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Abstract

Traditional approaches consider left behind object detec-
tion as a tracking application and heavily depend on accu-
rate initialization of objects, which is a performance bottle-
neck. Here, we present a pixel-based solution that employs
dual foregrounds of different scene modalities. We con-
struct separate long- and short-term backgrounds modeled
as multilayer, multivariate Gaussian distributions. These
backgrounds are adapted online using a Bayesian update
mechanism at different learning rates that can be imposed
as different frame processing frequencies. In addition, the
formulation for color background can be easily extended
for the gradient and feature point representations. By com-
paring the current frame with the background modes, we
construct dual foregrounds. We aggregate evidence scores
at each camera to provide temporal consistency on the hy-
potheses inferred from the foregrounds. We fuse the evi-
dence from multiple cameras on a ground plane with the as-
sociated confidence scores to eliminate the individual cam-
era failures due to the lighting artifacts. Our method does
not require object initialization, tracking, or offline train-
ing. It accurately segments objects even if they are fully
occluded. Its computational load is low and it readily lends
itself to parallelization if further speed improvements are
necessary.

1. Introduction
Left behind item detection approaches can be grouped as
motion detectors [1, 2, 3], object classifiers [4], and tracking
based analytics approaches [5, 6, 7, 8, 9, 10].

In [2], a dense optical flow map is estimated to infer
the foreground objects moving in opposite directions, mov-
ing in a group, and stay stationary by predetermined rules.
In [3], a pixel-based method for characterizing objects in-
troduced into the static scene by comparing the background
image estimated from the current frame with the previous
ones is described. This approach requires storing of as
many backgrounds as the minimum detection duration in
the memory and causes ghost detections even after the left-
behind item is removed from the scene.

Recently, an online classifier that incorporates a boosting

based feature selection to label image blocks as background,
valid objects, and unidentified regions is presented in [4].
This method adapts itself to the depicted scene, however,
fails short of discriminating moving objects from stationary
ones. Classifier based methods face with the challenge of
dealing with unknown left-behind object type as such ob-
jects can vary from small luggage to ski bags.

A considerable amount of effort has been devoted to
hypothesize left-behind items by analyzing object trajecto-
ries [5, 6, 7, 9, 10] in multi camera setups. In principle,
these methods require solving a harder problem of object
initialization and tracking as an intermediate step in order
to identify the parts of the video frames corresponding to a
left behind object. Object detection in crowded scenes, es-
pecially for uncontrolled real-life situations, is problematic
due to the partial occlusions, heavy shadows, people enter-
ing the scene together, etc. Moreover, object appearance
is often indiscriminative as people tend to dress in similar
colors, which leads inaccurate tracking results.

For static camera setups, background subtraction pro-
vides strong cues for apparent motion statistics. Various
background generation methods have been employed in a
quest for a system that is robust to changing illumination
conditions, appearance variations, shadows, camera jitter,
and severe noise. Parametric mixture models are employed
to handle such variations. Stauffer and Grimson [11] pro-
pose an expectation maximization (EM) based adaptation
method to learn a mixture of Gaussians with predetermined
number of models at each pixel using fixed learning param-
eters. The online EM update causes a weak model, which
has a larger variance, to be dissolved into a dominant model,
which has a smaller variance, in case the mean value of the
weak model is close to the mean of the dominant one. To
address this issue, Porikli and Tuzel [12] develop an on-
line Bayesian update mechanism for adaptation multivariate
Gaussian distributions. This method estimates the number
of necessary layers for each pixel and the posterior distribu-
tions of mean and covariance of each layer by assuming the
data to be normally distributed with mean and covariance as
random variables.

However, there exists a class of problems that cannot be
solved by the traditional foreground-background detection
methods. For instance, objects deliberately abandoned in



public places, such as suitcases, packages, etc. do not fall
into either of these two categories. They are static; there-
fore, they should be labeled as background. On the other
hand, they should not be ignored as they do not belong to
the original scene background. Depending on the learning
rate, the pixels corresponding to the temporary static objects
can be mistaken as a part of the scene background (in case
of a high learning rate), or grouped with the moving regions
(low learning rate). A single background is not sufficient to
separate the temporarily static pixels from the scene back-
ground.

In this paper, we propose a pixel-based method that em-
ploys dual foregrounds for multi camera setups. Our moti-
vation is that by changing the background learning rate, we
can adjust how soon a static object should be blended into
the background. Therefore, temporarily static image re-
gions can be distinguished from the longer term background
and moving regions by analyzing multiple foregrounds of
different learning rates. This simple idea is wrapped into
our adaptive background estimation algorithm, where the
slowly adapting background and the fast adapting fore-
ground are aggregated into an evidence image. We impose
different learning rates by processing video at different tem-
poral resolutions. The background models have identical
initial parameters, thus they require minimal fine tuning in
the setup stage. The evidence statistics are used to extract
temporarily static image areas at each camera. We fuse the
evidence from multiple cameras on a ground plane with as-
sociated confidence scores to eliminate the individual cam-
era failures due to the lighting artifacts. In addition, we
extend the color backgrounds for the gradient and feature
point representations.

Our method does not require object initialization, track-
ing, or off line training. It accurately segments objects even
if they are fully occluded. It has a low computational load
and readily lends itself to parallelization if further speed im-
provements are necessary.

2. Dual Foregrounds
To detect a left behind item (or an illegally parked vehicle,
removed article, etc.), we need to know how it alters the
temporal and spatial statistics of the video data. We built
our method on the fact that an abandoned item is not a part
of the original scene, it was brought into the scene not that
long ago, and it remained still after it has been left. In other
words, it is a temporarily static object which was not there
before. This means that by learning the prolonged static
scene and the moving foreground regions, we can hypoth-
esize on whether a pixel corresponds to an abandoned item
or not.

As opposed to single background approaches, we use
two backgrounds to obtain both the prolonged (long-term)

background BL and the temporarily static (short-term)
background BS . Note that, it is possible to improve the tem-
poral granularity by employing more than two backgrounds
at different learning rates.

Our background model [12] is most similar to adaptive
mixture models [11] but instead of mixture of Gaussian dis-
tributions, we define each pixel as layers of 3D multivariate
Gaussians. Each layer corresponds to a different appearance
of the pixel. We perform our operations in the RGB color
space. Using Bayesian update, we are not estimating the
mean and variance of the layer, but the probability distribu-
tions of mean and variance. We can extract statistical infor-
mation regarding to these parameters from the distribution
functions. We use the expectations of mean and variance for
change detection, and variance of the mean for confidence.
Bayesian update algorithm maintains the multimodailty of
the background model.

Learned background statistics are used to detect the
changed regions of the scene. We determine how many
layers are necessary for each pixel and use only those lay-
ers during foreground segmentation phase. The number of
layers required to represent a pixel is not known before-
hand so background is initialized with more layers than
needed. Usually we select three to five layers. In more
dynamic scenes more layers are required. Using the confi-
dence scores we determine how many layers are significant
for each pixel. As we observe new samples for each pixel
we update the parameters for our background model. At
each update, at most one layer is updated with the current
observation. This assures the minimum overlap over layers.
We order the layers according to confidence score and se-
lect the layers having confidence value greater than the layer
threshold. We refer to these layers as confident layers. We
start the update mechanism from the most confident layer.
If the observed sample is inside the 2.5σ of the layer mean,
which corresponds to 99% confidence interval of the cur-
rent model, parameters of the model are updated. Lower
confidence models are not updated. Details can be found
in [12].

At every frame, we estimate the long- and short-term
foregrounds by comparing the current frame I by the back-
ground models BL and BS . We obtain two binary fore-
ground masks FL and FS where F (x, y) = 1 indicates the
pixel (x, y) is changed. The long-term foreground mask FL

shows the color variations in the scene that were not there
before including moving objects temporarily static objects,
as well as moving cast shadows and illumination changes
that the background models fail to adapt. The short-term
foreground mask FS contains the moving objects, noise,
etc. Depending on the foreground mask values, we pos-
tulate the following hypotheses as shown in Figure 1:

1. FL(x, y) = 1 and FS(x, y) = 1; (x, y) is a pixel that
may correspond to a moving object since I(x, y) does
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Figure 1: Hypotheses on long and short-term foregrounds.

not fit any backgrounds.

2. FL(x, y) = 1 and FS(x, y) = 0; (x, y) is a pixel that
may correspond to a temporarily static object.

3. FL(x, y) = 0 and FS(x, y) = 1; (x, y) is a scene
background pixel that was occluded before.

4. FL(x, y) = 0 and FS(x, y) = 0; (x, y) is a scene
background pixel since its value I(x, y) fits both back-
grounds BL and BS .

The short-term background is updated at a higher learn-
ing rate than the long-term background. Thus, the short-
term background adapts to the underlying distribution faster
and the changes in the scene are blended more rapidly. In
contrast, the long-term background is more resistant against
the changes.

Our update mechanism prevent from momentary
changes to contaminate these backgrounds, and such pixels
are labeled as foregrounds; FS(x, y) = 1 and FL(x, y) = 1.
In case a scene background pixel changes temporarily then
sets back to its original value, the long-term foreground
mask will be zero; FL(x, y) = 0. The short-term back-
ground is pliant and adapts itself during this time, which
causes FS(x, y) = 1. We assume it takes more time to adapt
the long-term background to the newly observed color than
the change period. A changed pixel will be blended into
the short-term background i.e. FS(x, y) = 0 if it keeps its
new color long enough. If this duration is not prolonged
enough to blend it the long-term foreground mask will be
one; FL(x, y) = 1. This is the common case for the aban-
doned items. If no change is observed in neither of the back-
grounds FL(x, y) = 0 and FS(x, y) = 0, the pixel is con-
sidered as a part of the static scene background as the pixel
has the same value for much longer periods of time.

The dual foreground mechanism is illustrated in Fig-
ure 2. In this simplified drawing, the horizontal axis cor-
responds to time and the vertical axis to the confidence of
the background model. Action indicates that the pixel color

Figure 2: The confidence of the long-term and short-term
background models (vertical axis) change differently for or-
dinary objects (moving or temporarily stationary ones), left-
behind items, and scene background.

has significantly changed. Label represents the result of the
above hypotheses. For pixels with relatively short duration
of change, the confidences of the long- or short-term mod-
els do not increase enough to make them valid backgrounds.
Thus, such pixels are labeled as moving object. Whenever
the short term model blends the pixel in the background but
the long term model still marks it as foreground, the pixel
is considered to belong to the left-behind item. Finally, if
the pixel change takes even longer the pixel is labeled as
a scene background. Sample foregrounds that show these
cases are given in Figure 3.

We aggregate the frame-wise detection results into an ev-
idence image E(x, y) by updating the pixel-wise values at
each frame as

E(x, y)=


E(x, y) + 1 FL(x, y) = 1 ∧ FS(x, y) = 0
E(x, y)− k FL(x, y) 6= 1 ∨ FS(x, y) 6= 0
maxe E(x, y) > maxe

0 E(x, y) < 0

where maxe and k are positive numbers. The evidence im-
age enables removing noise in the detection process. It also
controls the minimum time required to assign a static pixel
as an abandoned item. For each pixel, the evidence image
collects the motion statistics. Whenever it elevates up to
a preset level E(x, y) > maxe, we mark the pixel as an
abandoned item pixel and raise an alarm flag. The evidence
threshold maxe is defined in term of the number of frames
and it can be chosen depending on the desired responsive-
ness and noise characteristics of the system. In case the
foreground detection process produces noisy results, higher
values of maxe should be preferred. High values of maxe

lower the false alarm rate. On the other hand, higher the
preset level gets, longer the minimum duration a pixel takes
to be classified as a part of an abandoned item. A typical
range of the evidence threshold maxe is 300 frames.

The decay constant k determines how fast the evidence
should decrease. In other words, it decides what should hap-
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Figure 3: First row: t = 350. Second row: t = 630. The long-term foreground FL captures moving objects and temporarily
static regions. The short-term foreground FS captures only moving objects. The evidence E gets greater as the object stays
longer.

pen in case a pixel that is marked as an abandoned item is
blended into the scene background or gets its original value
before the marking. To set the alarm flag off immediately
after the removal of object, the value of decay should be
large, e.g., k = maxe. This means there is only a single pa-
rameter to set for the likelihood image. In our experiments
we observed the larger values of decay constant generate
satisfying results.

3. Multiple Camera Fusion
We fuse the individual detection results obtained for each
camera onto a ground plane. We compute the homogra-
phy matrices using multiple pairs of corresponding points,
which are selected manually. In case of a moving camera
setup, these transformation matrices can be obtained by a
feature detector and RANSAC. All the images are rectified
onto the ground plane coordinate system, where the center
of the image represent (0, 0) in the world coordinate system
and one pixel length in the image represents approximately
2cm. Figure 4 shows examples of the pixel-level detection
results in single camera views and the rectified images. The
red pixels represent possible left-behind item regions.

In addition to the color backgrounds, feature points such
has corner or high gradient magnitude points can be com-
puted and the backgrounds are fit on the feature points. Fig-
ure 5 gives the detection results obtained for edge features
using Canny operator and Harris corner point features. We
observed similar detection performance in both color and
feature point backgrounds, except a few very short termed
(couple of frames) false alarms were apparent in the feature
point version. On the other hand, the feature point back-
ground runs at least 10× faster than the color backgrounds.

If no other confidence score that indicates the saliency of

the individual camera estimations is available, the detection
results, which are binary masks, can be simply warped and
added to find a ground plane evidence map EGt(x, y) =∑

i Ei,w
t (x, y) where Ei,w

t (x, y) is the warped i-th camera
image at frame t as shown in Figure 6. For S08 dataset, EG
has the maximum value of four, which means that pixel is
detected as a possible left-behind luggage pixel in all the
four views. We impose that a pixel should be detected in
at least 3 camera views simultaneously, which means the
ground plane evidence map EG is thresholded at τ = 3.
The ground plane evidence EG can fluctuate pixel-wise
due to this hard thresholding. To improve such inconsis-
tencies a ground plane evidence history map EGH can be
constructed to provide temporal smoothing on the observed
results as

EGHt =
{

max(0, EGHt−1 − α) EGt < τ
1 EGt ≥ τ

(1)

Above update formulation combines the ground plane de-
tections over a temporal window of 1/α frames by decaying
the results of the previous frames by α in case the detection
is below the imposed threshold τ . In other words, EGH
represents a cumulative map of the brighter regions of re-
cent frames together with gradually fading older frame de-
tection results. EGH enables to make a soft decision even
though a hard threshold in applied.

Figure 6 illustrates the EGH map with α = 1/25, i.e.
the temporal window size is 25. At frame t = 1860 the
left luggage is detected accurately, however, at frame t =
1890 the luggage is partially occluded and most pixels of
EG1890 is below threshold τ = 3. Since the luggage is
detected accurately in the previous frames, at frame t =
1890 it is detected with decayed score of EGH1890. When
the luggage is removed at frame t = 1930, its detection
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Figure 4: Detection results in each single view and the cor-
responding warped images on the ground plane.

score is significantly decayed.

3.1 Confidence Maps

Illumination artifacts, especially the ones that destroys the
appearance patterns, might contaminate the detection re-
sults of individual camera observations. We tested several
strategies to enhance the performance under such condi-
tions.

Spatial contrast: Considering left-behind items likely
to have a different colors, contrast, from their surrounding
backgrounds (as they are visible in FL), the pixels within an
inner region of a detected pixel should have distinctive color
distribution from an outer region that is supposed to outside
the left behind item. For each detected pixel p, it is possible
to compute an inner color histogram within a h × h and an

Canny Harris

Figure 5: Canny (left) and Harris corner (right) feature
based detections for t = 1850.

outer color histogram within the surrounding 2h× 2h layer
as illustrated in Figure 7-left. Then, a confidence score of
each pixel, i.e. a spatial contrast value, can be determined as
the distance between the inner and outer region histograms,
e.g. using quadratic or Bhattacharya norms. The region di-
mension h can be set by an average size on the ground plane
and projecting onto the image planes. Figure 8 shows sam-
ples computed for h = 11. This approach helps removing
false detections in smoother image regions. For each cam-
era view, instead of adding the detection results directly, the
weighting scheme can be applied (Figure 7).

Temporal intensity change: Another way of removing
false detections due to severe illumination changes, which
may not be compensated successfully by the background
update, is to weight each camera results inversely by an
estimated temporal intensity change score. For instance,



Figure 6: Left: EGt, right: EGHt (from the third camera
view as ground plane). Rows show the detection results at
t = 1860, 1890, 1930 of S08 dataset.

as shown in Figure 9-left, a probe window that does not
contain any crowd motion area can be selected in the setup
time. For the pixels in this probe window, average intensity
change (4Y/4t) is computed between the current and pre-
vious frames, preferably at a low temporal resolution to al-
low detection of subtle changes. Larger change scores indi-
cate the smaller the confidence weights (βi in Figure 7) for
the corresponding cameras. This approach can accurately
identify global illumination changes as it was shown in Fig-
ure 9-right and weight each camera’s feedback accordingly.

Figure 10 is sample results from S08 dataset from PETS-
2007. The combined results are given in the last column
for EGH and thresholded EGH on the ground plane. In
our experiments, we detected the left-behind item and got
no false alarms due to the illumination artifacts that caused
artificial patterns on the background after the object was re-
moved from the scene. As visible, none of the moving ob-
jects, moving shadows, people that are stationary in shorter
durations was falsely detected. Another advantage of this
method is that the alarm is immediately set of as soon as the
abandoned item is removed from its previous position.

Figure 7: Left: inner and outer regions around a pixel where
spatial contrast is computed using the regions histograms.
Right: weighted sum is computed by compensating for the
amount of the global illumination changes at each camera
where larger illumination changes result in smaller camera
confidence weights.

Figure 8: Left: original detections. Right: weighting by
spatial contrast cue to filter inaccurate temporally static re-
gion detections due to the illumination variations at high
gradient background pixels.



Figure 9: Left: probe window. Right: intensity changes.

One shortcoming is that it cannot discriminate the differ-
ent types of objects, e.g. a person who is stationary for a
long time can be detected as a left behind item. Since no
tracking is integrated, trajectory based semantics, e.g. who
left the item or how long the item left before the person
moves away can not be extracted. Still, our method can be
used as a preprocessing stage to improve the tracking based
video analytics.

The computational load is low; the processing of multi-
ple sequences is done in real-time as it is sufficient to ana-
lyze the streaming videos in much lower frame rates. Since
we only employ pixel-wise operations and make pixel-wise
decisions, we can take advantage of the parallel processing
architectures. By assigning each image pixel to a processor
on the GPU using CUDA programming, since each proces-
sor can execute in parallel, the speed improves more than
14× in comparison to the corresponding CPU implementa-
tion. For instance, full background update for 360×288 im-
ages takes 74.32msec on CPU (P4 DualCore 3Ghz), how-
ever on CUDA it only needs 6.38msec. We observed that
the left-behind item detection can be comfortably applied
in quarter spatial resolution by processing the short-term
background at 5 fps while updating the long-term at every
5 seconds (0.2 fps).

4. Conclusions

A computationally efficient and robust method to detect
temporally static regions in multi-camera setups is pre-
sented. This method does not depend on object initializa-
tion and tracking and accurately outlines the boundary of
items even if they are fully occluded later. It uses two back-
grounds that are learned by processing the input videos at
different frame rates and aggregates evidence both at each
camera and on ground plane for multiple cameras. It em-
ploys pixel and camera based confidences to weight indi-
vidual camera estimations accordingly. Since it executes
pixel-wise operations it can be implemented on parallel pro-
cessors.
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Figure 10: Pixel-level detections in the four camera views and the fused results on the ground plane (last column). Results
for t = 1850, 1950, 2900. As visible, fusion significantly helps removing noise in individual camera views as there is no
false detections in the fused results where full red color indicates a detection (not shades of red). Alarm sets off right after
the object is removed.


