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Abstract

Though the state-of-the architectures for semantic seg-
mentation, such as HRNet, demonstrate impressive ac-
curacy, the complexity arising from their salient design
choices hinders a range of model acceleration tools, and
further they make use of operations that are inefficient on
current hardware. This paper demonstrates that a simple
encoder-decoder architecture with a ResNet-like backbone
and a small multi-scale head, performs on-par or better
than complex semantic segmentation architectures such as
HRNet, FANet and DDRNets.

Naı̈vely applying deep backbones designed for Image
Classification to the task of Semantic Segmentation leads to
sub-par results, owing to a much smaller effective receptive
field of these backbones. Implicit among the various design
choices put forth in works like HRNet, DDRNet, and FANet
are networks with a large effective receptive field. It is nat-
ural to ask if a simple encoder-decoder architecture would
compare favorably if comprised of backbones that have a
larger effective receptive field, though without the use of in-
efficient operations like dilated convolutions.

We show that with minor and inexpensive modifications
to ResNets, enlarging the receptive field, very simple and
competitive baselines can be created for Semantic Segmen-
tation. We present a family of such simple architectures
for desktop as well as mobile targets, which match or ex-
ceed the performance of complex models on the Cityscapes
dataset. We hope that our work provides simple yet ef-
fective baselines for practitioners to develop efficient se-
mantic segmentation models. The model definitions and
pre-trained weights are available at https://github.
com/Qualcomm-AI-research/FFNet.

1. Introduction
Convolutional Neural Network based approaches to Se-

mantic Image Segmentation have seen a lot of progress in
the past years in terms of architectures, training techniques,

* Qualcomm AI Research is an initiative of Qualcomm Technologies,
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Figure 1. FFNet Architecture comprises of a backbone (encoder),
in this case ResNet-like, feeding into a compact multi-branch Up-
head (decoder), that subsequently feeds multi-scale features to the
task specific head. ‘s’ indicates the block or layer stride. The
choices for the stem, widths & depths of the backbone blocks,
widths of the convolutions in the Up-head, choice of upsampling
operator (bilinear vs nearest), and the design of the task head de-
pend on the target platform and the task. The backbone options
considered in this paper are listed in Table 1, and the stem, Up-
head and Segmentation-head options are depicted in Figure 2.

datasets and loss functions. The extent of improvement aris-
ing from various aspects of the improved CNN architec-
tures can often get muddled due to the specifics of training,
datasets and training pipeline differences.

For semantic image segmentation of natural images, re-
searchers and practitioners who are new to the field look to
state-of-the-art tables [2] and available code bases [1] as a
starting point, and build on top [27] of these. Unfortunately,
these benchmarks happen to be dominated by increasingly
complex and costly architectures [10, 22, 26].

We set out to examine the extent of efficacy of these
complex designs over a conceptually simpler architecture.
The baseline architecture we use is most closely related to
FPN [15], originally proposed for object detection. Specif-
ically, we investigate whether the accuracy gains of the
more complex architectures hold up when their associated
non-architectural improvements are applied to this simple
baseline architecture. We see that when using ResNet-
50/101 [9] backbones comprised of bottleneck-blocks in
an FPN-like design the network is indeed markedly worse
than the more complex designs. In this paper, we conjec-
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Figure 2. Various choices for the Stem, Up-head, and Segmentation-head that we consider in this paper. These are connected to backbone
networks of varying widths and depths, listed in Table 1. For GPU models, bilinear upsampling is used. For mobile models, nearest
neighbour upsampling is used. The choices depicted are not comprehensive, and only meant to represent a few distinct points in a potential
NAS search space. In the text we will refer to the Stem, Up-head and Segmentation-head choice combinations as A-B-B, C-B-C etc.

ture that this drop in performance is mainly due to the de-
crease in receptive field due to using bottleneck-blocks [5].
We show that with similarly deep ResNet backbones com-
prised of basic-blocks, with a consequently much larger re-
ceptive field, the simple architecture does compare favor-
ably to the more complex designs. Our simple architec-
ture named FFNet not only reduces the inference time and
compute costs, but is comprised entirely of operations well
supported on a wide variety of hardware, further making
on-device deployment easier.

We describe the FFNet meta-architecture in Section 2,
and present results for a family of FFNet models in Sec-
tion 3. Given the extent of the experiments and the compute
requirements, we limit the experiments to the Cityscapes
dataset.

2. FFNet: A Simple Architecture

In Figure 1, we depict a schema of our Fuss-Free Net-
work (FFNet); a simple architecture inspired by the FPN
architecture. It has an encoder-decoder structure. The en-
coder is comprised of a ResNet backbone without the clas-
sification head. Instead of just using features from the
very last layer of the backbone, features at different spa-
tial resolutions are extracted from all intermediate residual
stages. These features are passed on to a light convolu-
tional decoder head that upsamples and incorporates fea-
tures from lower resolution branches to higher resolution
branches. This decoder head, which we will refer to as ‘Up-
head’, also outputs features at different spatial resolutions.
These multi-scale features are subsequently used as input
to a small task-specific head, such as for segmentation or
classification.

A lot of flexibility exists within the general setup of
FFNet. We can freely change the width, depth, and the type
of backbone building blocks, number of feature scales, the
head type and the head width. Figure 2 depicts the various

stem, Up-head, and Segmentation-head choices we investi-
gate in this paper, marked as A/B/C. These are combined
with various backbone width and depth configurations de-
picted in Table 1, depending on the target platform. The
first residual block in the backbone can have a stride of 1
or 2, which changes the spatial resolution of the output. We
show results for both in Section 3. Specific instantiations of
FFNets throughout the paper will refer to a backbone, such
as ResNet-50, paired with a Stem-Up-Seg combination de-
noted as A-B-B.

We show models for desktop GPU and mobile targets.
The desktop models use bilinear upsampling in the Up-
head, while mobile models use nearest neighbour upsam-
pling.

This is a simple design with no particular restrictions im-
posed on the number of stages in the backbone or the num-
ber of feature scales being output, the choice of striding in
the stem and the backbone. The architecture can thus easily
be adapted for other tasks.

2.1. Experimental Setup

Dataset. The Cityscapes [7] dataset is comprised of
videos of urban street scenes recorded from a moving ve-
hicle. 5k image frames have high quality pixel-level anno-
tations of 19 semantic classes, and a further 20k frames that
are weakly annotated.

Training Setup. Since the number of annotated frames
in the Cityscapes dataset is limited, we utilize ImageNet
pretraining of the models. The FFNet models are pretrained
on the ILSVRC2012 [8] dataset in the FFNet form, using
the classification head from HRNet [22] in place of the seg-
mentation head. For ImageNet pretraining, we make use of
Pytorch Image Models [23], and train for 150 epochs.

For Cityscapes training, the stem and the backbone are
initialized from the ImageNet pretraining. The Up-head and
the Segmentation-head are initialized from scratch. Since
the fine grained annotations on the Cityscapes dataset are
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Table 1. Configurations of backbones examined in the paper. The naming convention follows that of ResNets [9], even though these are
paired up with different stems and heads depicted in Figure 2, which changes the overall number of layers.

Network Name ResNet Blocks Stage-wise Num Blocks Stage Output Channels Stage Strides
4-stage Backbones ResNet 150 Basic [16, 18, 28, 12] [64, 128, 256, 512] [1 or 2, 2, 2, 2]

ResNet 134 Basic [8, 18, 28, 12] [64, 128, 256, 512] [1 or 2, 2, 2, 2]
ResNet 101 Bottleneck [3, 4, 23, 3] [256, 512, 1024, 2048] [1 or 2, 2, 2, 2]
ResNet 86 Basic [8, 12, 16, 6] [64, 128, 256, 512] [1 or 2, 2, 2, 2]
ResNet 56 Basic [4, 8, 12, 3] [64, 128, 256, 512] [1 or 2, 2, 2, 2]
ResNet 50 Bottleneck [3, 4, 6, 3] [256, 512, 1024, 2048] [1 or 2, 2, 2, 2]
ResNet 34 Basic [3, 4, 6, 3] [64, 128, 256, 512] [1 or 2, 2, 2, 2]
ResNet 18 Basic [2, 2, 2, 2] [64, 128, 256, 512] [1 or 2, 2, 2, 2]
ResNet 150 S Basic [16, 18, 28, 12] [64, 128, 256, 512] [1 or 2, 2, 2, 2]
ResNet 86 S Basic [8, 12, 16, 6] [64, 128, 256, 512] [1 or 2, 2, 2, 2]
ResNet 78 S Basic [6, 12, 12, 8] [64, 128, 192, 320] [1 or 2, 2, 2, 2]
ResNet 54 S Basic [5, 8, 8, 5] [64, 128, 192, 320] [1 or 2, 2, 2, 2]
ResNet 40 S Basic [4, 5, 6, 4] [64, 128, 192, 320] [1 or 2, 2, 2, 2]
ResNet 30 S Basic [3, 4, 4, 3] [64, 128, 192, 320] [1 or 2, 2, 2, 2]
ResNet 22 S Basic [2, 3, 3, 2] [64, 128, 192, 320] [1 or 2, 2, 2, 2]

3-Stage Backbones ResNet 122 N Basic [16, 24, 20] [96, 160, 320] [2, 2, 2]
ResNet 74 N Basic [8, 12, 16] [96, 160, 320] [2, 2, 2]
ResNet 46 N Basic [6, 8, 8] [96, 160, 320] [2, 2, 2]
ResNet 122 NS Basic [16, 24, 20] [64, 128, 256] [2, 2, 2]
ResNet 74 NS Basic [8, 12, 16] [64, 128, 256] [2, 2, 2]
ResNet 46 NS Basic [6, 8, 8] [64, 128, 256] [2, 2, 2]

limited to 5k images, learning meaningful and generaliz-
able feature representations with deep CNNs can be chal-
lenging. We use pseudo labels from Tao et al. [21] on the
images with coarse annotations. Additionally, we use the
RMI [28] loss as an auxiliary loss while training. The mod-
els are trained for 175 epochs with a batch size of 8. We
will make the ImageNet and Cityscapes training hyperpa-
rameters available with the models.

3. Experiments and Comparisons

We examine various configurations of FFNets. The
backbones of different depths, widths, and block types that
we tried are detailed in Table 1. These backbones are paired
with various stem, Up-head, and Segmentation options from
Figure 2, and the configurations referred to as A-B-B etc.

For desktop GPU FFNets, we use input images of size
1024 × 2048. We show FFNet models with a stride of 1
and 2 in the first residual stage of the ResNet backbone,
with an output segmentation map resolution of 256 × 512
and 128 × 256 respectively. We’ll refer to these models as
FFNet-GPU-Large and FFNet-GPU-Small respectively.

For mobile FFNets, we use a stride of 2 in the first resid-
ual stage, with an input resolution of 1024 × 2048, and a
stride of 1 when the input resolution is 512 × 1024, both
resulting in a segmentation map resolution of 128× 256.

3.1. Efficacy of Basic Blocks vs Bottleneck Blocks

FFNets with backbones comprised of basic-blocks far
outperform backbones comprised of bottleneck blocks, for
FFNet-GPU-Large and FFNet-GPU-Small models. See
FFNet A-A-A in Figure 3 and Figure 5. Prior work has
primarily used ResNet-101 and ResNet-50 as backbones in
baselines for Segmentation, and seen poor results on ac-
count of an inadequately large receptive field, and needing
to enlarge the receptive field through tricks like dilated con-
volution [5]. New backbones like ResNet-150, 134, 86, 56
described in Table 1, and known backbones like ResNet-
34, which are all comprised of basic-blocks fare far better
than ResNet-50 and ResNet-101, particularly in the case of
FFNet-GPU-Large which operates on larger feature maps.

3.2. Exploring the Model Space

While the effects of varying the backbone depth are ob-
vious and expected, we also experiment with varying the
width of the backbone, and the width of the Up-head and the
Segmentation-head. For FFNet-GPU-Large models, given
the larger spatial resolution of the output feature maps, sig-
nificant speed improvements arise from narrowing the Up-
head and the Segmentation-head. FFNet A-B-B (cyan) in
Figure 3, which uses narrower Up-head and Segmentation-
head, provides a better speed-accuracy trade-off than FFNet
A-A-A (blue) with its wider heads. For FFNet-GPU-Small
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Figure 3. Inference latency vs Cityscapes validation accuracy for FFNet-GPU-Large Models: Simple FFNets (blue) using basic-blocks
are on par with HRNets (red), while FFNets (violet) with bottleneck-blocks are markedly worse. Exploring various combinations of Up-
head widths (cyan) and backbone widths (black), can allow better models to be created. FFNets with a 3-stage backbone (green) may offer
better pareto performance than 4-stage FFNets. Input resolution 1024×2048, output segmentation map resolution 256×512. See Table 2.

Table 2. Models with an output segmentation map resolution of
256 × 512 for an input image resolution of 1024 × 2048. The
FFNets have stride=1 in the first block of the ResNet backbone.
The timings reported here are without batch norm folding, and a
batch size of 1. See the associated plots in Figure 3

Model
Inference Time (ms) Citysc.
1080Ti 2080Ti Val
FP32 FP32 FP16 mIoU

▲HRNetv2 48 249 171 122 84.9
▲HRNetv2 32 140 100 77 83.7
▲HRNetv2 18 97 69 61 82.4

FFNet-GPU-Large
Backbone Stem-Up-Seg

•ResNet 150 A-A-A 195 152 81 84.4
•ResNet 134 A-A-A 176 135 70 84.1
•ResNet 86 A-A-A 139 105 55 83.2
•ResNet 56 A-A-A 112 82 42 82.5
•ResNet 34 A-A-A 95 67 34 81.4
•ResNet 101 A-A-A 181 119 59 82.1
•ResNet 50 A-A-A 134 88 45 79.6
•ResNet 150 A-B-B 151 125 71 83.8
•ResNet 86 A-B-B 97 78 45 83.5
•ResNet 56 A-B-B 70 56 32 82.1
•ResNet 34 A-B-B 52 41 25 80.3
•ResNet 150 S B-B-B 126 104 66 84.1
•ResNet 86 S B-B-B 83 67 43 82.6
■ResNet 122 N C-B-B 71 58 44 83.6
■ResNet 74 N C-B-B 52 42 32 83.0
■ResNet 46 N C-B-B 43 34 27 81.9

models, narrowing the Up-head and the Segmentation head
offers minor latency improvements as seen with FFNet A-

A-C (cyan) vs FFNet A-A-A (blue) in Figure 5 and FFNet
A-B-B vs FFNet A-A-C in Table 3. Narrowing the back-
bone can help further on resource constrained devices. On
desktop GPUs, however, there may not be a noticeable ad-
vantage. FFNet S B-B-B, comprised of narrower back-
bones, shows similar performance as FFNet A-B-B, that use
a wider backbone, as shown in Figures 3, 5.

3.3. Models for Mobile

For FFNet models intended for mobile deployment, we
utilize narrower ResNet backbones and heads. Instead of bi-
linear upsampling in the heads, FFNet-Mobile models use
nearest neighbour upsampling. We show a family of mod-
els with their inference times on a Samsung S21 DSP, in
Figure 6 and Table 4. Changing the input resolution, and
the width of the head allows on-device models to be created
with a better speed-accuracy tradeoff. See black, blue and
cyan plots in Figure 6.

3.4. 3-Stage Backbone

We experiment with the backbone structure, beyond the
depth and width of the backbone, in order to create a more
efficient FFNet. Typical ResNets are comprised of 4 resid-
ual stages. The first stage operates on the largest feature
maps, and has a significant compute and memory cost. We
create a 3-stage ResNet backbone, removing the first resid-
ual stage. For FFNets, the 3-stage backbone interfaces with
the Up-head, using the output from the stem instead of the
output from the first residual stage of a 4-stage backbone.
See Figure 4. We see that across the tested devices, FFNets
with a 3-Stage backbone, can offer a better speed-accuracy
trade-off than FFNets with a 4-stage backbone for certain
accuracy ranges. See FFNet N C-B-B (green) in Figures 3, 5
for GPU models, and FFNet NS C-B-B (green) and FFNet
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Figure 4. FFNet variant with a 3-stage backbone.

NS C-C-C (light green) in Figure 6.
It is unclear if the 3 stage model would also be better

at higher accuracies, but this experimentation reveals a new
dimension of exploration to be covered in a potential NAS
search space.

3.5. Comparisons to Prior Art

We use HRNet [22], DDRNet [10], and FANet [12] as
our points of comparison to prior work. HRNets are com-
monplace in much of semantic segmentation work. DDR-
Net demonstrates better performance than several classes
of GPU efficient networks for Semantic Segmentation.
FANets also claim GPU efficiency, and are the closest to
our design, but make use of self-attention in the head. We
compare the accuracy and GPU inference timings for the
models, and refrain from making FLOP comparisons for a
few reasons. Various libraries for FLOP computation are
not able to correctly handle all kinds of operations, and may
need operations implemented a certain way to correctly ac-
count for the FLOPs. Further, several operations such as
tensor concatenation and channel shuffling do not have a
compute cost associated, but incur a large memory access
time cost. Hence, we restrict ourselves to inference time
comparisons. We retrain all the models that we compare
to, using the same training scheme, to make comparisons
fair. Hence, the performance reported for these models is
much higher than that in their respective papers. However,
there may yet be better accuracy possible with model spe-
cific training-hyperparameter tuning. The validation accu-
racy is given for single scale inference, with no test-time
augmentation used.

Comparison with HRNet: HRNet utilizes multi-scale
feature representations throughout the network, with re-
peated information exchange across the feature scales, and
a multi-scale feature output that is used by the task specific
head. FFNet A-A-A (blue) models using backbones com-
prised of basic-blocks perform on par with HRNets (red),
as shown in Figure 3, while FFNet A-A-A (violet) models
using bottleneck-blocks are markedly worse. A key fea-
ture of HRNet that is not remarked upon, is that the net-
work is 75+ layers deep, and comprised of basic-blocks.

Table 3. Models with an output segmentation map resolution of
128 × 256 for an input image resolution of 1024 × 2048. The
timings reported here are without batch norm folding, and a batch
size of 1. † These models use stride=2 in the first stage of the
ResNet backbone. See the associated plots in Figure 5.

Model
Inference Time (ms) Citysc.
1080Ti 2080Ti Val
FP32 FP32 FP16 mIoU

▲DDRNet 39 61 47 39 82.6
▲DDRNet 23 37 27 28 81.2
▲DDRNet 23 S 18 17 22 78.0
♦† FANet 134 41 34 35 80.6
♦† FANet 56 26 23 24 79.9
♦† FANet 34 22 19 19 78.8
♦† FANet 18 19 17 15 76.3
♦† FANet 101 59 36 30 80.6
♦† FANet 50 44 28 22 80.3

FFNet-GPU-Small
Backbone Stem-Up-Seg
•† ResNet 150 A-A-A 53 41 37 82.3
•† ResNet 134 A-A-A 48 38 35 82.0
•† ResNet 86 A-A-A 38 30 28 81.4
•† ResNet 56 A-A-A 31 25 22 80.7
•† ResNet 34 A-A-A 26 21 18 79.1
•† ResNet 18 A-A-A 22 19 14 76.5
•† ResNet 101 A-A-A 52 36 29 80.4
•† ResNet 50 A-A-A 39 27 20 79.5
•† ResNet 150 A-A-C 47 37 33 81.9
•† ResNet 86 A-A-C 32 26 26 81.1
•† ResNet 34 A-A-C 21 17 16 79.1
•† ResNet 18 A-A-C 17 15 12 76.4
•† ResNet 150 S B-B-B 37 31 34 81
•† ResNet 86 S B-B-B 26 23 26 81.1
† ResNet 34 A-B-B 19 16 16 78.8
† ResNet 18 A-B-B 15 14 12 76.7

It consequently has a larger effective receptive field than
bottleneck-block based networks like ResNet-50/101. We
find that a multi-scale feature output constructed with the
simple FFNet architectures achieves similar accuracy, when
the backbones are made of basic-blocks. These results point
to the fact that the large receptive field is a critical contribu-
tor to the overall accuracy, and comparable results are pos-
sible with simple designs like the FFNets, without requiring
other components such as a repeated information exchange
across scales. It would need to be determined when and
if the repeated information exchange across feature scales
is effective. Other families of FFNets with narrower heads
and backbones can perform better than HRNets as seen in
Table 2.

Comparison with DDRNet: Other multi-branch archi-
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Figure 5. Inference latency vs Cityscapes validation accuracy for FFNet-GPU-Small Models: (Top) FFNets (blue) perform on par with
complex models like DDRNet (red) and FANet (orange and brown). For FFNets, basic-block (blue) is always better than bottleneck-block
(violet). (Bottom) The model space can be explored via combinations of basic-block backbones and Up-heads of various widths (cyan and
black), to create better models. Input resolution 1024 × 2048, output segmentation map resolution 128 × 256. See Table 3. Also shown
here are 3-stage FFNet-GPU-Large (green) models, which far outperform 4-stage FFNet-GPU-Small models.

tectures such as DDRNet [10] and BiseNet [24, 25] have
followed HRNet, claiming that it is important to maintain
higher resolution information throughout the network, as
well inter-branch information exchange. They propose to
make such a design faster through reducing the width of
the backbone, and maintaining only one higher resolution
feature scale instead of multiple. They too, however, use
a backbone with a large receptive field. We show com-
parisons with DDRNet, which has a better reported perfor-
mance than BiseNets.

FFNet A-A-A (blue) models using backbones comprised
of basic-blocks also perform on par with DDRNets (red),
as shown in Figure 5. As with the case of HRNets, this
demonstrates that with a suitably large receptive field, sim-
ple encoder-decoder models can work as well as 2-stream
models like DDRNets. By changing the backbone and head
width of FFNets (blue, black), models that are better than
DDRNets can be found for all speed-accuracy tradeoffs.
See Table 3. The 3-stage FFNet-GPU-Large models (green)
also outperform DDRNets.

Comparison with FANet: Approaches like FANet [12]
and CCNet [13] that make use of attention, could be viewed
as attempts to increase the effective receptive field of the
network, when using backbones with small effective recep-
tive fields. Indeed, FANets with bottleneck-blocks in the
backbone are comparable to FANets with basic-blocks in
the backbone. See Figure 5.

One of the questions that it naturally leads to is whether
an equivalent compute cost increase through enlarging the
receptive field of backbone delivers the same accuracy boost
that incorporating these attention-based structures does. As
shown in Figure 5 and Table 3, FFNet A-A-A (blue) mod-
els with a backbone with an adequately large receptive are
on-par with FANet (orange, brown) models, and the self-
attention head of FANet provides diminishing returns.

4. Related Work

For a comprehensive survey of the developments in
Deep Learning based Semantic Segmentation, see Minaee
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Figure 6. Inference latency vs Cityscapes validation accuracy for
FFNet-Mobile Models on Samsung S21: The models run in real-
time on the mobile DSP. Regardless of input resolution, all models
output segmentation maps at the same resolution. Using a smaller
input resolution (blue, cyan) affords a better speed-accuracy trade-
off than a higher input resolution with additional downsampling in
the backbone (black). Narrowing the head B-B-B (blue) –¿ B-C-
C (cyan) offers a better speed-accuracy tradeoff. For mobile too,
3-stage backbones (green, light green) are more efficient than 4-
stage models. See Table 4.

et al. [17]. Here we only cover aspects directly relevant to
our discussion. The go-to architectures for image segmenta-
tion roughly belong to two categories. Encoder-decoder de-
signs like UNet [20], DeepLabv1/v2/v3 [5, 6], SegNet [3],
with a downsampling backbone (encoder) and an upsam-
pling head (decoder), and HRNet-like [10, 22, 26], designs
which maintain features at multiple resolutions throughout
the network. HRNet-like multi resolution networks typi-
cally dominate the results tables, with claims of higher ac-
curacy.

Encoder-decoder designs can have similar sized back-
bone and head, such as for UNet, or make use of big-
ger ResNet-like backbones, with various smaller head
designs that enable context aggregation, such as for
DeepLabv3. DeepLabv1/v2/v3 utilize dilated convolutions
in the ResNet-like backbones to increase the receptive field
size. Dilated convolutions are not efficient on existing hard-
ware. Recent designs such as MobileNetv3 [11] reduce the
use of dilated convolutions by restricting them only to the
last block, but do not entirely eliminate them. Kirillov et
al. [14] show that the FPN [15] design with an un-modified
ResNet [9] backbone is competitive with DeepLab [5] like
designs which remove striding and employ dilated convo-
lutions in the ResNet backbone. Panoptic-FPN [14] how-
ever still employs the ResNet backbones using bottleneck-

Table 4. Inference time vs. Cityscapes validaiton accuracy for
FFNet-Mobile models: The validation accuracy is for FP16 mod-
els, while the inference time is reported for 8 bit quantized models
on the Samsung S21 DSP. The inference time is measured for a
batch size of 1, with Batch Norm folding. † These models use
stride=2 in the first block of the ResNet backbone.

Backbone Stem-Up-Seg
Inference Cityscapes

Time Val
(ms) mIoU

Input 1024× 2048, Output 128× 256

•†ResNet 78 S B-B-B 34.0 80.0
•†Resnet 54 S B-B-B 30.0 79.2
•†ResNet 40 S B-B-B 27.5 78.8
•†ResNet 30 S B-B-B 24.0 77.1
•†ResNet 22 S B-B-B 22.5 75.4

Input 512× 1024, Output 128× 256

•ResNet 78 S B-B-B 30.0 79.5
•Resnet 54 S B-B-B 25.0 79.1
•ResNet 40 S B-B-B 22.5 78.2
•ResNet 30 S B-B-B 20.5 76.8
•ResNet 22 S B-B-B 18.5 74.7
•ResNet 78 S B-C-C 25.0 79.4
•Resnet 54 S B-C-C 20.0 78.1
•ResNet 40 S B-C-C 18.0 77.5
■ResNet 122 NS C-B-B 22.0 78.8
■ResNet 74 NS C-B-B 19.0 78.1
■ResNet 46 NS C-B-B 17.0 77.5
■ResNet 122 NS C-C-C 18.0 78.7
■ResNet 74 NS C-C-C 14.0 77.4
■ResNet 46 NS C-C-C 12.0 76.5

blocks, a design influenced by the use of smaller images for
image classification. Our simple encoder-decoder network
architecture, FFNet, uses ResNet backbones comprised of
basic-blocks, and does not use dilated convolutions. There
are various decoder head designs explored in literature, such
as Pyramid Pooling, ASPP [6], with the goal to capture fea-
tures of different scales. ASPP achieves this through con-
volutions with different dilations. We use a very simple de-
coder head, and future investigations can determine if sub-
stituting it with other head designs is helpful.

As discussed in Section 3.5, the simple FFNet archi-
tecture performs on par with HRNet-like architectures like
HRNet [22], DDRNet [10], and GPU-efficient encoder-
decoder architectures like FANet [12].

5. Discussion

We have only taken a limited look at the avenues of effi-
ciency improvements that can be explored to make FFNets
even faster. Various approaches to efficient and real-time
image segmentation [10, 16, 24–26] make use of FLOP ef-
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ficient operations and narrower layers, but still within the
context of complex meta-architectures. See the related work
sections of Hong et al. [10] and Yu et al. [26] for a detailed
discussion of efficient segmentation architectures. These
approaches could also be applied to FFNets.

Ideally, the space of efficient architectural configura-
tions should be explored using an automated approach, such
as DONNA [19] or LANA [18]. Here too, the simplic-
ity of the design of the meta-architecture is a significant
advantage, because the architecture can be trivially split
into a small number of simple blocks that can be han-
dled by NAS approaches that rely on blockwise knowledge-
distillation [4,18,19]. HRNet, DDRNet etc. either split into
a small number of complex blocks, or a very large number
of simple blocks, and handling these with blockwise NAS
approaches becomes untenable.

Although our study only looks at road-scene semantic
segmentation, the simple FFNet architectures could very
well be competitive baselines for other computer vision
tasks, as well as other semantic segmentation datasets.

6. Conclusion
We show that simple FPN-inspired baselines for Seman-

tic Image Segmentation are efficient and extremely com-
petitive with SoTA architectures across a variety of de-
vices, ranging from highly accurate desktop GPU models
to highly efficient mobile models. We also show that spe-
cific architecture instances designed for ImageNet are not
necessarily the best for other tasks, and there exist better
task specific architectures within the same design space. It
is helpful to think about the specific requirements of the
task before deciding to port a network from another task.
We hope that this manuscript convinces the reader about
the unexplored potential of simpler CNN architectures for
semantic segmentation, and beyond.
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