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Abstract
Visual object tracking can be considered as a figure-ground
classification task. In this paper, different features are used
to generate a set of likelihood maps for each pixel indicat-
ing the probability of that pixel belonging to foreground ob-
ject or scene background. For example, intensity, texture,
motion, saliency and template matching can all be used to
generate likelihood maps. We propose a generic likelihood
map fusion framework to combine these heterogeneous fea-
tures into a fused soft segmentation suitable for mean-shift
tracking. All the component likelihood maps contribute to
the segmentation based on their classification confidence
scores (weights) learned from the previous frame. The
evidence combination framework dynamically updates the
weights such that, in the fused likelihood map, discrimina-
tive foreground/background information is preserved while
ambiguous information is suppressed. The framework is ap-
plied here to track ground vehicles from thermal airborne
video, and is also compared to other state-of-the-art algo-
rithms.

1. Introduction
Visual object tracking has recently been addressed as a bi-
nary classification problem [1] [3] where object pixels must
be discriminated from background pixels based on local im-
age cues such as color or texture. To formulate object track-
ing as a discriminative figure-ground classification problem,
two important issues need to be solved: what features to
choose and how to build and combine classifiers. Further-
more, since the object and background change their appear-
ance over time, on-line feature selection and classifier train-
ing are required to adapt the tracker to handle the appear-
ance variations.

1.1 Related Work
Rather than predefining a specific feature for tracking, on-
line feature selection [3] attempts to select the best distin-
guishing features that clearly separate object from back-
ground. In that work, linear combinations of (R,G,B)

color space are mapped through a data-derived likelihood
ratio feature to generate color feature candidates. The vari-
ance ratio is used to rank each candidate feature by how
well it separates foreground and background color distribu-
tions. Features that maximize the separability are ranked
most highly and are best suited to the tracking task.

The particle filter framework can be used to fuse diverse
measurement sources. For example, in [10] stereo sound is
fused with color for tele-conferencing and motion is fused
with color for surveillance with a still camera. In both
scenarios, the combination of cues proved to be more ro-
bust than any of the cues individually. The color likelihood
function is generated by computing the Bhattacharyya sim-
ilarity coefficient between a reference color histogram and
hypothesized candidate color histogram. Motion informa-
tion is represented by a histogram of motion amplitude. If
the examined region contains no obvious movement, all the
motion measurements will fall in the lower bins of the his-
togram. However it’s not straightforward to construct a ref-
erence histogram for the motion measurement because the
motion amplitude could spread over a large range.

The well-established ensemble methods [5] (sometimes
called committee machines [12]) classify new samples (pix-
els) by taking a weighted combination of weak classifiers.
The resulting strong classifier often performs better than
any single weak classifier. For example, Avidan [1] con-
structs a feature vector including histogram of oriented gra-
dients (HoG) [4] and RGB values for each pixel in the im-
age. An ensemble of weak classifiers are trained to sepa-
rate the object pixels from background pixels. Each weak
classifier is formed by least squares regression of a hyper-
plane in the raw, multi-dimensional feature space. The final
figure-ground separation is determined by a strong classi-
fier trained via AdaBoost. In addition to AdaBoost used
in [1], other classifier combination methods have been con-
sidered in [8]: product rule, sum rule, max rule, min rule,
median rule and majority vote rule. The experimental com-
parison in [8] demonstrates that the sum rule outperforms
other combination schemes.



Figure 1: Five likelihood maps are generated based on (1) histogram of intensity (HoI), (2) histogram of oriented gradi-
ents(HoG), (3) motion detection, (4) saliency and (5) template matching. The confidence score (weight) of each likelihood
map is computed from the previous frame by considering the foreground/background separability of the previous likelihood
map. The ensemble of likelihood maps are integrated together by weighted linear fusion. Mean-shift tracking is performed
on the fused likelihood map (a type of “soft segmentation”) to localize the object.

1.2 Our Proposed Framework

Previous work can be seen as performing fusion at one of
two levels. For example, in data level (or feature-level) fu-
sion, Collins et al. [3] select the best discriminative feature
as a projection from one feature space ({R,G,B}) to an-
other ({ω1R+ω2G+ω3B} where ωi are weights). Perez et
al. [10] combine color, motion and sound localization cues
in a particle filter framework. In decision level (or classifier-
level) fusion, Avidan [1] integrates different weak classifiers
via AdaBoost to yield a final figure-ground separation.

In this paper, we propose a novel likelihood map fusion
framework that differs from feature selection or classifier
training. As illustrated in Figure 1, different feature extrac-
tion mechanisms (e.g. intensity, texture, motion, saliency
and template) are applied on the input frame to generate
likelihood maps (also called confidence map in [1], weight
image in [3] and likelihood function in [10]). A pixel value
in the likelihood map is proportional to the probability that
the pixel belongs to the object versus the background, i.e.,
pixels more likely to be on objects have higher likelihood
and brighter value. Thus, each likelihood map makes a
“soft” decision on the figure-ground separation. The en-
semble of likelihood maps are combined into a single likeli-
hood map by a weighted linear fusion. The confidence score

(weight) of each current likelihood map is adaptively deter-
mined by measuring the foreground and background sepa-
rability using the likelihood map from the previous frame.
Mean-shift tracking [2] is then performed on the fused like-
lihood map to find the object location.

This framework can be adapted to use any feature for
which we can generate a likelihood map (soft segmenta-
tion). When such heterogeneous features rely on different
image information, they are complementary and the fused
likelihood map gains some desirable properties. For ex-
ample, useful discriminative information is preserved while
unwanted ambiguous information is suppressed; when one
feature fails (e.g. motion features on a static object), the
framework can rely on more relevant features. Since the in-
dividual likelihood maps are generated independently and
their confidence scores are computed independently, the
“front-end” of the framework can be executed in parallel.
This is different from the AdaBoost algorithm, which trains
weak classifiers sequentially. It is usually not straightfor-
ward to build a single feature vector for each pixel to embed
different modalities represented by heterogeneous features.
This trouble is avoided here because no classifier training is
required.
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Figure 2: The intensity appearance likelihood is computed
at pixel p as the Bhattacharyya similarity coefficient be-
tween the reference and candidate histograms of intensity.

2 Likelihood Maps
As a generic framework, the proposed approach can fuse
likelihood maps produced by several heterogeneous infor-
mation sources. To illustrate the approach, here we use
likelihood maps generated by information sources that use
color/intensity, texture, motion detection, saliency and tem-
plate matching.

2.1 HoI Likelihood Map
Color or intensity histograms are widely used to represent
appearance of rigid or non-rigid objects during visual track-
ing [2]. The tracked object or region of interest can have
any complex shape or boundary. To quickly calculate the
histogram in a new input image, we adopt an axis-aligned
rectangular box to model the object shape. As shown in
Figure 2, the candidate histogram located at pixel p, hI

c , is
computed within its surrounding box Np. Given the object
reference histogram of intensity (HoI), hI

r , the likelihood at
pixel p is determined by the Bhattacharyya similarity coef-
ficient

Bhat(hI
c , h

I
r) =

B∑
i=1

√
hI

i,ch
I
i,r (1)

where B is the number of histogram bins.
For real-time tracking purposes, we only compute the

likelihood map within a gating region (subimage in Figure
3). Subsampling the image can also be applied to reduce
the computational cost [10]. We use the integral histogram
method [11] to speed up our histogram-based likelihood
map computation. Once an integral histogram H(u, v) in
the subimage has been computed, the histogram of any rect-
angular region with sides parallel to the image coordinates
can be easily computed as a linear combination of four vec-
tors. For example, in Figure 3, the histogram of the small
box around the motorcycle can be computed as

hI
c = H(u2, v2)−H(u2, v1)−H(u1, v2)+H(u1, v1) (2)

Figure 3: Histogram-based likelihood map computation is
accelerated by using a gating region and the integral his-
togram methods.

Figure 4: (a) HoG likelihood map; (b) MHI likelihood map;
(c) Saliency likelihood map; (d) template matching likeli-
hood map.

2.2 HoG Likelihood Map
The histogram of oriented gradients (HoG) representation
[4] has been successfully applied to pedestrian detection.
We use HoG here to capture local object texture information
that is insensitive to color/intensity changes. Each pixel’s
gradient orientation is quantized to determine a histogram
bin, into which the pixel’s gradient magnitude is added.
Similar to HoI likelihood map computation, the HoG likeli-
hood at any pixel is determined by the Bhattacharyya sim-
ilarity coefficient between reference and candidate HoGs.
The method of integral histograms is also applied here to
speed up the computation. Figure 4(a) is an example of the
HoG likelihood map computed in a gating region.

2.3 MHI Likelihood Map
To get object motion information from a moving camera,
we first must compensate for the camera motion. After cam-
era motion compensation, frame differencing between two
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consecutive frames usually indicates where the object is in
the current frame and where the object was in the previous
frame. To compute a more accurate motion mask in the cur-
rent frame, we adopt the forward/backward motion history
image (MHI) method, which combines information over a
larger temporal window [13]. Figure 4(b) is an example of a
MHI likelihood map computed over the whole image. The
motion likelihood value is normalized into the range [0, 1].

2.4 Saliency Likelihood Map
The ability of the human vision system to detect salient ob-
jects in complex scenes in real time has inspired several
computational models of visual attention. For example, Itti
et al. proposed a conceptually simple computational model
for saliency-driven visual focus of attention[7]. A bottom-
up saliency map is built where only locations that locally
“jump out” from their surroundings can persist. In other
words, the saliency map reflects object conspicuity, i.e. an
object distinct from its surrounding background deserves
visual attention. We adopt a simple and fast saliency de-
tection method based on image spectrum analysis [6]. The
assumption is that statistical singularities in the spectrum
may be responsible for anomalous regions in the image, i.e.
the spectral residual indicates the innovation in the image.
Figure 4(c) is an example of a saliency likelihood map com-
puted in a subimage, with values normalized into the range
[0, 1].

2.5 Template Likelihood Map
Correlation with the color/intensity template contained
within the object’s rectangular bounding box could also be
used as a feature to compute a likelihood map. Figure 4(d)
is an example of a template matching likelihood map com-
puted in a subimage. The template matching is executed by
normalized cross-correlation and has an output value range
of [−1, 1]. We set the negative values to zero in the template
matching likelihood map, while keeping the positive values
unchanged.

3 Likelihood Map Fusion
Our tracking goal is to infer state variable x (e.g. object lo-
cation) from input image I , i.e. solving P (x|I). Given a
set of likelihood maps P (x|Li) based on different feature
extraction mechanisms, we apply Bayesian inference to ob-
tain

P (x|I) =
∫

P (x|L)P (L|I)dL ≈
M∑
i=1

wiP (x|Li) (3)

where M denotes the number of likelihood maps, and wi =
P (Li|I) represents our degree of belief about the validity

of each individual likelihood map and sums to one over the
range i = 1, . . . ,M . Thus P (x|I) is approximated by an
ensemble of likelihood maps.

The particular problem now at hand is how to derive the
proper weighting value wi, i.e. how much we can trust each
likelihood map P (x|Li). Under the squared loss function,
the optimal wi in the current frame can be solved by mini-
mizing the minimum mean square error with respect to the
true probability Pt(x|I).

MMSE = E[(
M∑
i=1

wiP (x|Li) − Pt(x|I))2]

= E[(
M∑
i=1

wi(P (x|Li) − Pt(x|I)))2]

Note that
∑M

i=1 wi = 1 and Pt(x|I) is deterministic. De-
noting w̄ = [w1, . . . , wM ] and Cij = E[(P (x|Li) −
Pt(x|I))(P (x|Lj) − Pt(x|I))], the above MMSE equals
w̄T Cw̄, where C is a symmetric positive definite covariance
matrix with elements Cij . The solution to the optimization
problem is (see Appendix for the derivation)

w̄opt =
C−11̄

1̄T C−T 1̄
(4)

where 1̄ = [1, . . . , 1]. If the likelihood maps are uncorre-
lated, i.e. Cij = 0 ∀ i 6= j, and E[P (x|Li)] = Pt(x|I)
(i.e. unbiased estimation), the optimal wi’s have a simple
formulation

wi =
C−1

ii∑M
j=1 C−1

jj

(5)

Unfortunately, we don’t know the true probability
Pt(x|I) for the current frame, and it is therefore infeasible
to get wi directly by Eq. 5. One possible way to overcome
this problem is to perform unsupervised parameter learning
on the current unlabeled pixel data, but that would be very
challenging. With the realization that wi is related to the
corresponding likelihood map variance, we may approxi-
mate wi in the previous frame using the variance ratio [3]:

VR(Li; p, q) =
var(Li; (p + q)/2)

var(Li; p) + var(Li; q)
(6)

wi ≈
VR(Li; p, q)∑M

j=1 VR(Lj ; p, q)
(7)

where p represents the object distribution and q represents
the surrounding background distribution in the likelihood
map Li. Here wi is inversely proportion to the within-class
likelihood map variance and proportion to the between-
class likelihood map variance. If likelihood values of pixels
on both the object and background are tightly clustered (low
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Figure 5: The confidence score of each likelihood map is
computed based on separability of histograms of likelihood
values on the object versus values from the surrounding
background region, measured from the likelihood map of
the previous frame.

within-class variance) and the two classes are well separated
(high between-class variance), this likelihood map is good
for tracking and deserves a high confidence score (weight).

In [9], the best set of weights for classifiers are obtained
using an exhaustive search method by changing the weights
incrementally between zero and one. In contrast, Figure 5
illustrates our process of computing the confidence score
(weight) of each map based on separability. For each likeli-
hood map in the previous frame, we extract two histograms
of likelihood values: one within the bounding box thought
to contain the object, and one from a surrounding ring of
pixels that presumably contain mostly background. The
confidence of the likelihood map is measured by the vari-
ance ratio between the foreground histogram and the sur-
rounding background histogram [3]. The larger the variance
ratio is, the more we can trust the likelihood map.

The feature confidence scores computed from the previ-
ous frame are applied at the current frame to fuse all like-
lihood maps. Only likelihood maps with high confidence
make a significant contribution to the final decision. Since
the confidence scores are updated at each frame, the frame-
work can adapt to various situations (e.g. a moving object
that suddenly stops). Figure 6 shows a comparison between
weighted fusion and the sum-rule result. Sum-rule [8] is a
special case corresponding to all weights being equal. Our
confidence-weighted fusion produces a higher contrast dis-
tribution between the foreground object blob location and
the surrounding background.

4 Experimental Results

We test our likelihood map fusion framework on a set of
airborne thermal sequences for which purely color-based
tracking approaches are not feasible. Figure 7 shows four
examples. In the first video, a small vehicle passes several
similar cars. In the second video, a truck becomes partially
occluded by trees and suddenly stops. The illumination and

Figure 6: Left: weighted fusion; Right: sum-rule fusion.

pose change sharply in this sequence. In the third video,
a motorcycle becomes partially occluded by nearby vehi-
cles. In the fourth video, a vehicle is static while the camera
moves around it. For these sequences, a mean-shift tracker
works successfully on the fused likelihood maps. However,
it is clear to see that some individual likelihood maps are
not discriminative enough, and a tracker would drift easily
if only using likelihood maps based on HoI or HoG features.

We compare the results with on-line feature selection [3]
and ensemble tracking [1]. The intensity channel of a ther-
mal image is copied to three (R,G,B) channels to run the
on-line feature selection, but in fact, only one intensity fea-
ture can be selected here. As shown in Figure 7, the al-
gorithm drifts to nearby similar background regions in the
first three sequences but works successfully in the fourth
sequence. The on-line selection could work better if more
features were available. The ensemble tracker drifts very
quickly in the first three sequences and locks on the vehi-
cle’s shadow in the fourth sequence. The original ensem-
ble tracker uses images at three scales (full-size, half-size
and quarter-size) to train weak classifiers. It seems that the
ensemble tracker works better with bigger objects, as the
quarter-scale image can make small objects into 1-2 pixel
regions that are very sensitive to outliers. When the object
bounding box contains many background pixels (outliers),
the tracker fails more quickly. We changed the implementa-
tion to use full-size images only and used a suitable bound-
ing box, but the tracker still drifted as shown in Figure 8.

Unfortunately, there are also some failure cases for all
three trackers. As shown in Figure 9, when the small mo-
torcycle is totally occluded by a truck and some parts of the
truck have similar features with the motorcycle, the mean-
shift tracker will drift to another local modes. After the
motorcycle passes the truck, there are two modes appear-
ing in the fused likelihood map: one corresponding to the
motorcycle and the other belonging to the truck. To pre-
vent the mean-shift tracker from locking onto a local false
mode, particle filters could be applied to find the global
mode [1]. Constant velocity motion prediction and multi-
ple object tracking could also be used to assist the tracking
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Figure 7: (a) Tracking result overlaid on the input frame; (b) fused likelihood map; (c) the confidence scores shown in the
bar plot correspond, from left to right, to: HoI likelihood map (e), HoG likelihood map (f), MHI likelihood map (g), saliency
likelihood map (h) and template matching likelihood map (d) separately; (i) on-line feature selection tracking; (j) weight
image of (i); (k) ensemble tracking; (l) confidence map of (k) in a gating region.
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Figure 8: Ensemble tracker on the full size only.

Figure 9: A failure case: the small object becomes totally
occluded by another object. We have not used motion pre-
diction or particle filter extensions to the basic tracker.

in such cases of occlusion.

5. Conclusion
This paper presents a generic framework to fuse different
likelihood maps based on their confidence. There is no
need to embed heterogeneous features into a single vector
for classifier training. Instead, each likelihood map makes
a “soft” decision about the proper figure-ground segmenta-
tion. The confidence scores of all likelihood maps are up-
dated on-line to adapt continuously to changing lighting,
pose and motion conditions. The experimental results ver-
ify that the fused likelihood map preserves discriminative
information while suppressing ambiguous information.

Appendix
To minimize w̄T Cw̄ subject to w̄T 1̄ = 1, we use the La-
grangian function

J = w̄T Cw̄ − 2λ(w̄T 1̄− 1)

Setting the gradient

∂J

∂w̄
= 2Cw̄ − 2λ1̄

to zero, we get

w̄ = λC−11̄

Substituting w̄ back into the constraint, we have

λ1̄T C−T 1̄ = 1

Thus λ = (1̄T C−T 1̄)−1, and

w̄opt =
C−11̄

1̄T C−T 1̄
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