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Abstract

Event detection requires interpretation of the “semantically
meaningful” object actions. To achieve this task, the gap
between the numerical features of objects and the symbolic
description of the meaningful activities needs to be bridged.
We develop an ambiguity detection framework that has two
significant advantages over past work. First, we introduce
a fusion method for a set of time-wise and object-wise fea-
tures including not only the trajectory coordinates but also
the histograms and HMM based representations of object’s
speed, orientation, location, size, and aspect ratio. This
fusion method enable detection of events that cannot be de-
tected with the existing trajectory features reported so far.
Second, we improve existing spectral clustering algorithms
by automatically estimating the optimal number of clusters.
Furthermore, we determine the conformity of the objects
within the given data space. We compute a separate HMM
for each object using a time-series that is composed of the
mixture of its features. Then, we construct an aggregated
affinity matrix from the pair-wise similarity scores of ob-
jects using the HMM’s. We apply eigenvector decomposi-
tion and obtain object clusters. We show that the number
of eigenvectors used in the decomposition is proportional to
the optimal number of clusters. We examine the affinity ma-
trix to determine the deviance of objects from common as-
semblages within the space. Our simulations reveal that the
proposed detection methods accurately discover both usual
and unusual events.

1 Motivation

Although many algorithms exist for unsupervised classifi-
cation of patterns into clusters, most of these methods re-
quire the data space � consists of ‘identical length’ data
points (feature vectors) �� � ����� ���� ��� � where � is the
dimension of the data space, i.e. � � �� . Such algorithms
include the ordinary implementations of decision trees, neu-
ral nets, Bayesian classifiers, ML-estimators, support vector
machines, Gaussian mixture models, k-means, and hierar-

chical approaches, self-organizing maps, etc [2].
On the contrary, not all classification problems can be

formulated into a data space that contains only constant
length feature vectors. For instance, in a surveillance set-
ting, the trajectories of people may have quite different tem-
poral and spatial lengths. One way to adapt variable length
data for ordinary classification, is to normalize the length of
the feature vectors. However, such a temporal normaliza-
tion of the feature vector length causes severe degradation
and aliasing problems.

Thus, we project our variable length features into a
model based space in which we can compute pair-wise
affinities. Note that we are not “parameterizing” the fea-
tures onto a uniform space, but we convert the affinity com-
putation problem into a process of pair-wise comparisons
using stochastic models capable of capturing the temporal
and other aspects of the input features. We choose Hidden
Markov Model (HMM), which captures the probabilistic
transition properties of sequential data, as a model machine.
Since we end up having the pair-wise correspondences, we
apply spectral clustering.

One fundamental question of automatic cluster discov-
ery is how to estimate the number of “meaningful” clusters
in the data. We seek answers to this question by analyzing
the fitness of the clusters obtained after a recursive eigen-
vector decomposition of the affinity matrix using increas-
ing number of ordered eigenvectors. In [5], we introduced a
conformity score to detect unusual events. Here, we extend
the conformity score by evaluating the variance of affinity
both inside (intra) and outside (inter) of the obtained clus-
ters, and we monitor the evolution of this score to achieve
the minimum variance. The optimum number of clusters
is observed as the eigenvector decomposition that gives the
minimum intra and inter variance. In this work, we concen-
trate on the outputs that produced by object tracking, which
are coordinate sequences with an associated histogram and
tensor-based data. We give a flow diagram in Fig. 1.

Next, we explain HMM’s and fusion. In the following
sections, we discuss affinity matrix, eigenvector decomposi-
tion, estimating the number of clusters, and finding unusual
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Figure 1: Tracking features are restructured into a time-
series and one HMM model is fitted for each sequence. The
affinity matrix is calculated by comparing the HMM’s of the
given objects.

events. Then, we give details of the clustering and present
simulation results.

2 Model Machines: HMM

An HMM is a probabilistic model composed of a number
of interconnected states, each of which emits an observable
output. A discrete hidden Markov model is defined by a
set of states and an alphabet of output symbols [6]. Each
state is characterized by two probability distributions: the
transition distribution over states and the emission distribu-
tion over the output symbols. A random source described
by such a model generates a sequence of output symbols as
follows: at each time step the source is in one state, and
after emitting an output symbol according to the emission
distribution of the current state, the source jumps to a next
state according to the transition distribution of its current
state. Since the activity of the source is observed indirectly,
through the sequence of output symbols, and the sequence
of states is not directly observable, the states are said to be
hidden.

An �-state ���� ��� ���� ���, HMM is represented by:

1. A set of prior probabilities � � ���� where �� �
� ��� � ���,� � � � �.

2. A set of state transition probabilities � � �	���,
where 	�� � � ����� � �� ��� � ���,� � �� 
 � �.

3. A set of output distributions � � �����, where
����
� � � ����� � 
��� � ��� ���� � 
�,� � �� 
 �
�.

where �� and�� are the state and observation respectively at
time �. It is common to denote the an � -mixture of HMM’s
by ���� ��� ���, � � � � � . For an HMM, algo-
rithms exist for: 1) computing the probability of observing

a sequence, given a model, 2) finding the state sequence
that maximizes the probability of the given sequence, when
the model is known (the Viterbi algorithm), 3) inducing the
HMM that maximizes (locally) the probability of the given
sequence (the BaumWelch algorithm, an expectationmaxi-
mization algorithm). The problem of estimating the correct
number of nodes is a difficult one: a full Bayesian solu-
tion for obtaining the posterior probability on � , requires
a complex integration over the HMM parameter space, as
well as knowledge about the priors on the mixture parame-
ters and about the priors on � itself. Often this integration
cannot be solved in closed form, and Monte-Carlo methods
and other approximation methods are used to evaluate it.

For each sequence, we fit a HMM (a discrete model
in case the sequence components are labels, a continuous
model in case the components are real numbers that reflect
certain proportional properties, e.g. magnitude, coordinate,
etc). The number of states �, number of models� , and the
HMM topology (left-to-right) are assigned same for each
sequence. A set of parameters �� corresponds the HMM
variables �� (�� � ���� ��� ����) as described above.
This set of parameters, which consists of the state transi-
tion, observation, and prior matrix, enable us to compute
distances between a pair of objects.

3 Fusion

A trajectory is a time series of coordinates representing the
motion path of an object over the duration, i.e. number of
frames that object exists. Certain object properties are dy-
namic and change their values from frame to frame during
the tracking process, e.g. the speed of an object. Instead of
depending only on the instantaneous values, using normal-
ized histograms as features enables to capture the history of
these dynamic features. A histogram in fact corresponds to
the probability density distribution, thus it sustains statisti-
cal characteristics such as mean, variance and other higher
order moments. There are several scalar features that de-
scribe an object. In spite of its simplicity, the duration is one
of the distinctive features. A general orientation descriptor
records the direction of the object between its first and last
appearance. Other dynamic properties, such as orientation,
aspect ratio, slant (angle between a reference axis and the
main diagonal of object), size, instantaneous speed, loca-
tion, and color, are approximated by histograms. The color
properties may be represented by a conventional histogram
or by a few number of dominant colors with an additional
computational cost.

It is apparent that running separate clustering algorithms
on each of these features would be computationally expen-
sive, susceptible to errors due to insufficiently informative
features, and also it will bring another problem of the ex-
plaining and merging of these separate clustering results.
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Thus, we restructure the various features of an object into
an aggregated time-series form. We combine sequences,
histograms, label data, and scalars into a single series of ten-
sors, in which a tensor represents the current coordinate, the
current orientation, current color histogram, current shape,
and etc. In other words, at each time instant on the trajec-
tory, we have not only the coordinate information but also
the associated color, label, etc. This combined series will
be in fact a sequence of vectors describing object’s current
properties. Thus, when we fit a HMM for an object, the
model will contain the dynamics of all the above features.

4 Affinity Matrix and Clustering

Now, we can compute our affinity matrix. Given two se-
quences �� and �� , and two corresponding models �� and
�� , we compute a likelihood score that indicates the fitness
of the given sequences to the models. There are two term
to evaluate self-fitness and cross-fitness; self-fitness is the
likelihood of sequences are generated by their correspond-
ing models, i.e. sequence �� is generated by model �� and
sequence �� is generated by �� . In an ideal representation,
these likelihood should have maximum value, which means
that a model can generate only one sequence, and each se-
quence perfectly fits into its own model. The second term
evaluates the cross-likelihood. We compute the likelihood
of each sequence is generated by the other model, i.e. se-
quence �� is generated by model �� and sequence �� is gen-
erated by ��. In case the input sequences are similar, the
cross-likelihood will have a higher value. However, if the
sequences are different, then their models will not be same,
and the cross-likelihood will be small. We put this notion
into the following formulation as:

����� ��� � ��������� � ���� ����

���������� ���� ����� (1)

where ���� is the likelihood. Then, the elements ��� of the
affinity matrix � are equal to

��� � �������������
�

(2)

and �� is a normalizing factor. The affinity matrix have
values close to 1 if the corresponding sequences fit well to
each other’s models, and close to 0 otherwise. Note that
similarity matrix � � ���� is a real semi-positive sym-
metric matrix, thus �� � �. We give a sample affinity
matrix for 110 random length trajectories in Fig. 2. As vis-
ible, the described HMM likelihood accurately captures the
affinities between the trajectories.

Although spectral clustering [1], [7], [4], [3] is addressed
before in the literature, to our knowledge no one has estab-
lished the relationship between the optimal clustering of the
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Figure 2: Set of trajectories and the corresponding affinity
matrix.

data distribution and the number of eigenvectors that should
be used for spanning. Here we show that the number of
eigenvectors is proportional to the number of clusters.

Let 	 � ��� �� 

 �	 � be a matrix formed by the
columns of the eigenvectors. Let � be a diagonal matrix
���
���� 

� �	 �. Lets also assume eigenvalues are �� �
�� � 


�	 . Then the generalized eigenvalue problem is

�����	 � ���� 

 ��	 � � ����� 

 �	�	 �� � 	 � (3)

and � � 	 �	 ��. Since � is symmetric, the eigenvectors
corresponding to distinct eigenvalues are real and orthogo-
nal 	 	 � � 	 �	 � � , which implies � � 	 �	 � .

Let a matrix �
 be a matrix in a subspace � that is
spanned by the columns of 	 such as �
 � ��� �� 

 �
� ��
where 	 is the orthogonal basis satisfies � � 	 �	 � .
Now, we define vectors �� as the rows of the truncated ma-
trix �
 as

�
 �

�
��

��

...
�	

�
�� �

�
��

��� � � � ��
 � � � �
...

...
�	� � � � �	
 � � � �

�
�� (4)

We normalize each row of matrix �
 by ��� �

����
��


� �
�
�� . Then a correlation matrix is computed us-

ing the normalized rows by �
 � �
�
�

 . For a given �
,

the value of ��� indicates the degree of similarity between
the object � and object �. Values close to one correspond
to a match whereas negative values and values close to zero
suggest that objects are different. Let � be a threshold that
transfers values of matrix �
 to the binary quantized values
of an association matrix �
 as

��� �

�
� ��� � �
� ��� � �

(5)

where � 	 �
�. The clustering is then becomes grouping the
objects that have association values equal to one ��� � �.

To explain why this works, remember that eigenvec-
tors are the solution of the classical extremal problem
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Figure 3: Validity measures the variance of affinity intra and
inter clusters.

������� constrained by �
�
� � �. That is, find the

linear combination of variables having the largest variance,
with the restriction that the sum of the squared weights is
1. Minimizing the usual Lagrangian expression ���� �
����� � �� implies that �� � ��� � ���. Thus, � is the
eigenvector with the largest eigenvalue.

As a result, when we project the affinity matrix columns
on the eigenvector �� with the largest eigenvalue and span
��, the distribution of the ��� will have the maximum vari-
ance therefore the maximum separation. Keep in mind that
a threshold operation will perform best if the separation is
high. To this end, if the distribution of values have only two
distinct classes then a balanced threshold passing through
the center will divide the points into two separate clusters.
With the same reasoning, the eigenvector �� with the sec-
ond largest eigenvalue, we will obtain the basis vector that
gives the best separation after normalizing the projected
space using the �� since �� � ��. Thus, as a base rule, the
number of largest eigenvalues (in absolute value) to span
subspace is one less than the number of clusters.

As opposed to using only the largest or first and second
largest eigenvectors (also the generalized second minimum
which is the ratio of the first and the second depending the
definition of affinity), the correct number of eigenvectors
should be selected with respect to the target cluster num-
ber. Using only one or two does fail for multiple clusters
scenarios.

We obtained projections that gives us the maximum sep-
aration but we did not determine the degree of separation
i.e. maximum and minimum values of projected values on
the basis vectors. For convenience, we normalize the pro-
jections i.e. the rows of current projection matrix (��) as
��

� � � and then compute the correlation��� �
� . Correla-

tion will make rows that their projections are similar to get
values close to 1 (equal values will give exactly 1), and dis-
similar values to 0. By maximizing the separation (distance)
between the points in different clusters on an orthonormal

basis, we pushed for the orthogonality of points depending
their clusters; ����� � � if they are in the same cluster, and
���

�
� � � if they are not.

As a summary, the clustering process requires

1. Computation of �,

2. Extraction of eigenvectors �� for � � �� ��� ��,

3. Decomposition 	� � ���
�
� and 
� for � � �� ��� ��,

4. Thresholding the decomposed matrix,

5. Combining objects that have affinity higher than the
threshold in the same clusters,

6. Computation of validity score ��.

The maximum possible cluster number �� does not affect
the determination of the fittest cluster; it is only an upper
limit on the number of eigenvectors in decomposition.

After each clustering stage, we compute a validity score
�� as

�� �
�

��

���

���

���
���� � 	 ��
���� �� (6)

where �� is a cluster of objects such that ��� is the affinity
values of the objects within this cluster, thus ��
���� � is
the variance of these values. ��� is the variance of affinity
values between the objects such that one object within the
cluster and the other is outside. �� is number of clusters
as illustrated in Fig. 3. The validity score gets lower values
for the better fits. By evaluating the minima of this score we
determine the correct cluster number automatically. Thus,
we answer the basic question of clustering; ”what should be
the total cluster number?”

5. Detection of Unusual Events
Using the affinity matrix, conformity scores of the objects
are computed. The conformity score of an object is the sum
of the corresponding row (or column) of the affinity matrix.
The object that has the minimum score corresponds to most
different, thus most unusual event.

One distinct advantage of the conformity score is that it
does not assert unusuality in case all events are similar as
illustrated in Fig. 5. In this example, we generated points
on a circle, and then located four additional points inside
the circle. Three of these points are closer each other than
the fourth point. A human will easily interpret that all the
points along the circle are in one group and the three points
inside circle constitutes another smaller group, and the re-
maining single point is not similar to any other points in the
data space. That is what we want to accomplish after un-
usual event detection. When we computed the conformity
scores, we observed that the points on the circle have almost
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Figure 4: Fusion: (a) Set of input trajectories. In this ex-
ample set, objects have a color feature in addition to the tra-
jectory, i.e. half of the objects are red and others are blue.
(b) Validity scores. The minimum is obtained at the cluster
number 6. (c) Corresponding clustering results. As visible,
the additional feature is successfully fused within the tra-
jectory information, and the algorithm accurately estimated
the correct number of cluster.
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Figure 5: Top: Set of objects as points in 2D. Bottom:
Corresponding conformity scores. Note that, as an object
becomes more distinctive, its conformity score drops ac-
cordingly.

identical scores. For the smaller group of three points, the
conformity dropped. Similar to human cognition, the single
point had the smallest score, thus it is obtained as the most
unusual.

We also conducted another test that two clusters become
increasingly separated from each other as shown in Fig. 7.
We observed that, as the distance between the main cluster
and smaller cluster increases, the conformity of the points
belong to the smaller cluster decreases. When the cluster
were together, the conformity scores were similar. These
examples show that the proposed method can accurately
distinguish cases that there are a measurable unusuality
from the cases that nothing significant occurs as opposed
to the conventional approaches. The conformity score ef-
fectively determines the degree of the ambiguity as well as
it distinguishes the unusual event from the ordinary.

Figure 6 shows results for clustering of 111 trajectories.
There are 11 similar clusters that each consists of 10 trajec-
tory. The remaining ����� trajectory has a different path,
and it is not similar to the rest. The validity score has accu-
rately estimated the optimal number of clusters as 12. The
clusters are color coded in Fig. 6-c. As visible, all trajecto-
ries are successfully identified within their appropriate clus-
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ters. We also computed the conformity scores. The red
arrow in the conformity graph points the most distinct tra-
jectory, which is also painted red in the clustering results.
Note that, since most trajectories passes through the center
of the graph, the trajectories marked as green have higher
correlation with the rest of the trajectories, and the proposed
method gave higher conformity scores as expected.

6 Summary

In conclusion, the main contributions of this paper are:

� We proposed a method to compare the variable length
sequences using the HMM parameter space

� We showed that the number of largest eigenvalues (in
absolute value) to span subspace is proportional to the
number of clusters.

� We used the above result as a quality assessment crite-
rion for cluster fit.

� We defined a measure to discover the unusual objects.
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Figure 6: (a) Set of trajectories. (b) Corresponding confor-
mity scores. (c) Result of automatic clustering. Red arrow
in the conformity graph shows the most distinct trajectory,
which is also pointed by an arrow in the clustering result.
Green arrows both indicate the most common trajectories.
Note that, since most trajectories passes through the cen-
ter on the graph, the trajectories marked as green are more
commonality with the rest, and the proposed method gave
higher conformity scores as expected.
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Figure 7: Left column: Objects. Right column: Conformity scores. As the clusters become different the conformity scores
of the objects changes. Note that, in case all objects are similar as in the top example, our method successfully recognize that
there is no unusual objects as opposed to always ordering objects. It is evident that, the separation is accurately reflected to
the conformity scores.
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