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ABSTRACT

This paper presents an active contour based algorithm for tracking
non-rigid objects in heavily cluttered scenes. We decompose the
non-rigid contour tracking problem into three subproblems: 2D mo-
tion estimation, deformation detection, and shape regulation. First,
we employ a particle filter to estimate the affine transform parame-
ters between successive frames. Second, by using a dynamic object
model, we generate a probabilistic map of deformation to reshape
its contour. Finally, we project the updated model onto a trained
shape subspace to constrain deformations to be within possible ob-
ject appearances. Our experiments show that the proposed algorithm
significantly improves the performance of the tracker.

Index Terms- Contour tracking, particle filter, deformation,
regulation

1. INTRODUCTION

Visual tracking is an essential component in intelligent robotics, video
surveillance and medical imaging. Contour-based tracking approaches
attract lots of interest due to their ability to accurately delineate con-
tours or boundaries of objects. A parameterized B-spline contour
tracking algorithm, CONDENSATION, was proposed by Isard and
Blake [3], which used the particle filter as the basic framework. The
CONDENSATION algorithm yields robust results when it is applied
to rigid objects. However, it has no explicit criterion for extracting
the exact boundary of a non-rigid object in its observation model
during tracking. Li et al. [5] discussed how to apply the particle
filter to non-rigid object contour tracking. But the algorithm does
not use an appropriate model for discriminating real boundary from
all the edge points. Active 'Snakes' is another common approach
that evolves an object boundary to minimize a weighted sum of ex-
ternal and internal energy terms [4]. However, snake based methods
are restricted to a relatively small range of scenarios due to the fact
that they rely on intensities inside objects to be relatively uniform
and differenet from the background. Besides, their computational
complexity makes them less suited for real-time applications. The
level set approach is also a powerful method that deals with topolog-
ical changes of the moving front using partial differential equations
(PDE) that describe the object motion, boundary and region-based
information [6, 8, 9, 11]. But they also suffer from expensive com-
putation.

Compared with existing algorithms, our work emphasizes non-
rigid object contour tracking with many important features, includ-
ing accuracy and robustness. We claim that although rigid and non-
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rigid objects both involve translations of pixels inside an object bound-
ary, tracking non-rigid objects cannot be accomplished by a simple
rigid object motion model without compensating for local deforma-
tions. A model that captures both translational and non-translational
motions of objects is needed. In addition, the model should include
a discriminating measure to extract the real boundary from all the
edge points, the majority of which may be from the background. It
is also necessary to constrain the deformation of the shape model for
ensuring robustness.

Based on the above observations, we decompose the non-rigid
object tracking problem into three components: (1) 2D motion esti-
mation that yields object-wise spatial rigid-body motion, including
translation and rotation parameters. We assume that the 2D shape of
an object does not drastically change between two successive frames.
Thus, we use a particle filter based on an affine model to estimate
the motion transition; (2) 2D shape deformation that refines the
pose changes of non-rigid objects. Each pixel on the boundary may
have different but correlated deformations. We construct a poste-
rior deformation probability map based on statistical analysis of the
corresponding frame; and (3) Shape regulation that uses a trained
shape subspace to restrict shape deformations. Regulation also re-
constructs the occluded parts of the contours.

The rest of the paper is organized as follows. In section 2, we
introduce the active contour tracking algorithm. In the next three
sections, we address the non-rigid object shape tracking algorithm,
focusing on the three components listed above. We present some
experimental results in section 6, followed by conclusions and dis-
cussions in section 7.

2. OBJECT MODEL AND PARTICLE FILTER

A contour tracking algorithm requires an object representation and
a tracking strategy. We represent the 2D curves outlining the ob-
jects in terms of parametric B-spline curves. The advantage of us-
ing B-spline is that when we define the dynamic model of a curve
as an affine transformation, it is sufficient to apply the transform to
the control points on the curve, which improves computational effi-
ciency.

We use the particle filter algorithm as our tracking strategy. The
basic idea is: Let 0 denote the state vector, Y the observations,
L(Yt Ot) the likelihood function at time instant t. The problem of
tracking can be formulated as maximizing the posterior:

P(OtlYt-1) cx L(YtIOt) fp(otlOt-i)P(Ot- Yi:t_)dot_1 (1)

with the first-order Markovian assumption p(Ot ol:t- i) = P(Ot Ot- i).
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4. STAGE II: CONTOUR DEFORMATION

3.1. Dynamic Transition Model

We use a 2D affine transform model to represent the global transform
of the object, with the knowledge that the B-spline curve is invariant
to the affine transform. The transform of the active contours is given
in terms of control points as:

rt I(s)
1 2'

which is still an affine transform denoted by T. r = (x, y) refers
to the x,y coordinates of the control point, s is the B-spline curve
parameter. The parameters in the affine matrix compose the state
vector of the particle filter:

Ot = (lI 1122 I1Th2 113 123)T. (3)

We update the proposal distribution using the state transition
model as Ot = at-I + Vt + Ut with vt as a shift in the motion
vector and Ut as the driving noise, assumed to be Gaussian. As a
result, the system does not need as many particles as in the original
particle filter algorithm without sacrificing the performance. The es-
timation of vt is based on the assumption of brightness invariance
[13].

3.2. Observation Model

We follow the traditional strategy to estimate the observation model:
At each control point r(sl), (I =1 1, ... M) , we search along the
crossing normal lines ni for feature points. It is expected that more
than one feature z (j = 1, ...., n) is detected, due to background
clutter. Assuming that clutter z(l) can be modeled as a spatial Pois-
son distribution along the normal lines and the true target measure-
ment is a Gaussian, the 1-D measurement density along the line nor-
mal to r(sl) can be modeled as [3]:

1 nl
Pl(zlr = r(sl)) x 1 + ZA E exp (-

2qAj=1
(z(j) r(sl))2

) (4)

where nl is the number of features detected along the normal, q is the
probability of invisible target, A is the spatial density of the Poisson
distribution, u is the standard deviation of the Gaussian distribution.
With the assumption that the feature outputs on distinct normal lines
are statistically independent, the overall likelihood in Eq. (1) be-
comes:

M

P(Y 0) = P(Z 0) =Jpi(z r = r(sl)) (5)
1=1

We select the sample that maximizes the posterior in Eq. (1) as
the current estimate. In the original active contour algorithm, the ex-
act contour points of the tracking object are selected as feature points
with maximum gradient magnitudes from all the feature points de-
tected on each of the normal lines. Unfortunately, this strategy does
not always work, especially when the background is heavily clut-
tered or the object undergoes shape deformations between frames.
Identifying the correct feature points along the normal lines becomes
a challenge. Our algorithm uses a distinct shape analysis step to cap-
ture the accurate contour of the object.

4.1. Adaptive Normal Line Scanning

In the deformation step, we set the normal lines adaptive in the fol-
lowing two aspects.

Adaptive line length The lengths of the normal lines, denoted
as u(l), influence tracking results: a normal line with a short length
may miss the true boundary pixel while a normal line with a longer
length may intersect with edge points from background clutter. To
avoid false detections, the length of the normal line is altered ac-
cording to the pose variances of the corresponding contour control
points throughout the video sequence. For example, in sequences of
walking humans, the relative positions of the head and trunk change
slightly from frame to frame; on the other hand, the legs and arms
change their relative positions more. Therefore, the lengths of the
normal lines with large pose variances are set larger than those of
small pose variances. The pose variances of pixels can be obtained
offline during training:

((l) Ek rk (sl) -Ek (rk (sl)) 2

u (l) X Lmin, log i (1(l) )

where ( is the pose variance, Lmin, is a constant term for the mini-
mum length, and k denotes the index of training samples.

Adaptive line center The original algorithm sets the centers of
the scanning normal lines as control points on the estimated contour,
which may cause the normal lines to cross each other or even cross
the other side of the contour when the distance between the two sides
of the contour is small, which results in contour 'looping'. Making
the line centers adaptive by applying a distance transform (DT), re-
duces the probability of crossing. Denote r = r(sl), 1 < I < M,
the estimated contour from stage I. The steps for accomplishing this
are listed as follows:
* Based on the estimated contour, construct a binary image 131 by
setting the region Q circled by rt to 1 and the rest to 0;
* Apply DT to 131, obtain a distance map DI, with each pixel x C Q
having a value of minimum distance to the region boundary;
* On both sides of each support point r(sl), draw a normal line
ni with fixed initial length, find maximum distance value satisfying
'DI(l)max = maxxEniDDx. Denoting the side containing the pixel
with maximum distance by Q, and the other side by Q, the lengths of
two sides are set as follows:

u(I)N = RDI(l)max -do
u(I)R = 2u(l) -['DI(l)max -do]

where do represents a minimum safe distance to avoid intertwining
contours. We set do to 2 in our experiments.

Fig. 1 (A) demonstrates the procedure of sketching adaptive nor-
mal lines along the estimated contour, with which we are able to
search for the real contour pixels using different relative pose vari-
ances of the contour points.

4.2. Statistical Analysis with Multi-cues

Instead of focusing on only the magnitudes of the feature points as
measurements to determine whether the feature points belong to the
real contour or not, we use a statistical approach to extract the real
contour pixels. A deformation probability map P, in which a high
probability implies that the pixel is more likely to be on the real con-
tour and a low value implies a lower likelihood, is generated using
several cues.
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(A) (B)

(C) (D)

Fig. 1. (A) An example of how to make a normal line scanning
adaptive is shown. (a) cropped original object; (b) estimated con-
tour; (c) distance transformed object; (d) normal lines on support
pixels; (B) Illustrations of adaptive probability shape templates for
a pedestrian. (1),(2): shape training samples; (3): shape prior
model; (4),(5),(6): examples ofprobability shape templates in dif-
ferent frames; (C) Performance comparisons in a cluttered scene.
(a) and (c): contour tracker using the normal edge map; (b) and (d):
contour tracker using the feature maps F defined in Eq. (7). A sta-
bilization step is applied to obtain F because the sequence is from
a non-stationary camera; (D) Comparisons between tracking results
with and without subspace regulation. (a) and (c) are without regu-
lation, (b) and (d) are with regulation.

4.2.1. P5: Probabilistic Shape Template

A statistical shape template P5 is constructed using the shape prior
model 1Pm as a static template created from the training data, and the
dynamic template derived from the current estimated contour 'Pr. Ps
assigns a probability to each possible deformation of the shape, and
is updated in each frame. The probability is given as:

Psvt = atP1-m + (I1-at)(Ps,t- 1 + 6Ps,t) = atP, + (I1-at)PF,t
(6)

where 0 < at < 1 is the integrating weight that controls the relative
contributions from 1Pm and 1Pr,t, 6P5,t is the shift of the dynamic
template from t -1 to t. The probabilistic template is a shape-
based cue accounting for variations in deformation, i.e., indicating
the probability that each image pixel belongs to the real object con-
tour. In Fig.1 (B), we give some examples of the probability tem-
plates.

4.2.2. Pm: Probability Map of Gradient Magnitude

Edges are important features characterizing the object boundaries.
However, as the object itself is not homogenous in color or intensity,
edges are also present due to textures. We want to avoid distractions
from such inside edges. We use anisotropic diffusion to make the en-
tire image appear to be more uniform in color or texture, while still
preserving the object boundaries [7]. The points with high gradient
magnitudes after diffusion are more likely to be from the boundary
of the object. After the edge map SI is extracted from the original
image using diffusion, a motion mask AS1 indicating the possible
area where motion could occur is convolved with SI to further sup-
press the background clutter. Finally, the feature map .FI is derived
as:

the motion mask. A background stabilizing step [12] is applied be-
fore the motion mask is estimated when the background and the
tracked object are both moving.

4.2.3. P0: Probability Map of Gradient Orientation

Theoretically, an edge map gives local evidence for the presence or
absence of object boundaries at each pixel, while an orientation map
(91 provides the orientations of edges. Orientation is one useful fea-
ture to discriminate the real object boundaries from all the detected
edges, especially when background clutter is present. If we denote
the normal orientation of the true boundary as 0, it is expected that
the local orientation should roughly equal to either X or X + 7 [2],
yet the orientation distribution of pixels off the boundary tends to be
a uniform distribution between [0, 27). This leads to the orientation
probability map to be:

P0,t(x) oc exp( ((It(Xt(x) t( ) Vx C) Vxcn (8)

where we assume (t (l) = it-i (l ).

4.2.4. Fusion

All the probability maps generated from multiple cues are not strictly
independent, but indirectly coupled by the result they agree upon
[10]. Thus, the deformation probability is approximated as:

Pt (YIr) = Pt (s, m, oIr) o Pt (sIr)Pt (mTr)Pt (oIr)
P5,t * Pm,t * Port (9)

Scanning for pixels with maximum probability values on adaptive
normal lines, we obtain the refined contour pixels, denoted as r.

5. STAGE III: SHAPE REGULATION

Shape regulation shares equal importance with other processes that
decide the performance of the contour tracker, especially when the
target is non-rigid and a deformation has been estimated. We use
shape subspace to constrain the deformation. There are several ap-
proaches for subspace construction. Our algorithm follows the sub-
space model introduced by Cootes et al., the active shape model
(ASM) [1]. The shape subspace is trained from a set of L sam-
ples, each of which is represented by a set of columnized M control
points {rj; 1 < i < M, 1 < j < L}, we finally obtain the fol-
lowing subspace representation x =x + Pb, where xi is aligned
and columnized ri, x is the mean of the aligned examples, b is a
t-element vector of shape variation parameters and P is a (2M x t)
matrix of t eigenvectors, which composes the estimated shape sub-
space TD,. The deformed contour is fitted into the subspace. The
whole operation can be described as interpreting the deformed con-
tour using a linear combination of shape subspace basis. Another
advantage of using the subspace is that it can partially solve the oc-
clusion problems. Denoting the detected contour point vector set as
{r: ri, 1 < i < M}, 1 we first normalize r to ?n and, then apply:

Ft _(7)

where G is a smoothing Gaussian filter and F is the magnitude map
of the diffused image gradient, mapped into a magnitude probability
map Pm. Fig. (C) demonstrates an example of performance im-
provement when we utilize the diffusion edge map convolved with

rproj ppT( x)+x (10)

where iproj is a linear combination of subspace basis. In surveil-
lance sequences, it is highly possible that some points in r are oc-

cluded, or not detected along the normal lines. Let us denote the

1For brevity, here r represents the columnized contour point vector.
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index set of detected points as Id = {il, i2, ... }. We can recover a
complete reprojected contour as follows:

rproj = IP d (Rn,Id XId) +X

Id (PIdPId) PId

(1 1)
(12)

We give an example in Fig. 1 (D) with a comparison between
tracking results with and without shape regulation to demonstrate
the performance improvement of the tracker after we apply shape
regulation.

6. EXPERIMENTS

We have applied the three-stage contour tracking algorithm to differ-
ent sets of outdoor surveillance video sequences, containing moving
humans and vehicles. The algorithm speed implemented by C++
code are 6-10 fps (frames per second) respectively on a 1.5GHz PC
running Windows XP. The tracking results are shown in Fig. 2 and
3. Fig.2 shows two challenging sequences with difficulties due to
moving camera and cluttered background. The result of our tracker
is satisfactory. Fig.3 gives a good example of how shape regula-
tion helps to recover the occluded contour. From the experimental
results, we find that the tracker performs well in most of the cases.

(b)

Fig. 2. Two sequences with both background and object moving.

7. DISCUSSION

The contour tracker we have presented is based on active contour
tracking algorithm using the particle filter, but enhanced using three
key steps. The three steps are motion transition, shape deformation
and shape regulation, respectively. Compared to existing algorithms,
our algorithm is more applicable to scenarios with non-rigid object
movements and heavily-cluttered backgrounds. The merits of our
algorithm are: (1) We model the non-rigid object movement as a
concatenation of global object transition, local boundary deforma-
tion and constrained shape subspace representation; (2) The scan-
ning normal lines are adaptive, more flexible to shape pose variations
and prohibit contour 'looping' as well; (3) We generate a posterior
deformation probability map to extract precise outlines of non-rigid

Fig. 3. An example of occluded contour being recovered by shape
subspace reprojection. In the last 3 frames, the pedestrian is partly
occluded by surrounding trees. Our tracking result recovers the par-
tially occluded contour Red arrows indicate the occlusion parts. We
may also notice thatparking cars contributes to background clutters.

objects; and (4) We use a shape subspace to restrict shape deforma-
tion and recover occluded boundary pixels which significantly re-
duces the risks of over-deformation. The method can successfully
track non-rigid objects in real time and get tight contours enclosing
the changing shapes of the targets throughout the sequences. We
are further considering extension of the algorithm to the multi-target
tracking problem.
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