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Abstract—The emergence of big data and the multidimensional
nature of wireless communication signals present significant op-
portunities for exploiting the versatility of tensor decompositions
in associated data analysis and signal processing. The uniqueness
of tensor decompositions, unlike matrix-based methods, can be
guaranteed under very mild and natural conditions. Harnessing
the power of multilinear algebra through tensor analysis in
wireless signal processing, channel modeling, and parametric
channel estimation provides greater flexibility in the choice of
constraints on data properties and permits extraction of more
general latent data components than matrix-based methods.
Tensor analysis has also found applications in Multiple-Input
Multiple-Output (MIMO) radar because of its ability to exploit
the inherent higher-dimensional signal structures therein. In
this paper, we provide a broad overview of tensor analysis in
wireless communications and MIMO radar. More specifically,
we cover topics including basic tensor operations, common tensor
decompositions via canonical polyadic and Tucker factorization
models, wireless communications applications ranging from blind
symbol recovery to channel parameter estimation, and transmit
beamspace design and target parameter estimation in MIMO
radar.

Index Terms—Tensor decomposition, tensor factorization,
rank, parallel factor analysis (PARAFAC), Tucker model, CDMA,
MIMO, symbol recovery, millimeter wave, transmit beamspace,
radar.

I. INTRODUCTION

A tensor is a multidimensional array. A first-order tensor
is a vector, a second-order tensor is a matrix, and tensors of
order three or higher are generalized matrices called higher-
order tensors. An N th-order tensor is an element of the
tensor product of N vector spaces [1]–[5]. Tensor algebra is
generalized from matrix algebra. Thus, the two have many
similarities, but at the same time, they also have different
properties. Higher-order tensors and their decompositions have
recently become pervasive in signal processing, data analytics,
and machine learning.

The roots of multiway data analysis can be traced back
to studies of homogeneous polynomials by Hitchcock in the
late 1920s [6], [7], followed by other contributions includ-
ing those by Tucker [8]–[10], Carroll and Chang [11], and
Harshman [12]. The Tucker decomposition for tensors was
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introduced in psychometrics [9], [10], while the canonical
polyadic decomposition (CPD) was independently discovered
and put in an application context under the names of canonical
decomposition (CANDECOMP) in psychometrics [11] and
parallel factor model (PARAFAC) in linguistics [12]. Besides
the developments in psychometrics, tensor decompositions
have been examined and applied in other fields, such as
chemometrics, the food industry, social sciences [13], [14],
and signal processing [15]–[17].

With regard to signal processing in wireless communica-
tions, the received signal is multidimensional in nature and
may exhibit a multilinear algebraic structure [18]. However,
owing to the broad system variety with differing yet complex
transmission structures, realistic channel models, and efficient
receiver signal processing, wireless communications offer new
challenges for applying tensor decompositions. A high-speed
wireless transmission is impacted by various factors in the
physical layer, such as interference from different sources,
attenuation of signal power with distance, and other signal
fading effects of the wireless communication channel. At
the receiver, signal processing is generally used to combat
multipath fading effects, inter-symbol interference (ISI), and
multiuser (co-channel) interference by means of multiple re-
ceive antennas. Wireless communication systems employing
multiple antennas at both ends of the link, commonly known
as Multiple-Input Multiple-Output (MIMO) systems, are being
considered as one of the key technologies to be deployed
in current and upcoming wireless communications standards
[19]. Generalized tensor decompositions are typically required
to cover the disparate communication system types. Besides,
tensor decompositions can also be used to address multi-
antenna array processing problems, such as blind spatial
signature estimation [20]. The tensor approach can ease re-
strictive assumptions which are required by many conventional
approaches.

In [21]–[23], the authors examined the integration
of multiple-antenna and Code-Division Multiple-Access
(CDMA) technologies. As described in [24]–[26], tensor
modeling based MIMO systems have been demonstrated to
potentially provide high spectral efficiencies by capitalizing
on spatial and code multiplexing. Furthermore, for a third-
order received signal tensor, each signal sample is an element
of a three-dimensional (3-D) tensor and is represented by three
indices, each associated with a specific type of systematic
variation of the received signal. In such 3-D space, each
dimension of the received signal tensor can be interpreted as
a particular form of signal “diversity”. In most cases, two
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of the three dimensions account for space and time. The
third dimension, however, depends on the specific wireless
communication system considered. For instance, the third
dimension can correspond to frequency in MIMO Orthogo-
nal Frequency Division Multiplexing (MIMO-OFDM) system
[27]. By means of Space-Time-Frequency (STF) coding [28]–
[31], the MIMO-OFDM communication systems are able
to achieve high data rates and combat fading effects [32]–
[37]. In [38]–[44], the authors investigated cooperative relay-
assisted MIMO communications, which have emerged as a
popular means for enhanced wireless system performance,
improved quality of service, and cost and structure reduction.
Tensor-based approaches have gained considerable attention in
cooperative MIMO communication systems.

MIMO radar technology has garnered substantial research
interest over the last decade and has found applications in
over-the-horizon radar, maritime radar, automotive radar, and
dual-function radar-communications, to name a few [45]–[56].
A MIMO radar with multiple colocated transmit and receive
antennas can estimate target parameters of interest through si-
multaneous transmission of several orthogonal waveforms and
coherent processing of the radar returns. Although the antennas
constituting the transmit array or the receive array are closely
spaced, the arrays themselves may not be colocated, as is the
case in bistatic MIMO radar. The configuration with colocated
transmit and receive arrays, on the other hand, is called a
monostatic MIMO radar. Proper exploitation of waveform
diversity and degrees-of-freedom offered by the multi-antenna
transmit/receive configurations for interference suppression
and resolution enhancement can lead to improvements in target
detection and parameter estimation performance over a con-
ventional radar. Similar to wireless communications, MIMO
radar signal processing can benefit from tensor analysis in
successfully achieving reliable and effective target parameter
estimation [57]–[61].

The main purpose of this paper is to provide a compre-
hensive overview of tensor decompositions in the application
areas of wireless communications and MIMO radar. Towards
this objective, in Section II, we review some basic tensor
operations and common tensor decompositions, including
Tucker and CPD. The uniqueness of the decompositions is
also briefly discussed. Section III provides a detailed survey
of tensor analysis in wireless communications, ranging from
blind symbol recovery to time-varying channel modeling and
parameter estimation for different systems, including mul-
tiuser CDMA, cooperative/relay systems, and millimeter wave
(mmWave) communication systems. In Section IV, we present
an overview of tensor-based methods in MIMO radar, focusing
on target localization and transmit beamspace (TB) design.
Section V provides conclusions. It is noted that the topics and
related research that we have showcased in this paper are by
no means exhaustive. Rather, they inform the reader about
the type of opportunities present in the considered application
areas for employing tensor algebra and decompositions.

Notation: Scalars, column vectors, matrices, and tensors are
denoted by lowercase, boldface lowercase, boldface uppercase,
and calligraphic uppercase letters, such as a, a, A and A,
respectively. The vector ai (resp. aj) represents the ith row

(resp. jth column) of matrix A. The operations AT , A∗,
AH , A−1, and rA denote the transpose, the conjugate, the
conjugate (Hermitian) transpose, the Moore-Penrose pseudo-
inverse, and the rank of A, respectively. The operator Di(·)
forms a diagonal matrix from the elements of the ith row of
its matrix argument. The symbols ◦,⊗,�, and � represent
outer product, Kronecker product, Hadamard (element-wise)
product, and Khatri-Rao product, respectively. The remaining
notation should be clear from the context.

II. BASIC TENSOR OPERATIONS AND DECOMPOSITIONS

In this section, we review some useful matrix products, basic
tensor operations, and common tensor decompositions [62]–
[65]. These establish the preliminaries for the application-
specific descriptions that follow in subsequent sections.

A. Basic Definitions and Operations

Definition 1. Kronecker product of two matrices: The
Kronecker product of A ∈ CI×J and B ∈ CM×N is defined
as

A⊗ B =


a1,1B a1,2B · · · a1,JB
a2,1B a2,2B · · · a2,JB

...
...

. . .
...

aI,1B aI,2B · · · aI,JB

 ∈ CIM×JN . (1)

Considering additional matrices C ∈ CJ×P , D ∈ CQ×P ,
and E ∈ CQ×M , we have the following properties:

Property 1.

vec
(
ACDT

)
= (D⊗ A) vec (C) ∈ CIQ. (2)

where vec(·) denotes columnwise vectorization of its matrix
argument.

Property 2.

(A⊗ E) (C⊗ B) = (AC)⊗ (EB) ∈ CIQ×PN . (3)

Definition 2. Khatri-Rao product of two matrices: The
Khatri-Rao product of A ∈ CM×J and B ∈ CN×J is defined
as the column-wise Kronecker product,

A � B =

[a1 ⊗ b1 a2 ⊗ b2 · · · aJ ⊗ bJ ] ∈ CMN×J . (4)

The Khatri-Rao product A � B can also be calculated as

A � B =

BD1 (A)
...

BDI (A)

 . (5)

Definition 3. Inner product of two tensors: The inner
product of two tensors A ∈ CI1×...×IM and B ∈ CI1×...×IM
of the same order M is defined as

〈A,B〉 =

I1∑
i1=1

I2∑
i2=1

...

IM∑
iM=1

ai1,i2,...,iM bi1,i2,...,iM . (6)

Definition 4. Outer product of two tensors: The outer
product of an M th order tensor A ∈ CI1×...×IM and an N th
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order tensor B ∈ CJ1×...×JN is defined as the (M + N)th
order tensor A◦B with elements

(A ◦ B)i1,i2,...,iM ,j1,j2,...,jN = ai1,i2,...,iM bj1,j2,...,jN . (7)

Definition 5. Mode-n product of a tensor and a matrix:
Consider a tensor A ∈ CI1×...×IN and a matrix X ∈
CL×In , with In equal to the dimension of the nth mode
of A. The mode-n product between the tensor A and the
matrix X yields an N th order tensor B = A ×n X ∈
CI1×...×In−1×L×In+1×...×IN such that

bi1,··· ,in−1,l,in+1,··· ,iN =
In∑
in=1

ai1,··· ,in−1,in,in+1,··· ,iNxl,in . (8)

Definition 6. Rank-one tensor: The tensor A ∈ CI1×...×IM
is said to be a rank-one tensor if it can be expressed as the
outer product of M vectors vm ∈ CIm , with m ∈ [1,M ] as

A = v1 ◦ v2 · · · ◦ vM . (9)

The entries of A can be presented as ai1,i2,...,iM =

v
(i1)
1 · · · v(iM )

M . Fig. 1 illustrates a rank-one tensor of order 3,
represented as the outer product of vectors a, b, and c.
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Fig. 1. Schematic of a rank-one tensor of order 3.

Definition 7. The rank of a tensor: The rank rA of tensor
A ∈ CI1×...×IM is defined as the minimal number of rank-one
tensors that combine linearly to generate A. Fig. 2 presents a
3-way tensor of rank three.
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Fig. 2. Schematic of a 3-way tensor of rank 3.

Definition 8. k-rank: The rank rA of A ∈ CI×J is equal to
r if A contains at least a set of r linearly independent columns
but no set of r+1 linearly independent columns. The Kruskal-
rank (or k-rank) of A is the maximum number k such that
every set of k columns of A is linearly independent. Note that
the k-rank is always less than or equal to rA. That is,

kA ≤ rA ≤ min(I, J). (10)

B. Tensor Decompositions

1) Tucker decomposition: The Tucker decomposition de-
composes a tensor into a core tensor of the same order

and some factor matrices. For an M th order tensor A ∈
CI1×...×IM , the Tucker decomposition is defined as [10]

A = Q×1 X(1) ×2 X(2) · · · ×M X(M), (11)

where Q ∈ CJ1×...×JM is the core tensor and X(m) ∈
CIm×Jm , with m = 1, · · · ,M , are the factor matrices. The
elements of A can be represented as

ai1,...,iM =

J1∑
j1=1

· · ·
JM∑
jM=1

qj1,...,jM

M∏
m=1

x
(m)
im,jm

. (12)

For illustration, we show in Fig. 3 the Tucker decomposition
of a third-order tensor X ∈ CI1×I2×I3 as X = Q ×1 A ×2

B ×3 C, where Q ∈ CJ1×J2×J3 is the core tensor and the
factor matrices are denoted by A ∈ CI1×J1 , B ∈ CI2×J2 and
C ∈ CI3×J3 .
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Fig. 3. Block-diagram of a Tucker decomposition for a third-order tensor.

2) PARAFAC/CPD: The PARAFAC decomposition, also
known as CANDECOMP or CPD, represents a tensor as a
linear combination of a minimum number of rank-one tensors
[12]. For an M th order tensor A ∈ CI1×...×IM , the PARAFAC
decomposition is expressed as

A =
R∑
r=1

x(1)r ◦ x(2)r ◦ · · · ◦ x(M)
r , (13)

where x(m)
r ∈ CIm is the rth column vector of factor

matrix X(m) ∈ CIm×R. The PARAFAC model can also be
represented in scalar form as

ai1,...,iM =
R∑
r=1

M∏
m=1

x
(m)
im,r

. (14)

Consider a third-order tensor X ∈ CI1×I2×I3 , whose
PARAFAC decomposition X =

∑R
r=1 ar ◦ br ◦ cr with

A ∈ CI1×R, B ∈ CI2×R and C ∈ CI3×R. We can obtain
the following matrix slices as

Xi1,:,: =

R∑
r=1

ai1,rbrc
T
r = BDi1(A)CT ∈ CI2×I3 , (15)

X:,i2,: =
R∑
r=1

bi2,rcra
T
r = CDi2(B)AT ∈ CI3×I1 , (16)

X:,:,i3 =
R∑
r=1

bi3,rarb
T
r = ADi3(C)BT ∈ CI1×I2 , (17)

for i1 = 1, · · · , I1, i2 = 1, · · · , I2 and i3 = 1, · · · , I3.
The notation ‘:’ indicates inclusion of all subscripts along a
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Fig. 4. Illustration of BTD models. Top: rank-(1, 1, 1) BTD or CPD; Middle:
rank-(L,L, 1) BTD. Bottom: rank-(L,M,N) BTD.

particular dimension. Stacking these slices columnwise, we
obtain three possible unfoldings of the tensor X as

XI1I2×I3 =

BD1(A)
...

BDI2(A)

CT = (A � B)CT , (18)

XI2I3×I1 =

CD1(B)
...

CDI3(B)

AT = (B � C)AT , (19)

XI3I1×I2 =

AD1(C)
...

ADI1(C)

BT = (C � A)BT . (20)

3) Block term decomposition: Block term decomposition
(BTD) aims to find components with specific multilinear rank
terms. The BTD framework was first introduced in [66],
and the CPD and Tucker decomposition can be considered
as special cases within this framework. For simplicity, we
focus on third-order tensors in this subsection. The rank-1
term in CPD can be viewed as the multilinear rank-(1, 1, 1)
BTD, while the Tucker decomposition can be regarded as the
multilinear rank-(L,M,N) BTD with only one term; see Fig.
4 for different types of BTD. For a detailed description of
additional BTD variants, the reader is referred to [67], [68].

The decomposition of 3-way tensors in rank-(L,L, 1) terms
finds many applications in psychometrics, chemometrics, neu-
roscience, and signal processing, similar to its CPD counter-
part. Rank-(L,L, 1) BTD is essentially unique under some
mild conditions and its factors have explicit physical inter-
pretations, which has been proven useful for blind source
separation [69], [70] in array signal processing [71], spectrum
cartography [72], and hyperspectral super-resolution (HSR)
[73]. Formally, the rank-(L,L, 1) BTD of a tensor X ∈
RI×J×K is a decomposition of the form

X =
R∑
r=1

Er ◦ cr, (21)

where Er = ArBTr ∈ RI×J is a rank-L matrix, Ar ∈ RI×L,
Br ∈ RJ×L, and cr ∈ RK . The factors {Ar,Br, cr} can be
determined using alternating least squares (ALS), gradient-
based methods, and nonlinear least squares (NLS) [67], [68].

4) PARATUCK decomposition: The PARATUCK decom-
position combines the properties of the PARAFAC and Tucker
decompositions. Taking PARATUCK2 model as an example,
the element for a third-order tensor X ∈ RI1×I2×I3 is defined
as

xi1,i2,i3 =
M∑
m=1

R∑
r=1

ai1,mbi2,rgm,rc
(A)
i3,m

c
(B)
i3,r

, (22)

where xi1,i2,i3 is the (i1, i2, i3)-th entry of X , A ∈ CI1×M ,
B ∈ CI2×R, C(A) ∈ CI3×M , C(B) ∈ CI3×R. The matrices A
and B are associated with the first and second dimensions of
X . C(A) and C(B) are interaction matrices defining the linear
combination profile between the M columns of A and the
R columns of B along the third dimension of X . G is the
core matrix of the PARATUCK2 model. The element gm,r of
G defines the magnitude of the interaction between the mth
column of A and the rth column of B.

PARATUCK offers more flexibility to model different com-
munication systems that are not captured by PARAFAC mod-
els [74], [75]. The work in [76] exploits the PARATUCK2
tensor model to estimate the channel matrices for a three-hop
MIMO relay system, only requiring the source to transmit the
channel training sequences and relieving the relays from the
burden of channel estimation.

5) Uniqueness: The Tucker model is not essentially unique
[77]. This is because the factor matrices X(m) and the core
tensor Q are not uniquely identifiable. More specifically, X(m)

and Q can be replaced by X̂
(m)

= X(m)∆m and Q̂ = Q×Mm=1

(∆m)−1, respectively, with ∆m ∈ CJm×Jm being nonsingular,
without changing the tensor A. That is,

A = Q̂ ×Mm=1 X̂
(m)

= Q×Mm=1 (∆m)−1 ×Mm=1 X(m)∆m

= Q×Mm=1 X(m)∆m(∆m)−1

= Q×Mm=1 X(m) (23)

This implies that the core tensor and the factor matrices have
alternatives which satisfy the decomposition model.

As opposed to the Tucker model, the PARAFAC/CPD is
essentially unique, i.e., the factor matrices X(m) in (13) are
unique provided the following sufficient condition is satisfied
[78]

M∑
m=1

kX(m) ≥ 2R+ (M − 1), (24)

where kX(m) is the k-rank of the factor matrices X(m) ∈
CIm×R. The matrices X(m),m = 1, ...,M, are unique up to
permutation and (complex) scaling of its columns [79], [80].
This means that every set of matrices X̃(m)

satisfying (15)-(17)
is linked to X(m) by

X̃(m)
= X(m)Π∆̃m,m = 1, ...,M, (25)

where Π is a permutation matrix and {∆̃m}Mm=1 are diagonal
matrices satisfying the condition

M∏
m=1

∆̃m = IR. (26)
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with IR ∈ RR×R being an identity matrix. A sufficient
condition that considerably improved over the bound (24)
was provided in [81], wherein an inductive method, based
on the geometric notion of weak defectivity, was introduced
for examining the uniqueness of tensor decompositions by
means of tensors of rank one. The PARATUCK decomposition
also affords uniqueness under mild conditions [74], [75]. The
work in [76] examined the identifiability and uniqueness of
the PARATUCK2 model, providing guidelines for parameter
choices of a three-hop MIMO relay system to guarantee
estimation of all channel matrices. By considering structural
constraints such as Toeplitz and Vandermonde forms for some
of its matrix factors in the PARATUCK2 model, Kibangou.
et al in [82] derived additional results on the uniqueness of
PARATUCK2 model in the context of a blind joint identifica-
tion and equalization problem.

Similar to CPD, rank-(L,L, 1) BTD also has essential
uniqueness. One can arbitrarily permute the different rank-
(L,L, 1) terms. Within a rank-(L,L, 1) term, the factors
Er and cr can be arbitrarily scaled, as long as their prod-
uct remains the same. The factors Ar,Br can be multi-
plied by any nonsingular matrix Fr ∈ RL×L provided that
ArFr(BrF−Tr )T = ArBTr . A rank-(L,L, 1) BTD is said to be
essentially unique if it is subject to these trivial ambiguities.
Necessary and sufficient conditions of essential uniqueness can
be found in [67], [69].

Recently, coupled tensor decompositions have emerged as
an important tool for handling missing data in signal pro-
cessing and analysis of coupled data sets. The necessary and
sufficient uniqueness conditions for coupled decompositions
depend on the observed data sampling patterns. For example,
the uniqueness conditions and linear algebra based algorithms
of coupled CPD and coupled BTD were both considered in
[83], [84], where multi-coupled subtensors were formed with
partly observed data in the first two dimensions and fully
observed data in the third dimension. The coupled tensor
decompositions can be summarized as follows.

min
factors

Loss(subtensors, factors)+penalty(factors)

subject to constraints(factors)

Finally, it is worth mentioning that the tensor decomposition
techniques based on the data fitting principle have been
extended/generalized in several ways. One important extension
is the robust PARAFAC, where a trilinear alternating least
absolute error minimization substitutes trilinear alternating
least squares minimization [85]. It provides robustness to
outliers (non-Gaussian error), which is a common problem
in, for example, multi-user communication systems with mul-
tiple interferences, as well as jammer suppression and clutter
mitigation in radar. Another recent extension is sparse tensor
decomposition [86], [87] that ensures the sparsity of the
decomposition and has potential applications in, for example,
millimeter wave channel estimation.

III. APPLICATIONS IN WIRELESS COMMUNICATIONS

In this section, we provide an overview of tensor analysis
in wireless communication. We group tensor-based methods

on the nature of the signal processing tasks undertaken and
system types.

A. Blind Multiuser CDMA

We consider a typical uplink (UL) direct-sequence CDMA
(DS-CDMA) communication system having one base station
(BS) and M users. Let K antennas be mounted on the
BS. The spreading code of user m is denoted by cm =
[cm(1), cm(2), · · · , cm(L)]T ∈ CL×1, with L being the
spreading gain and cm(l) representing its lth chip. The nth
transmitted symbol from user m is sm(n). The fading/path
loss between the BS and the user m is denoted as hm =
[hm(1), hm(2), · · · , hm(K)]T ∈ CK×1. Then, the baseband
output for symbol n and chip l from the kth antenna can be
expressed as

xk,n,l =
M∑
m=1

hm(k)cm(l)sm(n). (27)

We define K ×N data matrices as

X:,:,l ,


x1,1,l x1,2,l · · · x1,N,l
x2,1,l x2,2,l · · · x2,N,l

...
...

...
...

xK,1,l xK,2,l · · · xK,N,l

 (28)

for l = 1, · · · , L. With some mathematical manipulation, we
can show that X:,:,l satisfies the factorization

X:,:,l = HDl(C)ST (29)

where

H ,


h1(1) h2(1) · · · hM (1)
h1(2) h2(2) · · · hM (2)

...
...

...
...

h1(K) h2(K) · · · hM (K)

 (30a)

C ,


c1(1) c2(1) · · · cM (1)
c1(2) c2(2) · · · cM (2)

...
...

...
...

c1(L) c2(L) · · · cM (L)

 (30b)

S ,


s1(1) s2(1) · · · sM (1)
s1(2) s2(2) · · · sM (2)

...
...

...
...

s1(N) s2(N) · · · sM (N)

 . (30c)

With the factorization in PARAFAC model, the spreading
codes C ∈ CL×M , information symbols S ∈ CN×M , and the
path fading loss H ∈ CK×M can be recovered as long as the
decomposition uniqueness condition is satisfied. We note that
the model in (29) does not consider practical constraints, such
as frequency-selective channel, time synchronization issues,
MIMO case, etc.

The work [80] was the first to introduce tensor model for
signal processing in wireless communication systems. The
authors proposed a blind PARAFAC model-based separation-
equalization-detection receiver for DS-CDMA multiuser sys-
tems for the case of no ISI. The blind receiver was shown
to achieve the same performance as that of the non-blind
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minimum mean-squared error (MMSE) receiver. Owing to
the fact that it did not require statistical independence or
knowledge of the codes, the receiver offered a higher flexibility
for incorporation into different types of systems compared to
earlier approaches.

The work in [25] proposed a two-stage blind tensor based
detector for the UL communication of a wideband-CDMA
system subject to large delay spread, when ISI is present. The
low-rank decomposition of the 3-D received data enabled an
Finite Impulse Response (FIR) MIMO-CDMA problem to be
converted into multiple standard independent FIR Single-Input
Multiple-Output (SIMO) problems; the latter were solved
using known techniques, such as the Hankel kernel approach.
The paper [26], on the other hand, devised a constrained tensor
modeling approach for a UL CDMA communication system
where the BS and the users employed multiple antennas. Two
constraint matrices were considered to respectively control
the spatial spreading of the data streams and the spatial
reuse of the spreading codes. A systematic design procedure
for the canonical allocation matrices was developed which
derived a finite set of multiple-antenna schemes for a fixed
number of transmit antennas. Identifiability of the proposed
tensor model was also determined to guarantee blind symbol
recovery. The work [88] generalized the model of [26] to the
MIMO case by incorporating data stream, spreading code, and
antenna allocations through a new tensor decomposition called
constrained factor (CONFAC) decomposition.

The paper [70] employed BTDs to address the case of DS-
CDMA with ISI. Assuming ISI to have an impact over at most
R symbols, the lth chip of the nth symbol of the mth user
signal can be expressed as

zmln =

R∑
r=0

Em(l, r)sm(n− r), (31)

where Em(l, r) denotes the overall impulse response of the
lth chip and the most recent rth symbol. In this case, the
baseband output for symbol n and chip l from the kth antenna

is xk,n,l =
M∑
m=1

hm(k)zmln, which can be expressed in tensor

form as

X =
M∑
m=1

hm ◦ (EmSm), (32)

where Em ∈ RL×R and Sm ∈ RR×N is a Toeplitz matrix
with sm(n− r) as its (r, n)th element. Eq. (32) admits BTD
in rank-(1, R,R) terms. Details of the corresponding essential
uniqueness condition and blind deconvolution algorithm can
be found in [70], [89].

The authors in [24] unified the received signal model of
three multiuser systems, namely, a temporally oversampled
system, a DS-CDMA system, and an OFDM system, into
a tensor (3-D) PARAFAC model. Each considered multiuser
system employed multiple antennas at the receiver and was
assumed to be subject to frequency-selective multipath fading.
A new tensor-based receiver was designed that performed, in
an iterative fashion, multiuser signal separation by determining
the PARAFAC model parameters and signal equalization via

subspace methods. Simulation results showed that the tensor-
based receiver provided performance close to the MMSE solu-
tion with a perfect knowledge of the propagation parameters.

B. Space-Time Frequency (STF) MIMO Systems

In wireless communication systems, incorporation of over-
sampling, spreading, multiplexing, diversity, and other oper-
ations yields multi-dimensional received signals, for which
the tensor models are a natural fit. We consider a typical
multi-carrier MIMO wireless communication system, where
the BS uses M transmit antennas, R data streams, and F
subcarriers. A total of K receive antennas are employed.
We assume the transmission to be decomposed into P data
blocks, with each block consisting of N symbol periods.
The transmitted symbols are spread and multiplexed in space
(multiple antennas), time (time blocks and time spreading),
and frequency (multi-carriers) domains. We denote by sn,r
the nth symbol of the rth data stream, and W ∈ CM×R is the
coding matrix that maps the signals from the data streams to
the antennas.

For a fixed symbol period p and subcarrier f , the (m, p, f)th
STF coded signal associated with the mth transmit antenna,
pth block, and f th subcarrier is generated by two allocation
tensors, namely, the stream allocation tensor C(S) ∈ RF×P×R
and the antenna allocation tensor C(H) ∈ RF×P×M . The
former determines the time-frequency mapping of the R
data streams across P blocks and F subcarriers, while the
latter disctates the time-frequency mapping of the M transmit
antennas. The elements of both tensors assume a value equal
to zero or unity.

The coded signal can be formed into a fourth-order tensor
U ∈ CF×M×N×P , where the (f,m, n, p)th element corre-
sponds to the f th subcarrier, mth transmit antenna, nth symbol
period, and pth data block, and is given by

uf,m,n,p =
R∑
r=1

wm,rsn,rc
(H)
f,p,mc

(S)
f,p,r

=
R∑
r=1

tf,m,r,psn,r, (33)

with
tf,m,r,p , wm,rc

(H)
f,p,mc

(S)
f,p,r. (34)

We define H ∈ CF×K×M as the channel tensor for the
MIMO-OFDM communication system. The fading coefficients
are assumed to be constant during P blocks. For the noiseless
case, the received signal tensor X ∈ CF×K×N×P , correspond-
ing to the f th subcarrier and received at the kth antenna during
the nth symbol period of the pth data block, is given by

xf,k,n,p =
M∑
m=1

hf,k,muf,m,n,p

=
M∑
m=1

R∑
r=1

tf,m,r,phf,k,msn,r. (35)

The received signal tensor follows a generalized constrained
PARATUCK2 model. Using the mode-n product definition
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from (8), we can write the f th tensorial slice of X ∈
CF×K×N×P , containing all received signals associated with
the subcarrier f , as

X (f) = T (f) ×1 H(f) ×2 S, (36)

where X (f) , Xf,:,:,: ∈ CK×N×P , T (f) , Tf,:,:,: ∈
CM×R×P , H(f) , Hf,:,: ∈ CK×M and S ∈ CN×R. Fig. 5
depicts the block-diagram of the STF coding structure.
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Fig. 5. SFT coding structure.

By introducing extra diversity into the transmitting signal,
e.g., space, time, frequency and code, the tensor modeling
is able to encode the signal and exploit the coding features.
Following [80], the flexible class of Khatri-Rao Space-Time
(KRST) codes based on the PARAFAC tensor model was also
developed in [32]. The work in [90] combined space-frequency
spreading and multiplexing functionalities for MIMO multi-
stream multi-carrier systems, while allowing a semi-blind joint
channel estimation and detection using the PARAFAC model.

A new tensorial approach based on a tensor space-time
(TST) coding was proposed in [33] for MIMO wireless
communication systems. The received signals assumed the
form of a fourth-order tensor which was shown to satisfy a
PARATUCK-(N1, N ) model with N1 = 2 and N = 4. The
uniqueness conditions for the PARATUCK-(N1, N ) model
were also established therein. Semi-blind receivers based on
ALS, Levenberg-Marquardt (LM) and the Kronecker Least
Squares methods were designed for both the TST and STF
systems.

In [34], a transmission scheme based on two allocation
matrices for selection of antennas and data streams was mod-
eled utilizing only the space and time domains. A generalized
fourth-order PARATUCK2 tensor model for MIMO commu-
nications with STF spreading-multiplexing was proposed in
[35]. The core of this fourth-order tensor was essentially
composed of two third-order interaction tensors. Data streams
(multiplexing degree) and transmit antennas (space) were
allocated to time blocks (time) and subcarriers (frequency).
A blind receiver based on LM algorithm was proposed for the
generalized fourth-order PARATUCK2 model.

The authors in [36] proposed two new classes of constrained
tensor models, called the generalized PARATUCK-(N1, N )
model and the generalized Tucker-(N1, N ) model, with high-
order tensors being the factors of the decompositions. A new
tensor STF coding which led to a generalized PARATUCK-
(2,5) model was proposed for MIMO OFDM-CDMA systems.
Two semi-blind receivers, one iterative and the other in closed-
form, were proposed for a joint channel and symbol estima-
tion. The former was based on a two-step ALS algorithm,

while the latter comprised a low-complexity solution based
on Kronecker product least squares estimation.

In [37], a two-step tensor-based receiver based on the fourth-
order PARATUCK2 model was proposed for a modified space-
time (ST) coding scheme which incorporated a formatting
filter. In the first step, closed-form channel estimation was per-
formed by means of Kronecker and Khatri-Rao factorizations.
In the second step, the transmitted symbols were linearly de-
coded by exploiting the estimated channel. Simulation results
demonstrated the effectiveness of the tensor-based receiver in
terms of normalized mean squared error and bit error rate
(BER).

C. Cooperative/Relay Systems
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Fig. 6. Two-hop relay communication system.

We consider a typical amplify-and-forward (AF) two-hop
cooperative system with a source node (S), a destination node
(D), and a relay (R), as shown in Fig. 6. The respective num-
bers of antennas at the source, destination, and the relay are
assumed to be MS , MD, and MR. Matrices HSD ∈ CMD×MS ,
HSR ∈ CMR×MS and HRD ∈ CMD×MR denote the channel
of the direct link to destination (SD link), the channel between
the source and the relay (SR link), and the channel between
the relay and the destination (RD link), respectively. Let
S ∈ CN×MS be the information symbol matrix during N time-
blocks. A code matrix C ∈ CP×MS is used, where P is the
number of symbol periods in a time block. The transmitted
signal at the nth time block is given by

Xn = Dn(S)CT ∈ CMS×P . (37)

1) Model of the SD Link: The nth received signal is given
by

Y(SD)
:,:,n = H(SD)Xn = H(SD)Dn(S)CT ∈ CMD×P . (38)

where Y:,:,n is the nth slice of the third-order received signal
tensor Y(SD) ∈ CMD×P×N . Eq. (38) represents a PARAFAC
decomposition of Y(SD). The elements of Y(SD) can be
expressed as

y(SD)
mD,p,n =

MS∑
mS=1

hSDmD,mScp,mSsn,mS . (39)

Three unfolded forms of this PARAFAC model are given by

Y(SD)
PN×MD

= (S � C)
(

H(SD)
)T

, (40)

Y(SD)
NMD×P = (H(SD) � S) (C)

T
, (41)

Y(SD)
MDP×N = (C �H(SD)) (S)

T
. (42)
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2) Model of the Source-Relay-Destination (SRD) Link: The
signals received at the relay are first stored and then an AF
matrix G ∈ CN×MR is used to code the stored signals, which
are transmitted through the channel H(RD). The received
signals at the destination via the relay form a third-order tensor
Y(SRD) ∈ CMD×P×N whose nth slice is given by

Y(SRD)
:,:,n = H(RD)Dn(G)H(SR)Dn(S)CT ∈ CMD×P . (43)

Eq. (43) represents a PARATUCK2 decomposition of the
tensor Y(SRD), whose elements can be written as

y(SRD)
mD,p,n =

MR∑
mR=1

MS∑
mS=1

h(RD)
mD,mRgn,mRh

(SR)
mR,mScp,mSsn,mS .

(44)
In the PARAFAC and PARATUCK2 decompositions, the

uniqueness can be established under specific conditions. Both
semi-blind and blind receivers have been investigated to esti-
mate the channels, H(SR) and H(DR), and the symbol S by
means of algorithms, such as the ALS. In cooperative systems,
the system reliability strongly depends on the accuracy of
channel state information (CSI) of all links between the source,
relays and destination. Under the assumption that CSI is not
available, the authors in [41] proposed a blind receiver model
for UL multiuser cooperative diversity systems by exploiting
a unified formulation of the received signals as a PARAFAC
model. Three relay protocols were considered, namely, AF,
fixed decode-and-forward, and selective decode-and-forward.
In [42], a simplified KRST coding was adopted at the transmis-
sion source in a two-hop AF cooperative scheme. Three differ-
ent receivers using the PARAFAC and PARATUCK2 models
for the SD and SRD links were designed. Simulation results
demonstrated the superior performance of these receivers over
supervised approaches in terms of the BER.

In [43], the author proposed the nested Tucker decompo-
sition (NTD) model. Then, by exploiting a tensor space-time
coding structure at both the source and the relay nodes in
a one-way two-hop MIMO relay communication system, an
NTD of the fourth-order tensor was formed at the destination.
Two semi-blind receivers and two supervised receivers were
derived to jointly estimate the transmitted information symbols
and the two individual relay channels. The authors in [44]
performed joint channel estimation for a three-hop MIMO
system with an AF relaying protocol. ALS algorithm was
used by coupling PARAFAC and Tucker3 tensor models
for the received signals to iteratively estimate the channel
matrices. Simulation results corroborated the effectiveness of
the joint channel estimator when compared to two sequential
estimators. In [91], a one-way multi-hop AF relaying system
was modeled based on a generalized nested PARAFAC decom-
position. Under the assumption of KRST coding implemented
at each relay, a sequential closed-form semi-blind receiver was
designed, wherein the information symbols and the individual
channels were jointly estimated. For OFDM-based cooperative
communication systems, a tensor-based blind signal recov-
ery scheme was devised in [92]. The received multi-carrier
signals were modeled as a 3-D tensor and a PARAFAC
decomposition-based blind receiver algorithm was employed
for data detection. The work in [93] proposed two ST coding

schemes, MKRST and MKronST, for multiple-antenna one-
way two-hop MIMO relay system. These coding schemes
generalized the standard Khatri-Rao coding by introducing
extra space/time diversities. Parallel non-iterative decoding
methods were proposed for estimating the symbol matrix. In
[94], the authors considered the multi-relaying systems. Two
tensor-based receivers were proposed to jointly estimate the
channels and symbols in a semi-blind fashion. By exploiting
the structure of the received signals, the authors showed that
the data for the relay-assisted link after ST decoding has
a Kronecker structure, which can be recast as a rank-one
tensor based on PARAFAC analysis. The simulation results
demonstrated that the proposed receiver design has good
performance-complexity trade-off.

D. Time-varying Channel Modeling

Tensor decompositions were considered for on-line appli-
cations in [95], where the data were assumed to be seri-
ally acquired and/or the underlying model was considered
to change frequently, resulting in a time-varying wireless
communication system. Given the PARAFAC decomposition
of a tensor at instant t, two adaptive low-complexity algorithms
were provided to obtain the decomposition at instant t + 1
by appending a new slice in the time dimension, and their
excellent tracking capability was validated through simulation.

Doppler shifts in a time-varying mmWave scenario were
considered in [96]. The channel was assumed to have block-
sparse and low-rank characteristics, since the change in angle
was much slower than that in path gain. By exploiting these
characteristics, a two-stage method was proposed. In the first
stage, Block Orthogonal matching pursuit algorithm was used
to estimate the angles-of-arrival (AoAs)/angles-of-departure
(AoDs). Based on the angle estimates, PARAFAC decompo-
sition was used to estimate the Doppler shifts and path gains
in the second stage. Furthermore, the proposed algorithm was
shown to be close to the Cramer-Rao Lower Bound (CRLB).
For downlink (DL) multiuser-MIMO communications over
a time-varying channel, a transmission frame structure was
proposed in [97], wherein the angle and the channel gain were
to be estimated. By leveraging the sparse nature of mmWave
channels, an adaptive angle estimation algorithm was devised.
The angle estimates were used to design pilot beamforming
for estimating the path gains. For the same assumption of
slower variations in angle than path gains, the authors in [98]
proposed a two-stage tensor decomposition based method for
a single receiver. Doppler shift estimation was achieved based
on the estimated angles.

E. mmWave Communication System

Millimeter wave channels have a sparse scattering nature,
leading to their low-rank structures and spread in the form of
clusters of paths over the angular domains, including the AoA,
AoD, and elevation. This joint sparse and low-rank structure
renders the application of tensor models suitable in mmWave
communication systems.

Consider a point-to-point UL mmWave MIMO system,
which comprises M antennas at the BS and N antennas
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at the MS. Beamforming techniques are implemented to
address the severe path losses at millimeter wavelengths.
Analog beamforming is used in both BS and MS with one
radio-frequency chain. At time instant t, the symbol s(t) is
transmitted through an analog beamforming vector f̄(t) ∈ CN .
The receiver combines the signals with receive beamforming
vector w(t) ∈ CM . The combined signal at the receiver can
be expressed as

y(t) = wH(t)Hf̄(t)s(t) + wH(t)n(t) ∀t = 1, ..., T, (45)

where H ∈ CM×N is the channel matrix and n(t) ∈ CM
denotes additive Gaussian noise. For mmWave operation, the
channel is usually characterized by a geometric model [96]

H =
L∑
l=1

αlaBS(θl)aHMS(ψl), (46)

where L is the number of paths, αl is the complex gain
associated with the lth path, and θl and ψl are the AoA and
AoD, respectively. The vectors aBS and aMS represent the
array response vectors and are given by

aBS(θl)=
1√
M

[
1,ej

2π
λ d sin(θl), ..., ej(M−1)

2π
λ d sin(θl)

]T
,

(47)

aMS(ψl)=
1√
N

[
1,ej

2π
λ d sin(ψl), ..., ej(N−1)

2π
λ d sin(ψl)

]T
.

(48)

The channel matrix can be further formulated as

H = ABSHvAHMS (49)

where ABS , [aBS(φ1), ..., aBS(φN1)] ∈ CM×N1 is the
overcomplete dictionary matrix consisting of the BS steering
vectors corresponding to N1 discretized arrival angles. Like-
wise, AMS ∈ CN×N2 can be obtained using MS steering
vectors corresponding to N2 discretized departure angles. The
matrix Hv ∈ CN1×N2 is sparse, with L non-zero entries
corresponding to the channel path gains, {αl}. By exploiting
the Kronecker product properties of (2) and (3), the received
signal can be rewritten as

y(t) = wH(t)ABSHvAHMS f̄(t)s(t) + n′(t)

=
[
(AHMSf(t))T ⊗ (wH(t)ABS)

]
h + n′(t)

= (fT (t)⊗ wH(t))(A∗MS ⊗ ABS)h + n′(t) (50)

where f(t) = f̄(t)s(t), h , vec(Hv) and n′(t) is the equivalent
noise. Collecting the received signals as y , [y(1), ..., y(T )]

T ,
we have

y =

 fT (1)⊗ wH(1)
...

fT (T )⊗ wH(T )

 (A∗MS ⊗ ABS)h + n′

, Ψh + n′. (51)

The above model together with the unique characteristics
of mmWave time-varying channels can be exploited to esti-
mate AoAs/AoDs. For example, the work in [99] considered
the channel estimation problem for multi-user UL MIMO

mmWave communication systems, where both the BS and the
users were assumed to have hybrid beamforming structures.
The low-rank structure of the received data was exploited
within a PARAFAC model and a layered pilot transmission
scheme was devised to reduce the training overhead. The
conditions to ensure the uniqueness of the decomposition were
used for the beamformer design. Similar to [99], the author
in [100] considered the problem of DL channel estimation
for mmWave MIMO-OFDM systems. The authors proposed
a PARAFAC decomposition-based method for channel pa-
rameter estimation, including angles, time delays, and fading
coefficients. The analysis revealed that the uniqueness of the
CPD could be guaranteed with a small training overhead. The
CRLB was also developed as a benchmark for the proposed
tensor based algorithm.

The work in [101] combined dual-polarized (DP) antenna
arrays with the double directional (DD) channel model for
DL channel estimation. The combination was modeled as a
low-rank four-way tensor and tensor decomposition algorithms
were used to effectively estimate the associated channel pa-
rameters. Furthermore, the DD channel with DP arrays was
shown to be identifiable under very mild conditions. In [102],
a compressed tensor decomposition algorithm was added to
alleviate the training overhead. In [103], the practical hardware
impairment, i.e., carrier frequency offset (CFO), was consid-
ered. The authors proposed a joint CFO and channel estimation
method based on tensor modeling and compressed sensing
which was shown via simulation to be more robust to a small
number of channel measurements. The work in [104] discussed
the channel estimation problem under a MIMO-OFDM trans-
mission assumption. A tensor compressive sensing (tensor-
CS) model was formulated by assuming that the channel is
compressively sampled in space (radio-frequency chains), time
(symbol periods), and frequency (pilot subcarriers). That is,

Y = H×1 (QAR)×2 (XAT)×3 (FAF) + Z. (52)

where X ∈ CTp×N ,Q ∈ CLr×M ,F ∈ CFp×F denote the
respective pilot sequence, combining, and subcarrier selection
matrices, Tp and Fp denote the respective numbers of OFDM
symbols and subcarriers, F is the number of frequency bins,
Lr is the number of radio-frequency chains at the receiver,
{AR,AT,AF} represents the codebook set of arrival angles,
transmit angles, and delays, and Z is the noise tensor. The
tensor H represents the virtual MIMO channel and can be
seen as a generalization of (49) by adding two additional di-
mensions, namely, time/Doppler and delay/frequency. Clearly,
the tensor-CS model of (52) coincides with a sparse Tucker3
model, where the associated core tensor is H. This tensor-CS
model was then used as the basis for the formulation of a
tensor-orthogonal matching-pursuit estimator. The authors in
[105] addressed the problem of joint DL and UL channel esti-
mation for mmWave MIMO systems using a tensor modeling
approach. Assuming a closed-loop and multifrequency-based
channel training framework, the algorithms developed therein
jointly estimated the DL and UL channels by concentrating
most of the processing burden for channel estimation at the
BS.
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IV. APPLICATIONS IN MIMO RADAR

The higher dimensional signal structures inherent in MIMO
radar invite tensor-based signal processing solutions to the
target parameter estimation and transmit beamforming prob-
lems. The use of tensor models and multilinear algebraic
methods in MIMO radar is not yet at the same level of
maturity as in wireless communications. Nonetheless, there
exist some interesting results. Below, we provide an overview
of tensor-based methods in bistatic and monostatic MIMO
radar systems.

A. Tensor Techniques for Target Parameter Estimation in
MIMO Radar

For a bistatic MIMO radar with an M -element transmit
array and an N -element receive array, the received signal
model under the assumption of orthogonal transmit waveforms
and a coherent processing interval (CPI) containing Q pulses
can be expressed as [57], [58]

Y = (A � B)CT + Z, (53)

where Y ∈ CMN×Q contains the received data after matched
filtering, Z is the spatially and temporally white additive
noise, CT ∈ CP×Q contains the reflection coefficients of
P targets corresponding to Q pulses, and A ∈ CM×P and
B ∈ CN×P denote the respective steering matrices for trans-
mit and receive arrays. Arranging the matched-filter outputs
as a tensor Y ∈ CM×N×Q and following the definitions of
the matrix unfoldings in Section II-B2, it can be observed that
model (53) represents the PARAFAC decomposition. As such,
target parameter estimation can proceed within the PARAFAC
framework.

The target AoAs and AoDs were estimated using the
PARAFAC model in [57] under narrowband far-field as-
sumptions. The pth column of matrix A (matrix B) in (53)
captures the delays across the different transmit (receive)
antennas relative to a reference transmit (receive) antenna for
a plane wavefront departing in (arriving from) the direction
of the pth target. Two different models for target radar cross-
section (RCS) fluctuations were considered. Swerling I model
assumes the RCS coefficients to be constant over the CPI,
whereas in the Swerling II model, the RCS coefficients vary
independently from pulse to pulse. Conditions for essential
uniqueness guarantees were established which yielded useful
bounds on the number of resolvable targets.

The works in [106], [107] tackled the problem of tar-
get estimation in bistatic MIMO radar under narrowband
assumption via low-rank tensor completion. The proposed
solution in [106] employed an accelerated proximal gradient
line-search algorithm coupled with rank detection to obtain
an accurate rank estimate in a noisy environment with an
unknown number of targets. In [107], the cross-covariance
matrix of the matched-filtered outputs was modeled as a
Nested-PARAFAC decomposition of a fourth-order covariance
tensor. The structure of this decomposition was exploited in
a two-stage algorithm for joint AoA and AoD estimation of
multiple targets based on double alternating least squares.

The works in [58], [59], on the other hand, proposed tensor-
based near-field localization algorithms for targets located
closer to the transmit and/or receive arrays of a bistatic MIMO
radar. In this case, the pth column of matrix A (matrix B) was
defined in terms of the exact path differences under spherical
wavefronts between the reference transmit (receive) antenna
and other antennas in the transmit (receive) array for the pth
target. The estimated target parameters included the AoAs,
the AoDs, and the target distances from transmit and receive
reference antennas. In [59], the parameters were obtained
through iteratively optimizing a least-squares cost function
defined with respect to the elements of A and B. Alternatively,
the authors in [58] first estimated A and B as factor matrices
in an approximate low rank CPD of the tensor Y , which were
then used to estimate the target parameters by solving systems
of linear equations.

We note that the model in (53) as well as the afore-
mentioned methods do not take into account the effects of
array mutual coupling (MC) on target parameter estimation.
MC however occurs in practice and can lead to perfor-
mance degradation if not properly compensated. Both higher-
order singular value decomposition (HOSVD) and PARAFAC
decomposition-based methods have been recently proposed for
accurate target localization using MIMO radar in the presence
of mutual coupling [60], [108], [109].

A tensor-based sub-Nyquist monostatic MIMO radar was
proposed in [110] which used undersampled measurements
in spectral, spatial, Doppler, and temporal domains to jointly
estimate target AoAs, range, and Doppler. The received sig-
nals were modeled as a partial third-order tensor. On-grid
target parameters were estimated by solving a sparse recovery
problem using tensor orthogonal matching pursuit, whereas
a nuclear-norm regularized tensor completion method was
employed for off-grid target parameters. The lower bounds on
the total numbers of antenna channels, transceiver frequencies,
and pulses required for perfect recovery of both on-grid and
off-grid targets were also determined.

B. Tensor Techniques for Transmit Array Interpolation and
Beamspace Design in MIMO Radar

Together with waveform design, TB design [61], [111]–
[113] is one of the fundamental problems in MIMO radar with
colocated antennas. While designing TB, certain properties
such as rotational invariance property (RIP) at the receive
array can be ensured via TB matrix at the transmit array
for a monostatic MIMO radar [61]. It is especially useful
for reducing significantly the complexity of solving the target
localization problem (e.g., AoA estimation – azimuth and
elevation for two-dimensional (2-D) arrays) at the receive
array. If the RIP is ensured between more than two virtual
subarrays (the solution for two subarrays related to each other
through RIP is the classical ESPRIT), the received signals
in MIMO radar can be arranged in a tensor and tensor
algebra then becomes the main tool for designing localization
algorithms.

For example, consider a 2-D monostatic MIMO radar,
with its transmit and receive arrays placed on a plane and
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having arbitrary geometries. The receive array consists of
antenna elements randomly selected from the transmit array.
Let the transmit antenna elements be located at the position
pm , [xm, ym]T ,m = 1, 2, . . . ,M . Then the M × 1 steering
vector of the transmit array can be expressed as

a(θ, φ) , [e−j2πuT (θ,φ)p1 , . . . , e−j2πuT (θ,φ)pM ]T (54)

where u(θ, φ) , [sin θ cosφ, sin θ sinφ]T represents the prop-
agation vector, and θ, φ are the elevation and azimuth angles,
respectively. Similarly, the steering vector of the N -element
receive array can be expressed as

b(θ, φ) , [e−j2πuT (θ,φ)p1 , . . . , e−j2πuT (θ,φ)pN ]T . (55)

Let sm(t) be the complex envelope of the mth transmit
signal where t represents the fast time, and then {sm(t)}Mm=1

be a set of M waveforms. Each waveform sm(t) has unit
energy, and all waveforms are orthogonal to each other during
one pulse, i.e.,

∫
T
sm(t)s∗m′(t)dt = δ(m − m′), where T is

the radar pulse duration, δ(·) denotes the Dirac delta function,
and L is the number of samples per pulse period. Therefore,
the signal radiated towards a spatial region of interest is

ζ(t, θ, φ) = aT (θ, φ)s(t) =

M∑
m=1

am(θ, φ)sm(t) (56)

where s(t) , [s1(t), . . . , sM (t)]T and am(θ, φ) is the mth
element of a(θ, φ).

Assuming that the RCS coefficients obey Swerling II model,
for the case of K targets located in a spatial sector of interest,
the received MIMO observation vector can be expressed as

x(t, q) =
K∑
k=1

βk(q)(aT (θk, φk)s(t))b(θk, φk) + n(t, q) (57)

where q represents the slow time index, βk(q) is the RCS
coefficient of kth target with variance σ2

β , and n(t, q) is the
noise vector modeled as complex spatial and temporal white
Gaussian process. Using the orthogonality property of transmit
waveforms, the received data vector corresponding to the mth
waveform after matched-filtering can be obtained as

ym(q) =
K∑
k=1

(
am(θk, φk)b(θk, φk)

)
βk(q) + z(q) (58)

where ym(q) ∈ CN×1 and z(q) is the noise vector after
matched-filtering whose covariance matrix is given by σ2

nIN .
Hence, we stack ym(q), m = 1, . . . ,M , to form the receive
vector,

y(q) = (A(θ, φ) � B(θ, φ))β(q) + z(q) (59)

where β(q) , [β1(q), . . . , βK(q)]T is the vector of
RCS coefficients during the qth pulse, A(θ, φ) ,
[a(θ1, φ1), . . . , a(θK , φK)] is the M × K transmit steering
matrix, and B(θ, φ) , [b(θ1, φ1), . . . ,b(θK , φK)] is the N×K
receive steering matrix.

Using the TB matrix at the transmitter, the received signal
in qth pulse is given as

ỹ(q) = B(θ, φ)Σ(q)AH(θ, φ)Ws(t) + z(q) (60)

where Σ(q) = diag(β(q)) and W is the TB matrix. Con-
sidering Q pulses, the received TB MIMO radar signal matrix
Ỹ ∈ CM̃N×Q can be formed. Here, M̃ is the dimension of the
transmit signal after TB transform. Then, the corresponding
TB MIMO radar tensor model can be expressed as

Y = A×R P + Z (61)

where steering tensor A is formed by stacking K targets’
steering tensor Ak together, P , [β(1),β(2), . . . ,β(Q)]
contains K vectors of targets’ RCS coefficients for Q pulses,
and Z denotes the zero-mean Gaussian noise samples, and R
represents the Rth mode tensor-matrix product.

Note that transmit and receive array geometries are arbitrary
here, and do not need to be uniform. As such, TB also per-
forms the function of array interpolation, as shown in [114]–
[119], where the problem of the 2-D transmit array interpola-
tion and beamspace design for monostatic MIMO radar with
application to elevation and azimuth estimation was addressed.
The 2-D transmit array interpolation was formulated as the
minimax convex optimization problem with constraints on
array interpolation errors within a spatial sector of interest,
while minimizing the transmit power outside the sector. The
desired structure of the virtual transmit array (for example, L-
shaped array) was then enforced. It allows to benefit from
translational invariance property when estimating elevation
and azimuth parameters at the receiver. The advantage of the
high-dimensional structure inherent in the received signal as
explained above (the signal has been folded into a higher-order
tensor) permits use of tensor-based ESPRIT methods.

C. Tensor Techniques for TB Design and Parameter Estima-
tion in MIMO Radar with Arrays of Regular Geometries

The DOA estimation bias caused by transmit array in-
terpolation errors, which are unavoidable for the techniques
reviewed in the previous subsection, can be partially compen-
sated by building an offline look-up table aimed at decreasing
the bias. However, a higher localization accuracy may be
achieved if the transmit array has a regular uniform structure.
This is because there will be no loss of accuracy arising
due to array interpolation, as shown in [120] where the 2-D
transmit array was non-adaptively partitioned into a number
of subarrays, each contributing a slice in a data tensor at the
receiver. Then, TB was adaptively designed for each subarray
such that the beampatterns corresponding to each matrix of
the TB for each subarray had the exact same magnitude.

For example, if the transmit array is a uniform rectangular
array (URA), then the design of TB matrix W can be per-
formed in two stages. First, a TB matrix U0 = [u1, . . . ,uk],
with full column rank K, is designed over a spatial sector
Θ = [θ1 θ2] and Φ = [φ1 φ2] using only the first (P −1) rows
and (Q − 1) columns of the transmit array. Then, a simple
transformation is performed on U0 to produce TB matrices
with identical beampatterns, but which correspond to different
subarrays as shown in Fig. 7.

It is trivial to show that a matrix U′0 of dimension PQ×K,
with an identical beampattern to that of U0, can be constructed
by placing zeros in the spots corresponding to the antenna

Authorized licensed use limited to: QSIO. Downloaded on March 14,2021 at 21:59:16 UTC from IEEE Xplore.  Restrictions apply. 



1932-4553 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2021.3061937, IEEE Journal
of Selected Topics in Signal Processing

12

Fig. 7. An example of 2-D uniform rectangular array non-adaptive division to
a number of identical subarrays. Different waveforms are sent from different
subarrays, but the beampattern shape and RIP between different subarrays is
ensured by TB design.

elements which were omitted from the original design of U0.
The matrix U′0 then denotes a beamforming matrix where K
beams are transmitted from the first P − 1 rows and Q − 1
columns of a transmit array of dimension P × Q. Given the
shape of the transmit array, it is simple to show that by shifting
the positions of the zeros in U′0, the exact same beampattern
can be achieved by subarrays containing the first P − 1 rows
and last Q−1 columns, the last P −1 rows and the first Q−1
columns, and finally the last P − 1 and last Q − 1 columns
of the transmit array. These three matrices are denoted as U′1,
U′2, and U′3, respectively. With these matrices defined, the
following statements hold,

aH(θ, φ)U′0 = ej2πdx sin θ cosφ
(
aH(θ, φ)U′1

)
(62)

= ej2πdy sin θ sinφ
(
aH(θ, φ)U′2

)
= ej2π(dx sin θ cosφ+dy sin θ sinφ)

(
aH(θ, φ)U′3

)
.

The beamforming matrix W is then defined as W ,
[U′0,U

′
1,U

′
2,U

′
3] with an overall dimension of PQ × 4K.

Clearly, in the original design problem, the number of resolv-
able targets K must be no larger than PQ/4.

Given the structure (62) imposed on the beamspace matrix
W, we turn our attention to (60). Rewriting the noiseless
matrix before vectorization allows to illustrate the structure
of W on DOA estimation. Specifically, we can write

B(θ, φ)Σ(q)AH(θ, φ)W = B(θ, φ)Γ (63)

where Γ , Σ(q)AH(θ, φ)W is the source signal matrix of
dimension L × 4K. Let Γ0 = Σ(τ)AHU′0 be the source
signal matrix corresponding to K beams eliminated from the
first (P − 1) rows and (Q− 1) columns of the transmit array.
We define matrices Ωi, i ∈ {0, 1, 2, 3} as the L× L diagonal
matrices, with the lth diagonal entry of Ωi being the complex
exponential in (62) which relates aH(θ, φ)U′0 to aH(θ, φ)U′i.
The matrix Ω0 is obviously the identity matrix. Then, (63)

can be expressed as the following block partitioned matrix

BΓ = B

[
Ω0Γ0 Ω1Γ0 Ω2Γ0 Ω3Γ0

]
(64)

=

[
BΩ0 BΩ1 · · · BΩ3

]
bdiag4(Γ0)

where we drop the dependence of B on (θ, φ), bdiagm(·) takes
a single matrix as an argument and creates a block diagonal
matrix whose m blocks are equal to its argument. The matrix
BΩ0 is simply the receiver response matrix to K targets.
The virtual receiver response matrices BΩ1, BΩ2, and BΩ3

are exactly the receiver response matrices to K targets, for
identical receive arrays that are linearly displaced from the
actual receiver by [dx, 0], [0, dy], and [dx, dy], respectively.
The source signal matrix Γ0 is a common factor for each.
From (64), it is visible that the structure for W enforces an
algebraic structure on Y which can be exploited by search-free
algorithms for DOA estimation, such as, for example, ESPRIT.
Moreover, (64) can be viewed as an unfolding of a tensor with
each slice to be one of the 4 matrices BΩi i = 0, 1, 2, 3.

Matrix Y has dimension 4RK × Q and is obtained by
unfolding the corresponding tensor Y of signal for all Q
pulses. After defining the matrix selection operator Fi(·),
which selects the (iM/4 + 1)–M/4(i + 1) rows from an
arbitrary matrix with M rows, where i = 0, 1, 2, 3, Y and
a new matrix Y′ can be expressed as

Y =


F0(Y)
F1(Y)
F2(Y)
F3(Y)

 , Y′ =


F0(Y)
F2(Y)
F1(Y)
F3(Y)

 . (65)

Forming the cross correlation matrices RY = I−1YYH and
RY′ = I−1Y′Y′H , and performing ESPRIT on both will
yield a vector of L phase arguments which are directly propor-
tional to ζl and γl. Defining a complex number zl = γl + jζl,
the angle estimates are given by φl = arctan(ζl/γl), and
θl = |zl|.

The above described structure of the TB matrix W is
just a special case shown in Fig. 7. However, the approach
can be generalized to allow a flexible subarray selection,
more general transmit array geometries than URA, and more
computationally efficient tensor decomposition techniques that
use the additional structures in the signal tensor. These and
other generalizations have been addressed in recent work
[121]. The additional structure in the signal tensor comes
from the Vandermonde structure of the factor matrices. The
term that was recently coined for decomposition methods
of tensors with some additional structures that need to be
taken into account and may lead to significant improvement
of computational efficiency is CONFAC decomposition [88].
The decomposition methods proposed in [121] belong to this
class of tensor decomposition techniques.

Finally, an extension of TB design method for AoA/AoD
estimation in bistatic MIMO radar was recently proposed in
[122], wherein uniform power distribution across the transmit
array elements was achieved via inequality constraints.
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D. Tensor Techniques for Slow-Time MIMO Radar

A notifiable disadvantage of MIMO radar is the need
for multiple orthogonal waveforms. Indeed, multi-waveform
MIMO radar demands several signal generators to transmit
orthogonal waveforms, which can be costly and unacceptable
especially in such applications as automotive MIMO radar.
However, using additional M phase shifters at the transmit
array instead of multiple orthogonal waveform generators,
the implementation of MIMO radar can be still upgraded
easily from a legacy Single-Input Multiple-Output (SIMO)
radar, where only one signal generator is used. The associated
waveform design approach has been called Doppler division
multiple access (DDMA) technique, and the corresponding
signal model can also be represented in tensor form [123].
The essence of this slow-time MIMO radar framework is to
modulate each transmit signal with a unique Doppler shift
via pulse-to-pulse phase coding. Under this circumstance, the
model in (53) can be modified to represent the received signal
of MIMO radar using DDMA technique as

Y =
[
(A �B) CT

]
�D + Z (66)

where D , (IM � 1N×M ) P, P ∈ CM×Q is the phase modu-
lation matrix that achieves waveform diversity in Doppler do-
main, and 1N×M is a N×M all-one matrix. It can be observed
that matrix D also represents the PARAFAC decomposition.
It is worth noting that the independence of phase modulation
matrix and the received signal can be exploited in the context
of slow-time MIMO radar. Based on this property, a novel
tensor model was designed to improve the target parameter
estimation performance in [123]. Moreover, the additional
phases on transmit array lead to a cyclically varying transmit
beampattern from pulse to pulse, which can be regarded as a
special case of TB design.

V. CONCLUSION

In this paper, we presented a comprehensive overview of
tensor decompositions in wireless communications and MIMO
radar. We provided a description of basic tensor operations
and decompositions, thus establishing the preliminaries for
advanced application-driven discussions. Within the area of
wireless communications, we provided an in-depth descrip-
tion of tensor-based methods for blind symbol recovery and
channel parameter estimation, focusing on CDMA, STF, coop-
erative/relay, MIMO, and mmWave systems. We also reviewed
tensor techniques for transmit beamspace design and target
parameter estimation in MIMO radar. The presented methods
and strategies highlighted the prospects and potential of tensor
algebra and decompositions in wireless communications and
MIMO radar.
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[44] Í.V. Cavalcante, A.L.F. de Almeida, and M. Haardt, “Joint channel
estimation for three-hop MIMO relaying systems,” IEEE Signal Process.
Lett., vol. 22, no. 12, pp. 2430–2434, 2015.

[45] J. Li and P. Stoica (Eds.), MIMO Radar Signal Processing, John Wiley
& Sons, Hoboken, NJ, 2009.

[46] J. Bergin and J.R. Guerci, MIMO Radar: Theory and Application, Artech
House, Boston, MA, 2018.

[47] K.W. Forsythe and D.W. Bliss, “MIMO radar waveform constraints for
GMTI,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 1, pp. 21–32,
2010

[48] P. Lombardo, D. Pastina ,and F. Turin, “Ground moving target detection
based on MIMO SAR systems,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 8, no. 11, pp. 5081–5095, 2015.

[49] G.J. Frazer, “Experimental results for MIMO methods applied in over-
the-horizon radar,” IEEE Aerosp. Electron. Syst. Mag., vol. 32, no. 12,
pp. 52–69, 2017.

[50] J. Hu, M. Li, Q. He, Z. He, and R.S. Blum, “Joint estimation of MIMO-
OTH radar measurements and ionospheric parameters,” IEEE Trans.
Aerosp. Electron. Syst., vol. 53, no. 6, pp. 2789–2805, 2017.

[51] Y.I. Abramovich, G.J. Frazer ,and B.A. Johnson, “Principles of mode-
selective MIMO OTHR,” IEEE Trans. Aerosp. Electron. Syst., vol. 49,
no. 3, pp. 1839–1868, 2013.

[52] S. Sun, A.P. Petropulu ,and H.V. Poor, “MIMO radar for advanced
driver-assistance systems and autonomous driving: Advantages and
challenges,” IEEE Signal Process. Mag., vol. 37, no. 4, pp. 98–117,
2020.

[53] S. Saponara, M.S. Greco, and F. Gini, “Radar-on-chip/in-package in
autonomous driving vehicles and intelligent transport systems: Oppor-
tunities and challenges,” IEEE Signal Process. Mag., vol. 36, no. 5, pp.
71–84, 2019.

[54] F. Liu, C. Masouros, A.P. Petropulu, H. Griffiths, and L. Hanzo, “Joint
radar and communication design: Applications, state-of-the-art, and the
road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, 2020.

[55] A. Hassanien, M.G. Amin, E. Aboutanios and B. Himed, “Dual-function
radar communication systems: A solution to the spectrum congestion
problem,” IEEE Signal Process. Mag., vol. 36, no. 5, pp. 115-126, 2019.

[56] A. Hassanien, M.G. Amin, Y.D. Zhang and F. Ahmad, “Signaling
strategies for dual-function radar communications: An overview,” IEEE
Aerosp. Electron. Syst. Mag., vol. 31, no. 10, pp. 36-45, 2016.

[57] D. Nion and N.D. Sidiropoulos, “Tensor algebra and multidimensional
harmonic retrieval in signal processing for MIMO radar,” IEEE Trans.
Signal Process., vol. 58, no. 11, pp. 5693–5705, 2010.

[58] I. Podkurkov, L. Hamidullina, E. Traikov, M. Haardt, and A.
Nadeev,“Tensor-based near-field localization in bistatic MIMO radar
systems,” in Proc. 22nd Int. ITG Workshop on Smart Antennas, Bochum,
Germany, 2018, pp. 1–8.

[59] P.R. Singh, Y. Wang, and P. Chargé,“Bistatic MIMO radar for near field
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