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Abstract

This paper presents a novel learning based tracking
model combined with object detection. The existing tech-
niques proceed by linearizing the motion, which makes an
implicit Euclidean space assumption. Most of the trans-
formations used in computer vision have matrix Lie group
structure. We learn the motion model on the Lie algebra
and show that the formulation minimizes a first order ap-
proximation to the geodesic error. The learning model is
extended to train a class specific tracking function, which
is then integrated to an existing pose dependent object de-
tector to build a pose invariant object detection algorithm.
The proposed model can accurately detect objects in vari-
ous poses, where the size of the search space is only a frac-
tion compared to the existing object detection methods. The
detection rate of the original detector is improved by more
than 90% for large transformations.

1. Introduction

An extensive literature exists on tracking problem and
here we reference only the template alignment methods. In
optical flow formulation [9], the sum of squared difference
between the template and the image intensities was mini-
mized as an iterative least squares problem. The method re-
quires computation of the image gradient, the Jacobian and
the Hessian for each iteration, which makes it slow. Vari-
ants of the method were proposed to overcome the diffi-
culty [5, 12]. An overview can be found in [10]. In [2, 7],
the motion was estimated using a linear function of the
image gradient, which was learned in an off-line process.
Later [15], the idea was extended to learn a nonlinear model
using relevance vector machine. These methods estimate
the additive updates to the motion parameters via lineariza-
tion.

In this paper we use Lie group theory for motion estima-
tion. A few of the related papers are as follows. In [13], a
mode finding algorithm on Euclidean motion group was de-
scribed for a multiple motion estimation problem. In [4], an
addition operation was defined on the Lie algebra for track-
ing an affine snake. In [1], the additive updates were per-
formed on the Lie algebra for template tracking. However,

the approach in [1] fails to account for the noncommutativ-
ity of the matrix multiplications and the estimations become
valid only around the initial transformation of the target. In
a recent study [3], a kernel regression model for manifold
valued data is described for analyzing shape changes of the
brain on MR images. The approach is computationally ex-
pensive and is not well suited for real time applications such
as tracking.

We present a novel formulation for motion estimation by
learning a regression model on the Lie algebra. We show
examples on affine motion group, however the method is
applicable to any matrix Lie group structured transforma-
tion. The appearance of an object is described with several
orientation histograms computed on a regular grid. Using
a regression function, we learn the correlation between mo-
tions and the observed descriptors.

Majority of the current state of art object detection al-
gorithms are based on sequentially applying a learned clas-
sifier of the object model at all the possible subwindows.
However, a brute force approach on a high dimensional
search space is computationally intractable. The proposed
learning model is extended to train a class specific tracking
function which can localize the targets with a sparse scan
on the motion space. The motion estimator is then inte-
grated to an existing pose dependent object detector and a
pose invariant object detection algorithm with respect to the
motion model is developed.

2. Tracking as a Learning Problem
The method is demonstrated on affine motions, however,

it generalizes to any matrix Lie group transformations. A
two-dimensional affine transformation A(2) is given by a
3× 3 matrix M

M =
(

A b
0 1

)
(1)

where A is a nonsingular 2× 2 matrix and b ∈ R2. The set
of all affine transformations forms a matrix Lie group. Let
M transforms a unit square at the origin to the affine region
enclosing the target object

[ximg yimg 1]T = M[xobj yobj 1]T (2)
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Figure 1. The mapping and its inverse, between the object and
image coordinates.

where, the subscripts indicate the object coordinates and
image coordinates respectively. The inverse M−1 is also an
affine motion matrix and transforms the image coordinates
to the object coordinates (Figure 1).

Let I denote the observed images and t be the time in-
dex. The aim of tracking is to estimate the transformation
matrix Mt, given the observations up to time t, I0...t, and
the initial transformation M0. We model the transforma-
tions incrementally

Mt = Mt−1.∆Mt (3)

and estimate the increments ∆Mt at each time frame. The
transformation ∆Mt corresponds to motion of target from
time t− 1 to t in the object coordinates.

The image in the object coordinates is written as
I(M−1). We consider the pixel values inside the unit rec-
tangle and represent the region with a descriptor, such as,
orientation histograms. It is denoted by o(M−1) ∈ Rm

where m is the dimension of the descriptor.
We interpret tracking as a matrix valued regression prob-

lem. Given the previous location of the object Mt−1 and the
current observation It, we estimate the new transformation
∆Mt by the regression function

∆Mt = f(ot(M−1
t−1)). (4)

The problem reduces to learning and updating the regres-
sion function f , where the details are explained in Section 4.

During initialization, t = 0, the observation I0 and the
initial location of the object M0 are given. We gener-
ate a training set of n random affine transformation ma-
trices {∆Mi}i=1...n around the identity matrix. The ob-
ject coordinates are transformed by multiplying on the left
with ∆M−1

i and the new descriptor is computed by oi
0 =

o0

(
∆M−1

i .M−1
0

)
. The transformation ∆Mi moves the

object back to the unit square. The training set consists of
samples

{
oi

0,∆Mi

}
i=1...n

and the process is illustrated in
Figure 2. Notice that we use the notation ∆M both for the
elements of training set with subscript i and the estimated
motions during tracking with subscript t.

Figure 2. Training samples are generated by applying n affine mo-
tions ∆M−1

i=1...n at the object coordinates. Using (3), the new
observations in the object coordinates are I0

�
(M0.∆Mi)

−1�,
where an equivalent form is used in the image.

The regression function f : Rm 7→ A(2) is an affine
matrix valued function. The standard approach for motion
estimation is through introducing a parametrization of the
motion and linearization [2, 7, 15], which in this case is
around the identity matrix

∆M(p0 + ∆p) ≈ ∆M(p0) +
∂∆M
∂p

∆p. (5)

where ∆M(p0) = I. The approach proceeds by estimat-
ing the increments ∆p. There are two major drawbacks
of the approach. Firstly, the approximation makes a vector
space assumption on the parameters. Secondly, the parame-
trization is arbitrary and do not consider the structure of the
motion. We use the Lie group theory [11] to estimate the
tracking function.

3. Lie Groups
A Lie group is a group G with the structure of a differen-

tiable manifold such that the group operations, multiplica-
tion and inverse, are differentiable maps. The tangent space
to the identity element I of the group forms a Lie algebra
g. In our convention we are referring to points on the group
with bold capital letters and vectors on the Lie algebra with
small capital letters.

The distances on the manifold are measured by the
lengths of the curves connecting the points, and the min-
imum length curve between two points is called the geo-
desic. From I there exists a unique geodesic starting with
vector m ∈ g. The exponential map, exp : g → G maps
the vector m to the point reached by this geodesic. Let
exp(m) = M, then the length of the geodesic is given
by ρ(I,M) = ‖m‖. The inverse mapping is given by
log : G → g. Using the logarithm map and the group oper-
ation, the geodesic distance between two group elements is
measured by

ρ(M1,M2) = ‖log(M−1
1 M2)‖. (6)



Figure 3. The gradient weighted orientation histograms are utilized
as region descriptors.

We focus on matrix Lie groups only. The exponential
and logarithm maps of a matrix are given by

exp(m) =
∞∑

n=0

1
n!

mn log(M) =
∞∑

n=1

(−1)n−1

n
(M− I)n.

(7)
The structure of affine matrices was given in (1), which is

a d = 6 dimensional manifold. The associated Lie algebra
is the set of matrices

m =
(

U v
0 0

)
(8)

where, U is a 2 × 2 matrix and v ∈ R2. The matrix m
is sometimes referred to as a d = 6 dimensional vector by
selecting each of the entries of U and v as an orthonormal
basis.

4. Tracking via Regression on Lie Groups

The target region is represented with several orientation
histograms computed at a regular grid inside the unit square
in object coordinates (Figure 3). Similar to SIFT descrip-
tors [8], the contribution of each pixel to the histogram is
proportional to its gradient magnitude. The unit square is
divided into 6 × 6 = 36 regions and a histogram is com-
puted in each of them. Each histogram is quantized at π/4
degrees between 0 and 2π. The size of each histogram is
eight dimensional and the descriptors, o, are m = 288 di-
mensional. During tracking the peripheral pixels are fre-
quently contaminated by the background, hence we leave a
10% boundary at the outerside of the unit square and con-
struct the descriptor inside the inner rectangle.

4.1. Model Learning

During the model learning, the parameters of the regres-
sion function, f : Rm 7→ A(2), are estimated. The training
set consists of samples

{
oi

0,∆Mi

}
i=1...n

. Affine motion
matrices lie on a differentiable manifold, and a meaningful
error function is the sum of the squared geodesic distances

between the estimations f(oi
0), and the random transforma-

tions ∆Mi

Jg =
n∑

i=1

ρ2
[
f(oi

0),∆Mi

]
. (9)

Let M1 and M2 be two motion matrices, and let m1 =
log(M1) and m2 = log(M2). Using Baker-Campbell-
Hausdorff formula [11, p.22-23] which gives the exponen-
tial identity for non-commutative Lie groups, a first order
approximation to the geodesic distance between the two
motion matrices is

ρ(M1,M2) =
∥∥log

[
M−1

1 M2

]∥∥
= ‖log [exp(−m1)exp(m2)]‖
=

∥∥log
[
exp(m2 −m1 + O(|(m1,m2)|2)

]∥∥
≈ ‖m2 −m1‖ . (10)

Selecting d orthonormal bases on the Lie algebra, we can
compute the matrix norm as the Euclidean distance between
two vectors. Using (10), the function (9) is equivalent to
minimizing

Ja =
n∑

i=1

∥∥log
(
f(oi

0)
)
− log (∆Mi)

∥∥2
(11)

up to first order terms. The approximation is good enough
since the transformations are in a small neighborhood of the
identity.

We define the regression function as

f(o) = exp (g(o)) (12)

and learn the function g : Rm 7→ Rd which estimates the
tangent vectors, log (∆M), on the Lie algebra. We model
the function g as a linear function of the observations o

g (o) = oT Ω (13)

where Ω is the m× d matrix of regression coefficients.
Let X be the n × m matrix of initial observations and

Y be the n × d matrix of mappings of motions to the Lie
algebra

X =


[
o1

0

]T

...
[on

0 ]T

 Y =

 [log (∆M1)]
T

...
[log (∆Mn)]T

 . (14)

Notice that, log (∆M1) is referred here in d-dimensional
vector form. Substituting (12) and (13) into (11), we obtain

Ja = tr[(XΩ−Y)T (XΩ−Y)] (15)

where the trace replaces the summation in (11).



Input: Location of target at time t− 1 is Mt−1 and the current
observation is It, maximum iteration number is K.

• k = 1 and Mt = Mt−1

• Repeat

– ∆Mt = f(ot(M
−1
t ))

– Mt = Mt.∆Mt

– k = k + 1

• Until ∆Mt = I or k = K

Figure 4. Tracking algorithm.

For real time tracking we keep the size of the training
set relatively small, n = 200. Since number of samples is
smaller than the dimension of the feature space, n < m,
the system is underdetermined and the least squares esti-
mate becomes inaccurate. To avoid overfitting, we intro-
duce an additional constraint on the size of the regression
coefficients

Jr = tr[(XΩ−Y)T (XΩ−Y)] + λ‖Ω‖2 (16)

which is called the ridge regression [6, p.59-64]. The mini-
mizer of the error function Jr is given by

Ω = (XT X + λI)−1XT Y (17)

where I is an m × m identity matrix. The regularization
coefficient λ determines the degree of shrinkage on the re-
gression coefficients. The details of the parameter λ is ex-
plained in Section 6.

4.2. Interframe Correspondence

After learning the regression function f , the tracking
problem reduces to estimating the motion via (4) using cur-
rent observation It and updating the target location via (3).
To better localize the target, at each frame we repeat the mo-
tion estimation using f a maximum of ten times or ∆Mt

becomes equal to identity (Figure 4).

4.3. Model Update

Since objects can undergo appearance changes in time,
it is necessary to adapt to these variations. In our case, the
model update reestimates the tracking function f . During
tracking the target object, we generate s = 2 random ob-
servations at each frame with the same method described in
Section 2. The observations stored for last p = 100 frames
constitute the update training set. Let Xu and Yu be the
update training set stored in the matrix form as described
in (14), and Ω′ be the previous model parameters. After
each p frames of tracking, we update the coefficients of the
regression function by minimizing the error

Ju = tr[(XuΩ−Yu)T (XuΩ−Yu)] +
λ‖Ω‖2 + γ‖Ω−Ω′‖2. (18)

The error function is similar to (16), but another constraint
is introduced on the difference of regression coefficients.
The minimum is achieved at

Ω = (XT
u Xu + (λ + γ)I)−1(XT

u Yu + γΩ′). (19)

The parameter γ controls how much change on the regres-
sion parameters are allowed from the last estimation. More
details of the parameter γ is explained in Section 6. To take
into account the bias terms all the function estimations are
performed using centered data.

5. Invariant Object Detection
In [16], it was argued that scanning of the whole image

for detecting anatomic structures in medical images is un-
necessary since the problem domain offers strong contex-
tual information for localizing the targets. Utilizing a simi-
lar idea, we present a method to build an invariant detection
algorithm by integrating a class specific tracking function
to an existing pose dependent detector. We demonstrate the
approach for affine invariant detection of faces.

We perform a sparse scan of the image, and determine all
the possible object locations with a pre-learned class spe-
cific tracking function (e.g. tracker for faces). The tracker
finds all the locations in the motion space (e.g. affine) which
resemble the object model. The object detector is then eval-
uated only at these locations.

The benefits of the approach is two-fold. Firstly, the size
of the search space drastically reduces. For example, we
only consider a tracker which can correctly estimate trans-
lational motions upto 1/4 of the object size. Then it is pos-
sible to scan the image with jumps equal to 1/2. The ratio
of number of search locations compared to the brute force
approach decreases exponentially with the dimensionality
of the motion model. Secondly, the proposed method per-
forms continuous estimation of the target pose, whereas the
existing techniques perform search on a quantized space,
e.g. rotations of π/6. Utilizing a pose dependent object de-
tection algorithm (e.g., frontal faces in upright position), the
method enables to detect objects in arbitrary poses.

Instead of learning a tracking function of the specific tar-
get object (4), we train a regression function of the object
class. For instance, we consider a face tracker. The learn-
ing is performed on the training set generated by applying a
total of n random affine transformations to l face images.

The training is an offline process and a more complicated
model can be learned compared to tracking applications.
However, the learned function should be evaluated fast at
runtime, since the tracker is initiated at several locations for
each test image. We consider two models for learning. First
model is the ridge regression which was explained in Sec-
tion 4.

As the second model, we consider the regression forest
which is a bagged model of tree regressors [6, p.266-270].



Figure 5. The trackers are initialized at sparse regular grid (dashed
boxes). Final locations (solid boxes) are evaluated with face de-
tector and the nonface regions are rejected.

Given a training set, we learn a binary tree model where
each leaf node is a motion vector on the Lie algebra. The
inner nodes make binary comparisons of two feature dimen-
sions of the descriptor (out of 288), and based on the result
split the space into two. During learning, 100 randomly se-
lected features are evaluated at each node and the best pair
which minimizes the sum of squared approximation error
(11) on the divided spaces is selected. The growing of the
tree at a node ends if there is a single sample inside or the
depth of the tree reaches 15. The value of the leaf nodes
with multiple samples (the nodes with depth 15) are as-
signed to the mean. In general, a single tree model performs
poorly since the variance of the model is very high. To re-
duce the variance, a bagged model is learned which consists
of 100 binary tree regressors. Each of them is trained on a
different training set of randomly generated motions. The
estimation of the random forest is the average of the 100
motions estimated by the regression trees. The tree model
is evaluated fast at runtime since each tree performs an esti-
mation by at most 15 binary comparisons.

To detect faces in a given test image the trackers are ini-
tialized at sparse set of locations, on a regular grid with 1/2
jumps of the window size (minimum 24 × 24) and scales
of factor 2, until the image size. Each tracker is iterated
K = 20 times and the final locations are evaluated with
Viola and Jones face detector [14] (Figure 5).

6. Experiments
We present several experiments both on affine tracking

and object detection.

6.1. Affine Tracking

In the first experiment, we compare the Lie algebra based
parametrization with the linearization (5) around the iden-
tity matrix [2, 7, 15] by measuring the estimation errors. We
also compare orientation histograms with the intensity dif-
ference features used in optical flow estimation and track-
ing [1, 2, 7].

We generated a training set of ntr = 200 samples by ran-
dom affine transformations of a single object. The motions

Figure 6. Estimation errors of the Lie algebra and the linearization
methods using orientation histograms and intensity features.

are generated on the Lie algebra, by giving random values
between −0.2 and 0.2 to each of the six parameters, and
mapped to affine matrices via exponentiation. The func-
tion f is estimated by ridge regression with λ = 2.10−3 for
orientation histograms and λ = 5.0 for intensity features,
determined by cross validation.

Each test set consists of nte = 1000 samples. The sam-
ples inside a set have fixed norm. The norms ‖log(∆M)‖
vary from 0.025 to 0.35. We perform a single tracking iter-
ation by each method, and measure the mean squared geo-
desic error (MSGE)

1
nte

nte∑
j=1

ρ2
[
f(oj

0),∆Mj

]
(20)

between the estimations and the true values (Figure 6). The
estimation based on the Lie algebra is better than the lin-
earization for transformation of all norms. The ratio is al-
most constant and on the average the linearization have 12%
larger error. The estimations with orientation histograms
are significantly better than the intensity based features.

In the second experiment, we show tracking examples for
several challenging sequences. In all the experiments, the
parameters of the ridge regression were λ = γ = 2.10−3,
which were learned offline via cross validation. The train-
ing dataset is generated on the Lie algebra, by giving ran-
dom values between−0.1 and 0.1 to each of the six parame-
ters. Notice that, although we track the targets with an affine
model, almost none of the targets are planar. Therefore, an
affine model can not perfectly fit the target but produces the
best affine approximation.

In Figure 7, a ball having large motions is tracked. The
Lie algebra (first row) based estimation accurately tracks the
target, whereas using linearization (second row) the target is
lost after a few seconds. In the following sequences, only
Lie algebra based estimations are shown.

Since nonplanar objects undergo significant appearance
variations due to pose changes, the model update becomes
important. In Figure 8, we show the effect of the update



Figure 7. Comparison of the Lie algebra (first row) and the linearization (second row) based estimations. The target has large motions and
the linearization based estimation loses the target after a few seconds. The sequence contains 318 frames.

Figure 8. The effect of model update. The first row is with update. The second row is without update. The target has severe appearance
variations due to illumination and pose change throughout the sequence. The sequence contains 324 frames.

Figure 9. Affine tracking of a book. The sequence contains 739 frames. See text for details.

method on the estimations. The sequence has large ap-
pearance variations, but the update method adapts to these
changes (first row), whereas without update (second row)
the target is lost.

In Figure 9 we show an affine tracking example of a
book. The target has large on-plane and off-plane rotations,
translations, scale changes and occlusions. The estimations
are accurate, which shows the robustness of the proposed
approach. Please refer to the supplementary material for
videos and more examples.

6.2. Invariant Object Detection
We perform detection experiments on a face dataset

which consists of 803 face images from CMU, MIT and
MERL datasets. The dataset is divided into 503 images for
training and 300 for testing. The training set consists of
25150 samples which are generated by applying 50 trans-
formations having a random norm between 0 to 1.0 to each
face image. In contrast to the previous section, each of the
six generators on the Lie algebra are weighted. For exam-
ple, on average a norm 1.0 transformation corresponds to a



combined translation of 25% of object size, rotation of π/4
degrees, and scaling and sheer ratio of 1.7.

In the first experiment, we compare the ridge and re-
gression forest models either parameterized on the Lie al-
gebra or based on the linearization. For each test image,
we initialize five times the tracking window with a fixed
norm random transformation (between 0.0 to 1.2) from the
original location. For each initialization we perform 20
iterations of tracking. At the final location, we measure
the squared geodesic error (20) from the original location.
The mean squared geodesic errors are given in Figure 10a.
The Lie algebra based parametrization is significantly bet-
ter for both regression models, especially for large transfor-
mations. The best result is given by the regression forest
model.

In the second experiment, we compare the detection per-
formances of the models. Using the setting of the first ex-
periment, at the final locations we evaluate the face detector
(Figure 10b). The Viola and Jones (VJ) face detector [14]
evaluated at the original location of the target could detect
96.7% of the faces, and the detection rate suddenly falls to
5% at locations which are norm 0.5 distant. The Lie alge-
bra based estimations and the regression forest model are
significantly superior. For norms between 0.0 to 1.0, the
average miss rate for regression forest using Lie algebra is
4.24% which is almost as good as detector applied at the
original location. For small transformations, the results are
even better than the detector evaluated at the original loca-
tion, where the small misalignments in the test set are cor-
rected. On average, Lie algebra based parametrization have
50% less miss rate for regression forest and 24% less for
ridge regression, compared to linearization. In Figure 11,
several examples of initial and final locations found by the
tracker are shown for various face images using regression
forest model for transformations of norm 1.2.

In Figure 12 we show face detection examples for several
challenging images utilizing both the original VJ detector
and the proposed method. For an image of size 320 × 240,
the VJ detector evaluates 58367 locations for translation and
scale search, whereas the proposed method evaluates face
detector at only 642 locations searched on the affine space.

6.3. Computational Requirement

The model is implemented on a Pentium D 2.80Ghz
processor with 2.00GB of RAM using C++. The proposed
tracking algorithm including model learning and update can
process 60 frames per second.

The training of detection models requires 2 minutes for
the ridge regression model and around 3 hours for the ran-
dom forest model. At runtime the most expensive operation
is the affine warping of the regions to the object coordi-
nates and computing the object descriptors. For a 320×240
image, the tracker is initialized at 642 locations and 20

Figure 11. Face tracking. Columns 1, 3 and 5 are the initial win-
dows and 2, 4 and 6 are the recovered locations.

tracker iterations are performed which requires 12840 warp-
ing operations. Since the warps at each iteration can be per-
formed in parallel we implemented the warping on GPU us-
ing NVIDIA GeForce 8800 GTX graphics card and CUDA
SDK. The search for an image of size 320× 240 takes 0.85
and 2.4 seconds with the linear and the regression forest
models respectively.

7. Conclusion
We have presented an accurate learning based tracking

algorithm which is combined with object detection. A new
formulation for learning is derived using the Lie algebra of
the motion group which significantly reduces the estimation
errors. Several experiments performed on tracking and de-
tection examples demonstrate the superior performance of
the approach.
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