CAIET AL.: X-DISTILL

X-Distill: Improving Self-Supervised
onocular Depth via Cross-Task Distillation

-}

O

((Bong Cai'
ngcai@qti.qualcomm.com

C\Janarbek Matai'
jmatai@qti.qualcomm.com

hubhankar Borse'
orse@qti.qualcomm.com

izhe Zhang?
(Yizhe.zhang.cs@gmail.com

Amin Ansari®
«anina@gqti.qualcomm.com

"Qualcomm Al Research
San Diego, CA, USA
Qualcomm Al Research is an initiative
of Qualcomm Technologies, Inc.
Second and third authors contributed
equally to this work

2Nanjing University of Science and
Technology
Nanjing, China
Work done at Qualcomm Al Research

a

3 Qualcomm Technologies, Inc.

tih Porikli’ San Diego, CA, USA
orikli@gti.qualcomm.com

arXiv:2110.12b16v

Abstract

In this paper, we propose a novel method, X-Distill, to improve the self-supervised
training of monocular depth via cross-task knowledge distillation from semantic seg-
mentation to depth estimation. More specifically, during training, we utilize a pretrained
semantic segmentation teacher network and transfer its semantic knowledge to the depth
network. In order to enable such knowledge distillation across two different visual tasks,
we introduce a small, trainable network that translates the predicted depth map to a se-
mantic segmentation map, which can then be supervised by the teacher network. In this
way, this small network enables the backpropagation from the semantic segmentation
teacher’s supervision to the depth network during training. In addition, since the com-
monly used object classes in semantic segmentation are not directly transferable to depth,
we study the visual and geometric characteristics of the objects and design a new way
of grouping them that can be shared by both tasks. It is noteworthy that our approach
only modifies the training process and does not incur additional computation during in-
ference. We extensively evaluate the efficacy of our proposed approach on the standard
KITTI benchmark and compare it with the latest state of the art. We further test the
generalizability of our approach on Make3D. Overall, the results show that our approach
significantly improves the depth estimation accuracy and outperforms the state of the art.

1 Introduction

Accurate monocular depth estimation plays a critical role in 3D visual scene understanding
and is of great importance for a variety of application domains, such as self-driving, AR/VR,
and robotics. Thanks to the advancement of deep learning algorithms, recent years have seen
considerable progress in this area [25]. However, training accurate deep learning models in
a supervised manner requires high-quality (e.g., dense and correctly aligned) ground-truth
depth maps, which are difficult and costly to obtain.
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In order to overcome this challenge, self-supervision has emerged as a new paradigm
for training monocular depth estimation models [9, 10, 45]. Since the inception of such
self-supervised training, researchers have looked at various directions in order to further
improve the depth estimation accuracy, such as designing more complex architectures [13,
16, 23], improving the photometric matching [15, 33], handling dynamic objects [2, 6, 11,
18], utilizing edge information [28, 30, 46], multi-task learning [4, 22, 29, 35, 41], and
exploiting temporal information [27].

Given the importance of visual scene understanding for depth estimation, researchers
have recently started to study how to utilize semantic segmentation information to improve
accuracy. In [14, 19, 44], the authors use pretrained or jointly trained semantic segmentation
networks to assist the depth network during both training and test. While such approaches
can considerably improve accuracy, they incur significant extra computation during infer-
ence as they require running a separate and usually heavy-weight segmentation network.
Another route is to incorporate the semantic information into the loss function, which only
requires the extra computation of semantic information during training. One possible way is
to include semantic segmentation as an auxiliary task, by co-training a semantic network and
a depth network that share a set of layers [35]. Other papers compare the semantic segmen-
tations on both the warped and actual versions of a frame, and enforce a consistency regu-
larization [3, 39]. However, this requires running the segmentation network in every training
iteration, which still incurs considerable overhead. In [46], the authors use the segmenta-
tion masks to explicitly regularize the edges on the depth map, but their approach requires
semantic labels on the same dataset and introduces many additional hyper-parameters.

In this paper, we propose a novel cross-task knowledge distillation approach, X-Distill, to
utilize semantic information to improve self-supervised monocular depth estimation. Given
a pretrained semantic segmentation teacher network, our goal is to transfer the semantic
knowledge from this teacher network to the depth network during training, in order to en-
hance the depth network’s visual scene understanding capability. Note that our setting is
different from the conventional knowledge distillation where the teacher and student net-
works share the same visual task. In our case, the outputs of the depth network and the
semantic segmentation network are not directly comparable. In order to enable such cross-
task distillation, we utilize a small neural network to connect segmentation and depth, by
generating semantic segmentation based on the predicted depth. The resulting depth-based
semantic segmentation is then supervised by the teacher network. The small network is
trained together with the depth network and as such, allows backpropagation from the se-
mantic segmentation teacher’s supervision to the depth network.

In addition to enabling gradient flow across the two tasks, it is necessary to redesign
the semantic classes such that they are compatible with the visual information in the depth
map. In particular, the classes commonly used in semantic segmentation are usually too
fine-grained for depth. For instance, road and sidewalk are typically treated as two separate
classes in semantic segmentation. However, it is not necessary to treat them differently on
the depth map since both of them are on the ground surface and have highly similar depth
variation patterns in the field of view. As such, we regroup the objects based on their visual
and geometric characteristics. This allows the depth network to distill the key depth-relevant
semantic information, without introducing unnecessary difficulties to the learning process.

We next summarize our main contributions as follows:

* We propose a novel method, X-Distill, to exploit semantic information to improve self-

supervised monocular depth estimation. X-Distill enables the depth network to distill
semantic knowledge in a cross-task manner from a segmentation teacher network dur-
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ing training. At inference time, the depth network then runs in a standalone manner,
without requiring extra computation to process/generate semantic information.

¢ In order to make the semantic segmentation knowledge compatible with the visual in-
formation in depth, we regroup the semantic classes based on the visual and geometric
characteristics of the objects. This allows the depth network to distill the key semantic
knowledge while removing the unnecessary complexities in the learning.

* We evaluate our proposed approach on KITTI and Make3D, and compare it with the
state of the art. We further conduct extensive ablation studies on our method. Overall,
our proposed approach achieves considerably more accurate depth estimation, e.g.,
outperforming [9] by 14% on KITTI (in terms of squared relative error).

2 Related Work

Self-Supervised Monocular Depth Estimation: Due to the difficulty of collecting dense,
high-quality ground-truth depth maps, researchers have proposed self-supervised training to
obtain monocular depth estimation models. Such self-supervision leverages the geometric
relationship among neighboring video frames [9, 45] or between the left and right cameras
in a stereo setting [10]. While these methods provide a new way to train a depth network
without labels, factors such as moving objects, occlusion, poor lighting, and low texture can
considerably degrade their performance.

Utilizing Semantic Information for Depth Estimation: Given the high correlation between
semantic and depth information, researchers have studied how to incorporate semantic infor-
mation to improve depth accuracy. One way is to run an additional (sub)network to generate
semantic information at inference time, which can be fed to the depth network [14, 19, 44].
While this approach can considerably improve the depth estimation performance, it incurs
significantly more computation. Other works include new loss functions during training,
either via multi-task training [35] or by enforcing segmentation consistency between the
warped and real images [3, 24, 39]. These methods do not require extra semantic compu-
tation during test, but require running a semantic network at every training iteration, which
still generates a considerable overhead.

Knowledge Distillation: Knowledge Distillation is usually used to transfer the knowledge
from a more complex model to a smaller model, where both of them are designed for the
same visual task [12]. Few papers have looked at knowledge distillation across two different
visual tasks, e.g., classification tasks with non-overlapping classes [40], classification and
text-to-image synthesis [42], RGB-based depth estimation and depth super resolution [34].
None of the existing works has studied cross-task distillation from semantic segmentation to
depth and we show how to enable it in this paper.

3 Proposed Method

In this section, we present our novel take, X-Distill, on utilizing semantic segmentation
to improve self-supervised monocular depth estimation, through cross-task distillation. In
order to transfer the relevant knowledge from a semantic segmentation teacher network to
the depth network during training, we use a small network to translate depth to segmentation,
thus enabling gradient flow across the two visual tasks. In addition, we redesign the semantic
classes to make them compatible with the visual information contained in depth.

3.1 Self-Supervised Monocular Depth Estimation

We utilize self-supervision to train a monocular depth estimation model, based on single-
view video sequences [9, 45].
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Figure 1: Overview of our proposed X-Distill approach. The gray block describes the self-supervised
training of a monocular depth network based on single-view videos. The blue block illustrates our
proposed cross-task semantics-to-depth distillation. By utilizing a trainable depth-to-segmentation net-
work to translate predicted depth to segmentation, we enable cross-task knowledge transfer from the
pretrained segmentation teacher network to the depth network during training. In addition, we regroup
the semantic classes such that they become compatible with the visual information in depth.

Geometric Modeling: Consider two neighboring video frames, ; and ;. Suppose that pixel
p: € I and pixel p; € I; are two different views of the same point of an object, then p; and
ps are related geometrically as follows:

d(ps)h(ps) = KR, K 'd(p)h(pe) +tiss), (1

where h(p) = [h, w, 1] denotes the homogeneous coordinates of a pixel p with 4 and w be-
ing its vertical and horizontal positions on the image, d(p) is the depth at p, K € R¥*3 is
the camera intrinsic matrix, and T, s = [R,_|t; ] € R3** is the 6DoF relative camera
motion/pose from ¢ to s, with R;_,; € R3*3 and t,_,, € R3*! being the rotation matrix and
translation vector.

Given the depth map of /;, denoted by D;, and the relative camera pose from /; to I, we
can synthesize I, from I; based on Eq. 1, assuming that the 3D points captured in /; are also
present in I;. We denote the synthesized/warped version of /; as 1.

Self-Supervised Training: Suppose that the depth map and the relative camera pose are
provided by a depth network and a pose network, respectively. By minimizing the difference
between the warped and actual versions of ;, we can train these two networks. A common
photometric loss function for comparing /; and I is given by

1 SSIgfl(I,7 I,)’ @)
where || - ||; denotes the £; norm and SSIM is the Structural Similarity Index Measure [38].
Note that Lpy is computed in a per-pixel manner.

It is common to further include a smoothness regularization to prevent drastic variations
in the predicted depth map. Furthermore, in practice, not all the 3D points in /; can be found
in I;, due to occlusion and objects (partially) moving out of the frame. Some objects can also
be moving (e.g., cars), which is not considered in the geometric model of Eq. 1. In order
to correctly measure the photometric loss and train the networks, it is a common practice to
mask out the pixel points that violate the geometric model (see [9] for more details on the
masking techniques). Fig. 1 (gray block) illustrates the self-supervised training scheme of a
monocular depth network.

Lou(l, ) = alll, — L]l + (1 - a)
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3.2 Cross-Task Distillation from Semantics to Depth

Consider a depth network, fp, and a pretrained semantic segmentation network, fs. Our goal
is to transfer the knowledge of the teacher network, fs, to the depth network, fp. However,
unlike conventional knowledge distillation where teacher and student networks are used for
the same visual task, fp and fs are used for two different tasks, and their outputs are not di-
rectly comparable. In other words, given an input, we cannot directly measure the difference
between the outputs of fp and fs in order to generate a loss to train fp.

As such, we utilize a Depth-to-Segmentation (D2S) neural network, hpys, to translate
depth to semantic segmentation. Given the segmentation map generated from the predicted
depth map, we are now able to construct a segmentation loss to distill semantic knowledge
from fs to fp. More formally, the new loss term is given as follows:

L SD ), S,
Lpas(SP,S;) = ZZ cel W i) 3)

i=1j=

where SP = hpys(fp(I;)) is the semantic segmentation map generated by hp,s based on the
predicted depth map D, = fp(1;), S; is the semantic segmentation output generated by the
semantic segmentation teacher network, Lcg denotes the cross-entropy loss, and H and W
are the height and width of the input image.'

The total loss is then given by

Ns Ny
Lt = Y, Ler i+ Y, AsmiLsm k + AposLpos, “4)
k=1 =1

where the self-supervised depth loss is computed over Ny scales, Lpy i is the photometric
loss at the k™ scale, Agy; x and Ly « are the weight and loss for the smoothness regularization
at the kM scale, and Apogs is the weight of the cross-task distillation loss, Lpos.

It can be seen that during training, /pyg is jointly trained with the depth network. This
makes it possible for the pretrained teacher network to provide semantic supervision to the
depth network, by backpropagating through hpys. Our proposed approach is illustrated in
Fig. 1, with the semantics-to-depth distillation module highlighted in the blue block.

For the depth-to-segmentation network, hpys, we adopt a small architecture. More
specifically, hpos consists of two 3 x 3 convolutional layers, each followed by a BatchNorm
layer and a ReLu layer, as well as a pointwise convolutional layer at the end which outputs
the segmentation. Note that the /pys should not be too complex, since a deeper network
would take over too much of the learning load and weaken the knowledge flow to the depth
network. As we shall see in our experiments in Sec. 4, while using a deeper hpys can still
increase the accuracy of the depth network, the improvement is not as significant as that by
using our proposed smaller Apos.

Once the training is finished, the depth network can then run in a standalone manner,
without requiring any extra computation of semantic information during inference. Fur-
thermore, our proposed distillation approach only adds a small amount of computation to
training. More specifically, the segmentation maps from the teacher network only need to be
computed once and the additional forward/backward passes are cheap since hpyg is small.

3.3 Depth-Compatible Grouping of Semantic Classes

Semantic segmentation usually contains much more fine-grained visual recognition informa-
tion that is not present in the depth map. For instance, road and sidewalk are typically treated

"Note that we can include a “background” class for the pretrained segmentation model (which is a common
practice). This will allow us to ignore pixels that are not of interest when computing the distillation loss of Eq. 3.
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. Foreground Shape of Location in
Object Groups vs. Bacgkground Bound?ng Box 3D Space
Thin objects Foreground Thin rectangular | Above ground plane
People and vehicles Foreground Rectangular Above ground plane
Background objects Background Not boundable Above ground plane
Ground Background Not boundable On ground plane

Table 1: Depth-compatible semantic class grouping for outdoor scenes.

as two different semantic classes. However, the depth map does not contain such classifica-
tion information as both road and sidewalk are on the ground plane and have similar depth
variations. As a result, it is not necessary to differentiate them on the depth map. On the
other hand, the depth map does contain the information for differentiating certain classes.
For instance, a road participant (e.g., pedestrian, vehicle) can be easily separated from the
background (e.g., road, building) given the different patterns of their depth values.

As such, is it necessary to reconsider the grouping of semantic classes, such that the
key semantic information is preserved while the unnecessary complexity is removed from
the distillation. Table 1 summarizes our new grouping, which results in four groups.” In
the first two groups, we have objects in the foreground. The respective foreground objects
in these two groups are then further differentiated based on their shapes, where the first
group contains thin structures, e.g., traffic lights/signs (including the poles), and the second
group consists of people and vehicles which are of more general shapes. The third and
fourth groups then contain the background objects, such as buildings, vegetation, road, and
sidewalk. We further separate the ground plane (e.g., road and sidewalk) from the other
background objects.

4 Experiments

In this section (and also in the supplementary file), we present a comprehensive performance
analysis on our proposed X-Distill approach and compare with the current state of the art.
We furthermore conduct in-depth ablation studies on various aspects of our method.

4.1 Experiment Setup

Datasets: We evaluate depth estimation on KITTI [8] using the standard Eigen split [7], with
two input resolutions, 640x 192 and 1024 x320. Following [45], we remove the static frames
in the training set. There are 39,810, 4,424, and 697 samples for training, validation, and test.

2We focus on outdoor scenes in this paper and will consider an extension to indoor scenes as part of future work.

Monodepth2

Figure 2: Depth estimation on three sample images. The second row shows the estimated depth maps
by Monodepth2 [9] and the third row shows the depth maps by our proposed X-Distill approach. It can
be seen that our method provides more accurate depth estimation. The green boxes indicate sample
regions where our method considerably improves the estimation quality.
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We use Cityscapes [5] training and validation sets to train the segmentation teacher network.
We further use Make3D [31, 32] to evaluate the generalizability of our KITTI-trained model.
Grouping of Semantic Classes: We group the Cityscapes classes according to our pro-
posed scheme in Table 1, such that they are compatible with the depth information. More
specifically, we have 1) thin objects: poles and traffic lights/signs, 2) people and vehicles:
persons, riders, cars, trucks, buses, motorcycles, bicycles, and trains, 3) background objects:
buildings, walls, fences, vegetation, terrain, and sky, and 4) ground: road and sidewalk.
Networks: For the depth network and the pose network, we use the ResNet-50 (RN50)-
based models in [9]. The semantic segmentation teacher network is an HRNet [37] with
OCR [43] and InverseForm [1]. It has an mIoU of 85.6% on Cityscapes test set. During the
self-supervised training of the depth network, this segmentation network is frozen.
Hyperparameters: For the self-supervised part, we follow the hyperparameter setting in [9].
For the semantics-to-depth distillation loss, Lpyg, we linearly increase its weight from 0
to 0.005 during training. As we shall see in the ablation studies, this linear schedule can
improve the training as compared to using a constant weight.

Evaluation Metrics: We use the commonly used error metrics to evaluate the depth estima-
tion performance, including the Absolute Relative Error (Abs Rel), Squared Relative Error
(Sq Rel), Root Mean Squared Error (RMSE), and the RMSE of the log of the depth values.
In addition, we use the classification metrics, 8;, &, and &3, which measure whether the
ratio between the ground-truth and predicted depth values is within a certain interval around
1. Mathematical definitions of these metrics can be found in the supplementary file.

4.2 Results

We extensively compare our proposed approach with the latest state of the art (SOTA) on
KITTI, including methods that 1) use more complex architectures [13, 16, 23], 2) require
additional computation of semantic information during inference [14], 3) utilize semantic
information during training and do not incur extra computation during test [18], 4) propose
better photometric matching [15, 33], 5) utilize multiple frames [27], and 6) perform multi-
task learning [35]. Note that we do not consider pretraining/online finetuning of the depth
network or applying post-processing on the predicted depth maps. We also analyze both
the depth estimation accuracy and computation efficiency of the methods. Furthermore, we
test our KITTI-trained model on Make3D and compare it with the related SOTA to evaluate
generalizability. Finally, we perform extensive ablation studies on our proposed approach.

4.2.1 Performance Evaluation

Evaluation on KITTI: Table 2 shows the evaluation results on KITTI and comparison with
the latest SOTA methods. It can be seen that our proposed X-Distill approach performs the
best for most of the metrics. When our approach does not achieve the top-1 result, it is very
close to the best number. Fig. 2 shows sample prediction results of our proposed approach as
compared to those by Monodepth2. It can be seen that Monodepth2 can predict inconsistent
depth values on an object, which visually appear as missing parts on the depth map (e.g.,
see the missing upper part of the car in Fig. 2 (middle)). On the other hand, our approach
provides more accurate and semantically more structured depth maps, thanks to its ability
to better understand the semantics of the scene. For instance, it generates more structurally
complete depth estimations for the biker in Fig. 2 (left) and for the cars in the middle and
right figures (as indicated by the green boxes). Moreover, our approach is also able to capture
the thin structures better. For instance, in Fig. 2 (right), our model is able to generate a more
clear depth estimation over the lamp post. This is because the thin objects are grouped as a
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. Lower is Better Higher is Better
Method Resolution |} Rl SqRel RMSE RMSEp, | 6 5 5
Monodepth2 [9] (RN18) 640 x 192 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Monodepth2 [9] (RN50) 640 x 192 0.110 0.831 4.642 0.187 0.883 0.962 0.982
Tosi et al. [35]" 640 x 192 0.120 0.792 4.750 0.191 0.856 0.958 0.984
PackNet-SfM [13] 640 x 192 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Johnston et al. [16] (RN18) 640 x 192 0.111 0.941 4817 0.185 0.885 0.961 0.981
Johnston et al. [16] (RN101) | 640 x 192 0.106 0861  4.699 0.185 0.889 0962  0.982
HR-Depth [23] 640 x 192 0.109 0.792 4.632 0.185 0.884 0.962 0.983
Guizilini et al. [14]" (RN18) 640 x 192 0.117 0.854 4714 0.191 0.877 0.959 0.981
Guizilini et al. [14]7 (RN50) 640 x 192 0.113 0.831 4.663 0.189 0.878 0.971 0.982
Klingner et al. [18]" (RN18) 640 x 192 0.113 0.835 4.693 0.191 0.879 0.961 0.981
Klingner et al. [18]7 (RN50) 640 x 192 0.112 0.833 4.688 0.190 0.884 0.961 0.981
DiPE [15] 640 x 192 0.112 0.875 4.795 0.190 0.880 0.960 0.981
Patil et al. [27] 640 x 192 0.111 0.821 4.650 0.187 0.883 0.961 0.982
"7 7 X-Distill (ours)’ | 640x192 | 0106 0777 4580  0.84 | 0.888 0963 0982
Monodepth2 [9] (RN18) 1024 x 320 0.115 0.882 4701 0.190 0.879 0.961 0.982
Tosi et al. [35]" 1024 x 320 0.118 0.748 4.608 0.186 0.865 0.961 0.985
PackNet-SfM [13] 1280 x 384 0.107 0.802 4.538 0.186 0.886 0.962 0.981
HR-Depth [23] 1024 x 320 0.106 0.755 4.472 0.181 0.892 0.966 0.984
Klingner et al. [18]7 (RN18) 1280 x 384 0.107 0.768 4.468 0.186 0.891 0.963 0.982
Shu et al. [33] 1024 x 320 0.104 0.729 4.481 0.179 0.893 0.965 0.987
"7 7 X-Distill (ours)’ | 1024x320 | 0102 0.698 4439 ~ 0180 | 0.895 0965 0983

Table 2: Performance evaluation on KITTI Eigen split. For methods that report performance for
multiple models, we use the encoder to differentiate them (e.g., RN18 vs. RN50). Note that two
architectures can be very different even if they use the same encoder (e.g., Monodepth2 [9] vs. Johnston
et al. [16]). For each metric, the best (second best) results are in bold (underlined). We use T to indicate
methods that utilize semantic information during training.

class in the semantics-to-depth distillation, which encourages the depth network to learn to
recognize these structures.

Accuracy vs. Computation Efficiency: Fig. 3 shows the accuracy, in terms of squared
relative error, and the efficiency, in terms of GMAC (Multiply-Accumulate Operations in
10”), of our proposed approach and the SOTA methods on KITTL? It can be seen that our
trained model is able to achieve smaller depth estimation errors while using the same or less
computation. We further show the performance of applying our cross-task distillation to an
RN18-based model from [9]. It can be seen that our method allows this smaller network to

achieve an accuracy similar to PackNet (which uses 20x more computation).
0.92
0.9 Monodep)t(hz (RN18) [9]

0.88
Johnston et al. (RN101) [16]
x

0.86

S om Monodepth2 (RN50) [9]
o *
@ 082 Klingner et al. (RN50) [18]
0.8 HR-Depth [23]
+ X PackNet [13]
0.78 Ours (RN18) + x

Ours (RNS0)

1 2

10 10

GMAC
Figure 3: Accuracy (in squared relative error) vs. computation efficiency (in GMAC log-scale).

Depth Estimation on Center and Surrounding Areas: Since KITTI images are acquired
with a wide-angle lens, we further evaluate the depth estimation performance on center and
surrounding areas in the image. Specifically, we horizontally divide each image into 3 equal
sections. The middle part is considered the center area and the left and right parts are sur-
rounding areas. It can be seen in Table 3 that the depth estimation is much more accurate

3For Johnston et al. [16], the GMAC shown in Fig. 3 is a lower bound which only includes the RN 101 encoder’s
computation since their self-attention and discrete disparity volume implementation is not publicly available.
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in the center area, for both Monodepth2 and X-Distill, since surrounding areas suffer from
lens distortion/rectification artifacts. We note that for both areas, our proposed X-Distill
consistently provides more accurate depth estimation as compared to Monodepth2.

Method ‘ Lower is Better Higher is Better
AbsRel SqRel RMSE RMSEL, &1 [} [}
Over Center Areas
Monodepth2 (RN50) 0.061 0.059 0.568 0.077 0978 099  0.999
X-Distill (ours) ‘ 0.056 0.048 0.526 0.072 ‘ 0982 0997  0.999
Over Surrounding Areas
Monodepth2 (RN50) 0.135 1.228 5.700 0.220 0.839 0945 0974
X-Distill (ours) ‘ 0.125 1.054 5.368 0.210 ‘ 0.852 0950 0.976

Table 3: Performance evaluation on center and surrounding image areas.

Generalizability on Make3D: We evaluate the generalizability of our KITTI-trained model
on Make3D (following the test setup in [9]). It can be seen in Table 4 that our model signifi-
cantly outperforms other SOTA self-supervised methods on this dataset.

Lower is Better

Method Supervision |\ Rel  SqRel RMSE  RMSEp
Karsch [17] GT 0428 5079 8389 0.149
Liu [21] GT 0475 6562 10.05 0.165
Laina [20] GT 0204 1840 5683 0.084
Monodepth [10] S 0544 1094 11760  0.193
Zhou et al. [45] M 0383 5321 10470 0478
DDVO [36] M 0387 4720 $.090 0.204
Monodepth2 [9] (RN18) M 0322 3589 7417 0.163
X-Distill (ours)’ M 0308 T 3122 T 7.013 0158

Table 4: Performance evaluation on Make3D. GT indicates that the method is trained with ground-
truth Make3D depth annotations, S indicates self-supervised training using KITTI stereo data, and M
indicates self-supervised training using KITTI single-view videos. We use T to indicate methods that
utilize semantic information during training.

4.2.2 Ablation Studies

Grouping Semantic Classes: In addition to our proposed grouping shown in Table 1, we
further test the baseline of using the original 19 Cityscapes classes without regrouping, as
well as a more aggressive grouping method that only considers foreground and background
objects. As shown in Table 5, while the other two grouping baselines can also improve the
depth estimation, the improvements are not as large as compared to our proposed method.

Categorization Scheme Lower is Better Higher is Better
AbsRel SqRel RMSE RMSEL, ] [ 53
Monodepth2 (RN50) 0.110 0.831 4.642 0.187 0.883 0962  0.982
” “Fore/Back-ground 2) | ~0.108 ~ T 0.798 ~ T 4663~ ~ 0.187 ~ | 088  0.962 0982 ~
Proposed scheme (4) 0.106 0.777 4.580 0.184 0.888  0.963  0.982
Cityscapes classes (19) 0.110 0.806 4.619 0.184 0.882 0963  0.983

Table 5: Performance of different ways of grouping the semantic classes.

Complexity of Depth-to-Segmentation Network: As discussed in Sec. 3.2, the D2S net-
work should be of a proper complexity such that it does not take away the learning from
the depth network. As shown in Table 6, by using a more complex D2S network (about 2x
larger), the depth network gains a smaller improvement. We further test a baseline using a
simple D2S network with one-layer pointwise convolution. This baseline does not perform
well as the corresponding D2S network is too simple to translate depth to segmentation.

Weighting Segmentation Loss: In our proposed approach, we adopt a linear weighting
schedule to combine the segmentation distillation loss with the self-supervised depth loss. It
can be seen in Table 7, the linearly scheduled weight allows the depth network to achieve a
higher depth estimation accuracy as compared to using a constant weight. We further vary
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Depth-to-Segmentation Lower is Better Higher is Better
Network AbsRel SqRel RMSE RMSEL, S & &
Monodepth2 (RN50) 0.110 0.831 4.642 0.187 0.883  0.962  0.982
"~ 23%3-Conv + 1 Pointwise Conv | ~0.106 ~— ~ 0777 ~ 4580 ~ ~ 0.184 ~ | 0888 ~ 0.963 0982 ~
4 3x3-Conv + 1 Pointwise Conv 0.108 0.786 4.615 0.185 0.886  0.963  0.982
1 Pointwise Conv 0.110 0.840 4.683 0.188 0.885  0.961  0.981

Table 6: Depth-to-Segmentation network.

the final weight by +20% and the results show that our proposed method is not very sensitive
to the exact value of the weight.

Weighting of Lower is Better Higher is Better
Distillation Loss AbsRel SqRel RMSE RMSE, ] 5 8
Monodepth2 (RN50) 0.110 0.831 4.642 0.187 0.883  0.962  0.982
" " Constant: 0.0050 ~ | 0.109 ~ 0.810 ~ 4.637 ~ 0185 | 0.887 0963 0983 ~
Linear: 0 - 0.0040 0.107 0.779 4.632 0.185 0.887 0962  0.982
Linear: 0 - 0.0045 0.107 0.751 4.553 0.185 0.884 0963  0.983
Linear: 0 - 0.0050 0.106 0.777 4.580 0.184 0.888  0.963  0.982
Linear: 0 - 0.0055 0.108 0.795 4.606 0.183 0.887  0.963  0.983
Linear: 0 - 0.0060 0.107 0.775 4.580 0.184 0.888  0.963  0.983

Table 7: Weighting of segmentation loss.

Applying X-Distill to Different Architectures: We apply our proposed approach to dif-
ferent depth networks, e.g., Monodepth2 [9] with different encoders and HR-Depth [23].
Specifically, for the encoder of Monodepth2, in addition to RN18 and RN50 that are used
in the original paper, we also employ a recent backbone, DONNA, which is optimized for
mobile processors via neural architecture search [26]. This will demonstrate the efficacy of
our method for practical mobile use cases. As can be seen in Table 8, our proposed X-Distill
considerably improves the depth estimation accuracy for all these different depth networks.

Architectures Lower is Better Higher is Better
AbsRel SqRel RMSE RMSEL, [ [ 03

Monodepth2 [9] (RN18) 0.115 0.903 4.863 0.193 0.877 0959  0.981
+ X-Distill 0.111 0.791 4.772 0.188 0.874  0.960  0.983

~ “Monodepth2 OT(RN50) | ~0.110 ~ ~ 0.831 ~ 4642~ ~ 0.187 | 0.883 ~ 0.962 ~0.982 -
+ X-Distill 0.106 0.777 4.580 0.184 0.888  0.963 0.982

" Monodepth2 [9] (DONNA) | ~0.115 ~ ~ 0916~ ~ 4827 ~ "0.193 ~ | 0879 ~ 0.960 ~0.981 -
+ X-Distill 0.109 0.772 4.678 0.188 0.884  0.962  0.982

T 7 T HRDepth[23] ~ © [ T0.109 T T 07927 T 46327 T 0185 | 0.884 ~ 0.962° ~0.983
+ X-Distill 0.108 0.755 4.579 0.184 0.884  0.963  0.983

Table 8: Applying our semantics-to-depth distillation to different depth networks. For each model,
improved numbers by using X-Distill are highlighted in bold.

5 Conclusions

In this paper, we presented a novel cross-task distillation approach, X-Distill, to improve
the self-supervised training of monocular depth by transferring semantic knowledge from
a teacher segmentation network to the depth network. In order to enable such cross-task
distillation, we utilized a small, trainable network that translates the predicted depth map to
a semantic segmentation map, which the semantic teacher network can then supervise. This
enables the backpropagation from the semantic teacher’s supervision to the depth network
during training. We further studied the visual and geometric characteristics of the objects and
designed a new way of grouping them that can be shared by both tasks. We evaluated our
proposed approach on KITTI and Make3D, and conducted extensive ablation studies. The
results show that by training with the proposed cross-task distillation, we can significantly
improve the depth estimation accuracy and outperform the state of the art without incurring
additional computation during inference.
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