best result is in bold. 

Time RED UDCP ODM UIBLA UWCNN-C/-G 

3.250 3.319 5.829 47.254 2.250/ 0.225 
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t

esults with high contrast, good visibility, natural color, and au-

hentic texture should receive higher ranks while the results with

ver-enhancement/exposure, under-enhancement/exposure, color 

asts, and artifacts should have lower ranks. The average subjec-

ive scores are given in Table 3 . Our UWCNN + receives the high-

st rankings, which indicates that our method can produce better

erformance on real-world underwater images from a subjective

isual perspective. 

.4. Evaluation on underwater video 

To validate the capability of our model for underwater video

nhancement, we conduct experiments on underwater videos. Due

o the limited space, we only present parts of experimental results

n Fig. 10 . 
ig. 10. Qualitative comparisons on the underwater video. (a) Raw underwater video (fro

his video). (b) Results of RED [21] . (c) Results of UDCP [22] . (d) Results of ODM [25] . (e) 
As shown in Fig. 10 , our method can remove the color casts

nd improve the contrast of the underwater video. Moreover, our

esults between different frames are consistent and without flicker-

ng artifacts. In contrast, the compared methods produce inconsis-

ent enhancement between different frames, which decreases their

isual quality. For example, for frame 54, the ODM [25] produces

isually pleasant result; however, this method introduces reddish

olor casts in frames 1–4. The other methods also have similar in-

onsistent enhancement performance. Besides, we report the run-

ing time (second) of different methods to demonstrate our model

an be used for frame-by-frame video enhancement in Table 4 . The

verage running time for an image with size 640 × 480 is com-

uted on the above-mentioned machine. UWCNN-C/-G indicates

hat our model runs only using CPU or GPU, respectively. 

In Table 4 , our UWCNN-G is faster than the compared methods

ith a large margin, which might benefit from GPU acceleration.
m top to bottom are frame 1, frame 2, frame 3, frame 4, frame 29, and frame 54 in 

Results of UIBLA [26] . (f) Results of our UWCNN. 
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Fig. 11. An example of the importance of SSIM loss. (a) An underwater image with Type-1 degradation. (b) Result produced by UWCNN-w/o SSIM, which is a failure case 

since the background is not similar to the GT. (c) Result produced by our UWCNN. (d) Ground truth. 
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However, our UWCNN-C ranks second fastest, which indicates our

light-weight network structure also contributes to the processing

speed of our method. 

6.5. Ablation study 

To demonstrate the effect of each component in our network,

we carry out an ablation study involving the following experi-

ments: (i) UWCNN without residual learning (UWCNN-w/o RL), (ii)

UWCNN without dense concatenation (UWCNN-w/o DC), and (iii)

UWCNN without SSIM loss (UWCNN-w/o SSIM). The quantitative

evaluations are only performed on Type-1 and Type-III synthetic

test set due to the limited space. The average scores in terms of

MSE, PSNR, and SSIM are reported in Table 5 . 

Table 5 

Quantitative results for the Type-1 and the Type-III test set. The best result for each

evaluation is in bold, whereas the second best one is underlined. 

Types -w/o RL -w/o DC -w/o SSIM UWCNN 

1 756.96 648.18 398.77 587.70 

MSE III 542.68 789.76 402.92 456.40 

1 20.290 20.805 22.902 21.790 

PSNR III 21.556 20.289 23.026 22.633 

1 0.8450 0.8449 0.8214 0.8558 

SSIM III 0.8579 0.8359 0.8151 0.8795 

From Table 5 , one can see that replacing conventional learning

strategy (i.e., UWCNN-w/o RL) with residual learning (i.e., UWCNN)

could boost the performance. Comparing the UWCNN with the

UWCNN-w/o DC, we observe that the dense concatenation also

could improve the performance of underwater image enhance-

ment. The use of SSIM loss (i.e., UWCNN) improves the structure

and texture similarity at the cost of the decreased MSE and PSNR

scores (i.e., UWCNN-w/o SSIM). However, such a sacrifice is nec-

essary for better subjective perception. Such an example is pre-

sented in Fig. 11 , which demonstrates the importance of SSIM loss.

In Fig. 11 , after adding SSIM loss, the result of UWCNN has a more

smooth background than that of UWCNN-w/o SSIM. 

7. Conclusion 

We have presented an underwater image and video enhance-

ment network inspired by underwater scene prior. Experiments on

synthetic and real-world underwater images and videos demon-

strate the robust and effective performance of our method. To our

advantage, our method only contains ten convolutional layers and

16 feature maps at each convolutional layer, which provides fast

and efficient training and testing on GPU platforms. Experimental

results also demonstrate that the residual learning, dense concate-

nation, and SSIM loss used in our network boost the performance

quantitatively and qualitatively. 

In the future, we will investigate using only one single model to

predict the correct output from one single blind model of UWCNN
o attain further accelerating in the process of UWCNN model

nhancement and also take the low contrast induced by indoor

raining data into consideration in a complete image degradation

odel. Borrowing the effective network structures and losses from

he deep models designed for pattern recognition and computer

ision, we will try to further improve the performance of our

ethod. 
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