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Abstract

In this paper, we introduce a set of novel distance metrics
that use model based representations for trajectories. We
determine the similarity of trajectories using the conformity
of the corresponding HMM models. These metrics enable
the comparison of trajectories without any limitations of the
conventional measures. They accurately identify the coor-
dinate, orientation, and speed affinity. The proposed HMM
based distance metrics can be used not only for ground truth
comparisons but for clustering as well. Our experiments
prove that they have superior discriminative properties.

1. Introduction

Recent advances in object tracking made it possible to
obtain spatiotemporal motion trajectories for further anal-
ysis of concealed information. Although the extraction of
trajectories is well understood and studied, relatively little
investigation on the precise comparison of the trajectories
and the secondary outputs of the tracking process is pre-
sented in the literature.

A key issue in performance evaluation of tracking re-
sults is the distance metric that determines the similarity
of the trajectories. Any additional analysis, such as ac-
tion recognition, event detection, etc., highly depends on
the accuracy of the similarity assessment. Most existing
measures [2], [6] compute a mean distance of the corre-
sponding positions of two equal duration trajectories. Sup-
plementary statistics such as variance, median, minimum,
and maximum distances are also suggested to extend the
description of similarity. In a recent work, Needham [4]
proposed an alignment based distance metric that reveals
the spatial translation and temporal shift between the given
trajectories, and introduced an area based metric that calcu-
lates the total enclosed area between the trajectories using
trajectory intersections. Similarly, Ellis [1] characterized
several statistical properties of the tracking performance us-
ing the compensated means and standard deviations.

One main disadvantage of the existing approaches is that
they are all limited to the equal duration (lifetime) trajecto-
ries. By duration we refer the number of coordinate points
that constitute the trajectory. These coordinates are sampled
at different time instances. Since the existing measures de-
pend on the mutual coordinate correspondences, they can-
not be applied to trajectories that have different durations
unless the trajectory duration is normalized or parameter-
ized first. However, such a normalization destroy the tem-
poral properties of the trajectory.

Conventional distance measures assume that the tempo-
ral sampling rates of the trajectories are equal. For instance,
a ground truth trajectory labeled at a certain frame rate can
be compared only with the trajectory generated by a tracker
working at the same frame rate. These approaches does
not cope with the uneven sampling instances, i.e. varying
temporal distance between the coordinates, either. This is
a common case especially for the real-time object trackers
that process streaming video data. A real time tracker works
on the next available frame, which may not be the immedi-
ate temporal successor of the current, whenever the current
frame is processed. Thus, the obtained trajectory coordi-
nates have varying temporal distance.

Therefore, there is a need to develop other alternatives
that can effectively measure the difference between unre-
stricted trajectories. In this paper, we introduce a set of
novel distance metrics that use model based representations.
We determine the similarity of trajectories using the confor-
mity of the corresponding models. We construct a mixture
of continuous Hidden Markov Models (HMM) that capture
the dynamic properties of trajectory within a state transi-
tion matrix. The HMM based metrics enable the compar-
ison of trajectories without any limitations of the previous
measures. We can use the proposed metrics not only for
ground truth comparisons but for clustering as well. We
measure the similarity of trajectories that have different du-
rations, sampling rates, and temporal properties. We ac-
curately identify coordinate, orientation, and speed affinity.
We also propose additional features that are extracted from
the trajectories such as object-wise histograms of aspect-
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Figure 1. Ambiguous cases for conventional metrics; (a) unequal durations, (b) equal durations but
different frame rates. (c) Effect of uneven frame rates.

ratio, location, orientation, speed, size, etc. to improve the
available features.

In section 2, we discuss the existing trajectory distance
metrics. In section 3 we introduce the additional features.
In section 4 we present the HMM based distance metrics,
and in the last section we discuss the experimental results.

2. Trajectory Distance Measures

A trajectory is a time sequence of coordinates represent-
ing the motion path of an object over the duration (life-
time), i.e. number of frames that object exists. These co-
ordinates correspond to marked positions of object shape in
consecutive frames. A marked position often indicates the
center-of-mass (for pixel model), the intersection of main
diagonals (for ellipsoid model), and the average of mini-
mum and maximum on perpendicular axes (for bounding
box model) of object region. It is, therefore, possible to
view the trajectory as a collection of frame-wise abstrac-
tions of object shape. We will adopt the following nota-
tion T : {pn} : {(x1, y1, t1), (x2, y2, t2), ..., (xN , yN , tN )}
whereN is the duration.

The simplest metric used for computing the distance be-
tween a pair of trajectories is the mean of coordinate dis-
tances, which is given as

m1(T a, T b) =
1
N

n=1∑
N

d2
n (1)

where the displacement between the positions is calculated
using the Cartesian distance
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or using other L-norm formulations
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Note that, the mean distance metric makes three critical as-
sumptions; 1) the durations of the both trajectories are same

Na = N b = N (fig. 1-a), 2) the coordinates are synchro-
nizedtan = tbn (fig. 1-b), and 3) the time sampling rate is
constanttan − tan+1 = tam − tam+1 since the contribution of
each distance componentdn in equation 1 is same as illus-
trated in fig. 1-c. It is evident that the mean of distances
is very sensitive to the partial mismatches and cannot deal
with the distortions in time.

To provide more descriptive information, the second or-
der statistics such as median, variance, minimum and maxi-
mum distance may be incorporated. The variance is defined
as

m2(T a, T b) =
1
N

N∑
n=1

(dn − m1(Ta, Tb))2. (4)

To find the median, the displacementsdn are ordered with
respect to their magnitudes asdn → dm, then the value of
the halfway component of the list is assigned

m3(T a, T b) =
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The minimum and maximum distances are simply defined
as

m4(T a, T b) = min dn (5)

m5(T a, T b) = max dn (6)

Although these statistics supply extra information, they in-
herit (even amplify) the shortcomings of the ordinary mean
of distances metricm1. Besides, none of the above metrics
is sufficient enough by itself to make an accurate assessment
of the similarity.

An area based distance metric is proposed in [4]. The
crossing pointsq : T a(pi) = T b(pj) of two paths are used
to define regionsQj j = 1, ..J between the trajectories. For
each region, a polygon model is generated and the enclosed
area is found by tracing the parameterized shape

m6(T a, T b) =
J∑

j=1

area(Qj) (7)



This metric can handle more complex trajectories, however
it is sensitive to entanglements of the trajectory, it discards
the time continuity, and fails to the distinguish two trajec-
tories in opposite directions. Although the area between a
pair of trajectories is easily apprehended, its computation
may demand case-specific analytic solutions that are not al-
ways straightforward to formulate.

It is possible to compute an optimal spatiotemporal
alignment(δx, δy, δt) for which the mean distance is mini-
mized

(δx, δy, δt) = argminm1(T a, T b + (δx, δy, δt)) (8)

and use this alignment to compute a compensated distance

m7(T a, T b) = m1(T a, T b + (δx, δy, δt)). (9)

Ellis [1] proposed several statistical measures such as true
detection rate, false alarm rate, etc. using the aligned trajec-
tories for comparison of a trajectory with the ground truth.
However, not all trajectory distance tasks involve ground
truth comparison, i.e. clustering.

In the following sections, we introduce an extended set
of trajectory based features, and then we present the details
of the HMM based metrics.

3. Trajectory Based Features

A set of coordinates is not the only available trajec-
tory feature. In spite of its simplicity, duration (lifetime)
is a distinctive feature. For instance, at a hallway cam-
era in a surveillance setting the suspicious event may be a
left behind unattended bag, which can be easily detected
since human objects do not stay still for extended periods
of time. The total length of the trajectory is defined as∑N

n=2 |T (pn) − T (pn−1)|. This is different from the to-
tal displacement of the object, which is equal to|T (pN) −
T (p1)|. By assuming a ground plane of the camera imaging
system is available, the trajectory may be projected to ob-
tain the respective 3D length. A total orientation descriptor
keeps the global direction of the object. Depending on the
camera setup, the length related descriptors may be used to
differentiate unusual paths. The length/duration ratio gives
the average speed.

Dynamic properties of an object such as orientation, as-
pect ratio, size, instantaneous speed, and location are repre-
sented by histograms. The location histogram keeps track
of the image coordinates where object stays most. Using
the size histogram, dynamic properties of the object size are
captured, e.g. we can separate an object moving towards the
camera (assuming the size will get larger) from another ob-
ject moving parallel. An object moves at different speeds
during tracking, therefore the instantaneous speed of an ob-
ject is accumulated into a histogram. Speed is the key as-

Figure 2. Additional trajectory features.

pect of some events, e.g. a running person where every-
body walks. The speed histogram may be used to interpret
the regularity of the movement such as erratically moving
objects. An accident can be detected using the speed his-
togram; the speed components will accumulate around zero
and high velocities rather than being distributed uniformly.

The orientation histogram is one of the important de-
scriptors. For instance, it becomes possible to distinguish
objects moving on a certain path, making circular move-
ments, etc. It is possible to find a vehicle backing up on
a wrong lane then driving correctly again, which may not
be detected using a global orientation. The aspect ratio is a
good descriptor to distinguish between human objects and
vehicles. The aspect ratio histogram can capture whether a
person crouches and stands up during its lifetime. Figure 2
illustrates some of the object features.

4. Hidden Markov Model Based Metric

Due to the shortcomings of the existing metrics, we pro-
pose a model based representation that captures the dy-
namic properties of trajectories. We project each trajectory
T into a parameter spaceλ that is characterized by a set of
HMM parameters.

An HMM is a probabilistic model composed of a num-
ber of interconnected states a directed graph, each of which
emits an observable output. Each state is characterized by
two probability distributions: the transition distribution over
states and the emission distribution over the output sym-
bols. A random source described by such a model gener-
ates a sequence of output symbols as follows: at each time
step the source is in one state, and after emitting an output
symbol according to the emission distribution of the current
state, the source jumps to a next state according to the tran-
sition distribution of its current state. Since the activity of
the source is observed indirectly, through the sequence of
output symbols, and the sequence of states is not directly
observable, the states are said to be hidden.



Figure 3. Left-to-right topology.

In our case, we replace the trajectory information as
the emitted observable output for the above directed graph.
The hidden states then capture the transitive properties of
the consecutive coordinates of the spatiotemporal trajectory.
The state sequence that maximizes the probability becomes
the corresponding model for the given trajectory.

A simple specification of anK-state{S1, S2, ..., SK}
continuous HMM with a Gaussian observation is given by:

1. A set of prior probabilitiesπ = {πi} whereπi =
P (q1 = Si) and1 ≤ i ≤ K.

2. A set of state transition probabilitiesB = {bij}, where
bij = P (qt+1 = Sj|qt = Si) and1 ≤ i, j ≤ K.

3. Mean, variance and weights of mixture models
N (Ot; µj , Σj) whereµj andΣj are the mean and co-
variance of the statej.

Above, qt andOt are the state and observation at timet,
respectively.

For each trajectoryT a, we fit an M -mixture HMM
λa = (π, B, µ,Σ)a that has left-to-right topology using the
Baum-Welch algorithm. We chose the left-to-right topology
since it can efficiently describe continuous processes.

We train a HMM model using the trajectory as the train-
ing data after we initialize the state transition and prior
probability matrices with random variables, thus we make
no assumptions on the trajectory. Initialization can be
adapted for specific applications as well. Finally, each tra-
jectory is assigned to a separate model.

The optimum number of states and mixtures depend on
the complexity and duration of the trajectories. To provide
sufficient evidence to every Gaussian of every state in the
training stage, the lifetime of the trajectory should be much
larger than the number of mixtures times number of states
N � M × K. A state can be viewed as a basic pattern
of the trajectory, thus depending the trajectory, the number
of states should be large enough to conveniently character-
ize such distinct patterns but small enough to prevent from
overfitting.

A priori knowledge about tracking scenario may be used
to impose a structure on an HMM and a meaning for the

Figure 4. Cross-fitness distance.

values of the state variable. It is known that each state may
be associated with a certain label. Furthermore, the topol-
ogy of the HMM can be strongly constrained: most transi-
tion probabilities are forced to be zero. Since the number of
free parameters and the amount of computation are directly
dependent on the number of non-zero transition probabili-
ties, imposing such structure is very useful when it is ap-
propriate. The most basic structure that is often imposed on
HMM’s is the left-to-right structure: states are ordered se-
quentially and transitions go from the “left” to the “right”,
or from a state to consecutive state or itself, as in fig. 3.

We search an optimal number of states of the HMM net-
work for the given trajectory while repeating the genera-
tion and evaluation of the topology. At the beginning of the
search, possible HMM’s up to a maximum number of states
are generated randomly. In general, the likelihood of HMM
increases with the complexity of the topology. However, it
is known that over representation is frequently observed as
the complexity increases. Therefore, in order to balance the
likelihood and the complexity, we have adopted a score [3]
as

vi = [− log L(T ; λi) + iα]−1 (10)

wherei = 2, ..., Mmax is the number of states,L(T ; λi) =
P (T |λi) is the likelihood obtained for HMM withi-states,
andα is a constant balancing factor. The number of states
is then chosen as the one that given the highest score.

We define the distance between two trajectories in terms
of their HMM parameterizations:

m8(T a, T b) = |L(T a; λa) + L(T b; λb) (11)

−L(T a; λb) − L(T b; λa)|
which corresponds the cross-fitness of the trajectories to
each other’s models as illustrated in fig. 4. TheL(T a; λa)
andL(T b; λb) terms indicate the likelihood of the trajec-
tories to their own fitted model, i.e. we obtain the maxi-
mum likelihood response for the models. The cross terms
L(T a; λb), L(T b; λa) reveal the likelihood of a trajectory
generated by the other trajectories model. In other words,
if two trajectories are identical, the cross terms will have a



(a) Opposite (b) Translation (c) Crossing (d) Circling Opposite (e) Oscillating

(f) Phase Shift (g) TimeWait (h) Loop (i) Speed up (j) Partial

Figure 5. Different trajectory pattern pairs.

maximum value, thus eq. 12 will be equal to zero. On the
other hand, if trajectories are different, their likelihood of
being generated from each others model will be small, thus
the distance will be high.

Up to now, we employed trajectory coordinates as our
feature sequence. Using coordinates reveals spatial corre-
lation between trajectories, however in some situations it is
more important to distinguish shape similarity of the trajec-
tories independent of the spatial coordinates. The instan-
taneous speed and orientation sequences are potential fea-
tures that establish shape similarity even if there is a spatial
translation. Thus, we define two other sequential features
and corresponding distances; the orientation sequence as

φT (pn) = tan−1 yn − yn−1

xn − xn−1

m9(T a, T b) = m8(φT a, φT b) (12)

and the speed sequence

4T (pn) = [(xn − xn−1)2 + (yn − yn−1)2]
1
2

m10(T a, T b) = m8(4T a,4T b). (13)

The mentioned HMM distance is also applicable to his-
togram features such as orientation histogram, speed his-
togram, etc. However, since these features discard the tem-
poral ordering of the points, they are more suitable to evalu-
ate the statistical properties of trajectories rather than mea-
suring the similarity of their shape and coordinates.

5. Comparisons

To compare the proposed metricsm8, m9, m10 and the
referenced conventional metricsm1, .., m7, we computed
the distances of several distinct trajectory pattern pairs as

presented in fig. 5. Equal (a-f) and unequal (g-j) duration
trajectories are among these patterns. Each equal duration
trajectory consists of 100 points. To make the comparison
more realistic, we added a random white noise to all pat-
terns. The first set of equal duration patterns include the tra-
jectory pairs that are in opposite direction, spatially shifted
trajectories, trajectories that are crossing each other, trajec-
tories that have the same circling path but in opposite di-
rection, trajectories that their global orientation is same but
their paths have small perturbations, and trajectories that the
form is same except a time shift. The second set of trajec-
tory pairs have different durations. For instance, fig. 5-g
shows a pair that have same spatial path but one of the tra-
jectory has a several frames long waiting period as shown
with the green arrow. Fig. 5-h shows a pair that are same
spatial form except one trajectory has a loop. In fig. 5-i the
second trajectory has the same form but its duration is half
of the first one. In fig. 5-j a partially matching pair is given.

After we computed the distances of all pairs for a given
metric, we normalized the distances using the maximum
distance obtained for that metric since there is no a com-
mon normalization factor that can applied to all the metrics.
For instance, the numerical values of the variance (m3) and
the area (m6) metrics are clearly incommensurate. Thus, we
evaluate the sensitivity based on the given pattern set. We
listed the normalized responses of all metrics in table 1. The
highest score at each column indicates the pattern that the
metric is most sensitive. Note that, an ideal metric should be
applicable to all diverse patterns regardless of the trajectory
duration, frame-rate, and other limitations.

From the table, it is evident that the sum of coordinate
distancesm1, the variance of coordinate distancesm2, and
the median coordinate distancem3 have all similar proper-
ties. Their fusion would not improve the overall discrimi-
native capability. The maximum distancem4 and minimum



Table 1. Comparison of Distance Metrics
m8 m9 m10 m1 m2 m3 m4 m5 m6 m7

Opposite (ED) 0.123 1.000 0.001 1.000 1.000 1.000 0.055 1.000 1.000 0.001
Translation (ED) 0.356 0.001 0.006 0.283 0.001 0.287 1.000 0.148 0.002 0.573
Crossing (ED) 1.000 0.370 0.002 0.707 0.502 0.721 0.016 0.707 0.677 1.000
Circling (ED) 0.008 0.105 0.000 0.449 0.143 0.491 0.000 0.355 0.403 0.000
Perturbation (ED) 0.001 0.027 0.012 0.017 0.000 0.018 0.001 0.014 0.417 0.139
Phase shift (ED) 0.073 0.001 0.002 0.107 0.008 0.123 0.029 0.085 0.020 0.226
Wait (VD) 0.069 0.071 0.316 - - - - - - 0.001
Loop (VD) 0.389 0.529 0.775 - - - - - - 0.001
Speed up(VD) 0.001 0.214 1.000 - - - - - - 0.003
Partial (VD) 0.198 0.001 0.002 - - - - - - 0.000

(Each column is normalized within itself, ED: equal duration, VD: variable duration)

distancem5 are very sensitive to singularities, for instance
the maximum distance can be very high even a the trajec-
tories have matching well except a single coordinate. The
minimum distance fails if a single crossing exits. The spa-
tiotemporal alignment metricm7 is insensitive to shifting,
otherwise it is similar tom1. These metrics cannot handle
different duration trajectories. The area metricm6 fails for
patterns that have same path but opposite direction. It can-
not distinguish the temporal deformations either.

On the other hand, the HMM based metrics are applica-
ble to trajectories that have different durations. It is shown
that these metrics can successfully identify various tempo-
ral deformations including the time waiting, partial match,
different speed, time loop, etc. Each topology has 3 states
and 3 Gaussian models. The coordinate based HMM metric
m8 is sensitive towards the spatial positioning of the tra-
jectories, and it can identify the crossing, translation, phase
shift, time loop, partial, and opposite directions. The ori-
entation based HMM metricm9 is responsive towards the
orientation variances, i.e. it gave the highest score to op-
posite direction pattern, and it can recognize crossing, time
loop, and circling patterns. The speed based HMMm10 de-
tects the speed changes and time loops most effectively, and
it can identify the uneven frame-rates as well.

We observed that the three possible HMM metrics are
responsive towards the different patterns, thus their mixture
is a perfect candidate for measuring the trajectory distance.

We conducted another experiment using the PETS-2004
benchmark sequences. For the sequences that the ground
truth is not given, we obtained the trajectories by our mean-
shift based tracker [5]. The trajectories, which have dura-
tion ranging from 30 to 800 points, are presented in fig. 6.
We determined the most similar and most different trajec-
tories to a given trajectory using them8 metric as shown
in fig. 7. In the graphs, the red is the given trajectory. The
blue is the most similar and green is the most different tra-
jectory among the all trajectories. As visible, the proposed

HMM based metric accurately identified the most similar
and dissimilar trajectories at each case.

6. Conclusion

We proposed a set of HMM based trajectory distance
metrics that can accurately measure the coordinate, orient,
and speed similarity of a pair of trajectories. These met-
rics measure different duration trajectories without destroy-
ing the temporal properties. They can be used not only for
ground truth comparisons but also for further analysis of
the tracking results, e.g. clustering and event analysis. Our
experiments prove that the HMM distance metrics have su-
perior discriminative properties than conventional metrics.
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Figure 6. Detected trajectories for the PETS-2004 sequences.
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Figure 7. (Top graph) All trajectories mapped together. (Other graphs) Red: given trajectory, blue:
most similar trajectory, green: most different trajectory obtained by the coordinate HMM metric ( m8)
for the given trajectory.


