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Abstract

We present an adaptive object tracking algorithm that is
based on a novel consistency measurement computed recur-
sively over a multifold of forward and backward frames. To
obtain the multifold consistency score, the target object given
for the current frame is searched in the consecutive frames
forward in time without updating the object model. Then,
a reinitialized model using the last observation is traced
backward in time up to the current frame. Our hypothesis is
that the object states before and after this process should be
consistent for a successful tracking and a disagreement in
states indicates a possible error. We utilize this score of each
separate object to adjust the complexity of the corresponding
core trackers, such as particle filters and mean-shift variants,
and switch between these methods recurrently to extract the
most reliable object tracks. Our results show the proposed
recurrent tracking technique is capable of producing longer
and more accurate trajectories, which is otherwise not
possible for non-adaptive counterparts.

1. Introduction

Visual object tracking is one of the most essential and
challenging tasks in computer vision. So far, a great amount
of tracking algorithms has been proposed to bring the perfor-
mance into a more desirable level in real world applications.

Tracking can be considered as estimation of the state given
all the measurements up to that moment, or equivalently con-
structing the probability density function of object location.
When the measurement noise are assumed to be Gaussian,
the optimal solution is provided by the Kalman filter. When
the state space is discrete and consists of a finite number
of states, Markovian filters can be applied for tracking. The
most general class of filters is represented by particle filters,
which are based on Monte Carlo integration methods. The
current density of the state (which can be location, size,
speed, boundary [12]) is represented by a set of random
samples with associated weights and the new density is com-
puted based on these samples and weights. However, it is
based on random sampling that may cause sample degener-
acy. Besides, there is a tradeoff between sampling efficiency
and computational burden, especially for higher dimensional
representations. In contrast, the mean-shift tracker is a

non-parametric density gradient estimator that is iteratively
executed within the local search kernels [3],[11]. It models
the object probability density in terms of color histogram,
and moves the object region towards the largest gradient
direction. Thus, it is computationally simple. Nevertheless, if
the object relocation between the successive frames is larger
than the kernel size, it fails to detect the object. Since the
histograms are used to determine the likelihood, the gradient
estimation and convergence becomes inaccurate in case the
object and background distributions are similar.

There are previous attempts to gauge the tracking quality
and adapt the tracking algorithm. For instance, a region-
based correlation and edge-based adaptive contour approach
is proposed in [13]. Velocity and feature information are
used to decide when the corresponding algorithm tracks well
and when it fails. Combining sum-of-squared differences
and mean-shift tracker was investigated in [1]. For particle
filtering, the variance of the current estimated target state
is utilized in [2] to switch between two complementary
sampling algorithms based on the variance of the current
estimated target state. Survival diagnostic and survival rate
were presented as quantities to assess the efficiency of
particles filters and used in partitioned sampling in [9].
To adjust the number of particles, sum of weights [7],
Kullback-Leibler divergence [6], and entropy [14] are often
incorporated. More recently, the variance of the proposal
density [10] is considered to optimize particle allocations.
Another approach [8] presents a probabilistic framework to
combine multiple algorithms through their explicit probabil-
ity distribution functions or sample-sets without employing
an auxiliary confidence measure. A method to track an object
from both the beginning and end key frames is proposed
in [15], where they use trajectory segment analysis to deal
with occlusion and sudden motion. Computing the optimal
trajectories among frames [5] is also considered to improve
tracking. Backward tracking is integrated in [4] to detect
the newly appearing Maximally Stable Extremal Regions.
Tracking along forward and time reversed Markov chain is
used in [16] to evaluate the tracking performance. Yet, most
methods impose hard thresholds and inherently cause drift.
Often they have no mechanism to recognize whether they
are on the target or have already lost the track of the object.

In spite of the chivalrous effort to develop the most
accurate tracking method in last two decades, it would be



Figure 1. Multiple frames are shown. In case the tracker
fails the consistency will be low as the object states
(locations in this example) before and after the fold do
not match.

premature to claim that a single technique can handle suc-
cessfully any real world conditions. There are unfortunately
many natural reasons to fail a tracker including irregular
and fast object motion, partial and full occlusions, object ap-
pearance changes due to illumination variations, drastic pose
and size transformations, indistinguishable backgrounds, and
crowded scenes. Likewise, each core tracking method has its
own advantages and shortcomings.

A rational approach is to take advantage of each core
tracker and adaptively select the one that would provide the
correct solution for the underlying scenario and conditions.
To achieve this, we need to know how accurately a tracker
would perform without having a ground truth to compare
against its results.

1.1. Our method

To overcome the shortcomings of the above methods, we
propose a novel measure, called as multifold consistency,
to assess the quality of the tracking. Instead of monitoring
the instantaneous probability density surfaces or depending
on the rather rigid object model comparisons, we properly
evaluate the performance of core trackers by observing their
individual tracking behaviors in forward and backward in
time as illustrated in Figure 1.

Main contributions of our work can be summarized as
follows: i) We introduce a multifold consistency score
computed for each tracked object. This enables estimating
the instantaneous condition of the tracking and discovering
potential failures for each individual object. ii) In addition,
we make use of this information into a recurrent tracking
framework to obtain the most accurate results that may
be possible by a a pool of given trackers. The multifold
consistency is utilized as the basic principle to automati-
cally adapt parameters as well as switch among different
algorithms. This resolves the most demanding problem in
the engineering of a tracking systems, the fine tuning of the
parameters. iii) Unlike the conventional methods that depend
on the object appearance similarity, our tracking approach

can identify occlusions and determine whether an object left
the scene or not.

The rest of the paper is organized as follows. In section 2,
the multifold consistency is defined. The recurrent tracking
framework is described in section 3, and the experimental
results are discussed in section 4.

2. Multifold Consistency

We introduce an instantaneous quality measure, called as
multifold consistency, that can assess the current perfor-
mance of a chosen tracking algorithm automatically without
a ground truth. In other words, this measure determines how
consistently a tracker performs for a certain object in the
corresponding video segment.

We consider tracking not only forward in time (future
frames) but also backward (past frames). Depending on the
application requirements, tracking may pace with a permis-
sible latency using a small number of buffered future frames,
which is common for most video surveillance systems. This
may not be possible for the causal systems that employ
the estimated object position to restraint the motion of the
camera, for example in the case of aerial vehicles that track
moving targets. Thus, we present alternative consistency
score definitions applicable for the causal systems that use
only the past frames and for the systems that operate under
latency.

Let’s assume without loosing generality that the state Xt

of an object of interest is known for the current frame
It. The state may consist of the geometric characteristics
such as image plane location, size, orientation, and shape
parameters. Each object x is represented by a model βt,
which can be into a form of probability distribution function,
i.e. a histogram, or a template. Here we assume the initial
state is given, yet the discussion can be extended for auto-
matically detected objects, for example, using a classifier and
background subtraction. We have no additional constraint
on whether the object is visible in all frames. In fact, our
method can identify and resolve such situations.

We denote the current tracking algorithm as fi(θi) with
the specific parameterization θi within the pool of alter-
native tracking algorithms f1, ..., fK . Our formulation is
not restricted to any tracking method and we can include
any algorithm in our pool. For simplicity, we dropped the
parameters θ and index i in the rest of this discussion. The
tracker f estimates the state of the object at frame It+1

Xt+1 = f+(Xt, βt) (1)

using its model βt where f+ indicates a forward track in
time and f− means backward, i.e. Xt−1 = f−(Xt, βt).

Since object model β may change in time due to the
illumination and pose variations, trackers often require the
object model to be updated using the estimated state

βt+1 ← y(βt, Xt+1) (2)



Figure 2. Computation of the multifold consistency coefficients for the latency scenario.

where y is a model building function, e.g. color histogram
computation, which may optionally utilize the existing
model to allow smooth model changes.

What we mean by the term multifold is the tracking of an
object in forward and then folding the temporal direction and
tracking it backward in time in multiple frames. Our intuition
is that competent forward tracking (It → IN ) algorithm
before the fold will estimate the object state correctly in
that frame (IN ). When we reinitialize the object model at
that state the model will be valid. Thus, when we track this
reset model back to the first frame (It ← IN ) the state will
match to the state that we started. Therefore, for an accurate
(wrong) tracking the state distance will be small (large) and
the consistency coefficients will be high (low).

Considering the latency scenario (case-I), the consistency
score Ct(x, f) of an object x for the a selected tracker f
at time t is determined by first tracking the object x along
the consecutive frames It+1, ..., It+N in forward direction
X+
t+n = f+(X+

t+n−1, βt) with the original object model
βt. We denote the forward tracked states as X+. At the
final frame IN , we reset the object model to βt+N ←
y(βt, X+

t+N ). We track back the object, this case with the
updated model, to obtain states X−t+N , ..., X

−
t+1 down to the

frame It. In other words, during back tracking the object
model is kept identical to the reset model βt+N . Each time
we compare the forward and backward estimated states to
obtain the corresponding state distance coefficients as

dt,n = ||X+
t+n −X−t+n||. (3)

where n = 0, .., N − 1. Above, the back tracked states are
X−t = f−(X−t+1, βt+N ),.., X−t+N−1 = f−(X−t+N , βt+N ).
Note that the forward tracked and backward tracked states
are same at IN , i.e. X−t+N = X+

t+N . This process is
illustrated in Figure 2. One definition of the multifold
consistency is then given as

Ct(x, f) = 1− dt,0 = 1− ||Xt −X−t || (4)

where dt,0 is normalized to [0, 1]. Since the intermediate

states are already extracted when the reset model is tracked
back, the consistency can also be defined over all frames

Ct(x, f) =
1
N

N−1∑
n=0

(1− dt,n). (5)

One can also initialize the object model at every frame and
track back the object, that is, fold the time, to obtain a vector
of distances. Denoting the CN as the consistency score when
we fold the time at frame IN , the vector form becomes
[CN CN−1 .. C1]T . This means that we will now run multi-
ple back trackers, which may be computationally prohibitive
for some applications. The norms in equations (4)-(5) require
2(N − 1) inter-frame correspondences, however the vector
norm needs N(N − 1) of them.

For the causal settings (case-II), we have only the newly
acquired frame It+1 to be processed and a moving set of
previous frames It−N+1, ..., It−1. As before, we estimate the
state of the object in the new frame by forward tracking. We
fold the time, and reset the object model using the estimated
state. This folding is done just once. Then, we track back
the reinitialized object model βt+1 to the It−N+1 frame.
At each frame, we compare the previously determined state
Xt−n to the back tracked state X−t−n to determine the state
distance

dt,n = ||Xt+n −X−t+n|| (6)

for n = 0, .., N − 1. This case, the multifold consistency is
defined at the deepest frame It−N+1

Ct(x, f) = 1− dt,−N+1. (7)

The causal case is shown in Figure 3.
The value of N is of great importance for the computa-

tional load and saliency of the consistency score. It is equal
to the expected lifetime of the tracker, that is, the average
accurate tracking duration for possible objects.

The philosophy of our multifold consistency can be con-
sidered similar with that in communication systems, where
channel refers to the medium used to convey information



Figure 3. Computation of the multifold consistency coefficients for the causal case.

from a sender to a receiver and in order to assess the
properties of a channel, the information at the receiver is
compared with the information at the sender by asking
the receiver to send the received signal back, as our time
foldings and backward trackings.

2.1. State Distance

In its simplest form, the state Xt is the image coordinates
of the object window. For more complicated tracking tasks,
the state can be composed of other geometric features
including the size, shape, mesh, and motion parameters.

One slight difference with our distance norm and the
conventional Euclidean distance is that we aim to evaluate
how well two states match but not to measure exactly how
far they are from each other in case they do not agree at all.
In other words, we are interested in the amount of overlap
in the states. Our reasoning is that once the tracker makes
an error and looses the target object, i.e. the estimated state
does not match to the original state, it does little matter
whether the estimated state is more or less different than
the original.

This impelled us to adopt a shifted logistic (sigmoid)
distance norm. For an M -dimensional state vector Xi =
[ai1 .. a

i
M ] the distance is defined as

||Xi −Xj || ← sig(||Xi −Xj ||) = sig(
M∑
m=1

wm|am − ajm|)

where sig(α) = 2(1 + e−(α−α0))−1 and wm’s are the
mixing weights such as

∑
wm = 1, and α0 is a positive

value. We normalize the distance onto range [0, 1] to get the
multifold consistency scores within the same (but inversely
proportional) [0, 1] interval. The choice of α0 is scalable
with the state, e.g. the size of the object. Also, combining all
different features into a single measure requires appropriate
weighting parameters wm’s of the corresponding distances,
e.g. between the size and rotation, or between individual

affine motion parameters. Determining such optimal weights
is application dependent, and outside the scope of this paper.

In addition to the geometric parameters, appearance e.g.
histograms or templates can also be incorporated into the
distance. However, using appearance to assess a tracker’s
instantaneous performance, as the existing methods often
depend on, is inherently problematic especially when the
estimated state is wrong but has similar appearance, which
is not an issue for our approach.

3. Recurrent Tracking

Having a measure of the instantaneous quality score for
a tracker enables us to switch between different algorithms
automatically. In addition, this let us to increase the com-
putational load whenever it is necessary. We adapt the
parameters to achieve the best possible tracking results that
can be obtained using the available pool of algorithms.
Concentrating only on the inter-frame correspondence, we
utilized the conventional approaches including the different
versions of the mean-shift kernel estimate and particle filters
in the pool of the alternative tracking methods. Yet, our
technique is applicable to other tracking algorithm.

In an opportunistic style, we first compute the multifold
consistency for the largest number of frames, which is
n = N , to enable larger jumps when the tracking is
concluded to be valid. In other words, the fold time is set to
N . We compare the consistency score with a tight threshold
τn proportional to the n. If the consistency is sufficiently
large, which indicates the tracking was successful, we jump
to that frame, reset the object state and model. Otherwise,
we decrease the fold time, n ← n − 1, until there are
nstop frame left, which causes the framework to switch
the tracking algorithm. When a more complex algorithm
has to be chosen, the fold time is set to N . Any valid
tracking switches back the tracker to the simplest algorithm
in the pool. For the case of no acceptable consistency
score is obtained, i.e. maxCt(x, fi) < τstop, we terminate



Figure 4. Recurrent tracker first tries all different fold
times then starts switching between the pool of algo-
rithms for the latency scenario. White (black) star points
the start (end) of the flow.

the object. The flow diagram of this process is shown in
Figure 4. As mentioned, this technique tries to relieve the
computational load for the latency scenario (case-I). The
value of nstop is chosen such that when we give up the
current tracker and update to a more complicated one. It is
determined by the change of the tracking difficulty of the
objects. In order to avoid drift caused by the small error,
nstop is usually a small value larger than zero, e.g. 6 10.

For the causal systems, we choose rather a greedy tech-
nique. Instead of changing the fold time when the current
algorithm fails, we only switch to a more complex algorithm
to estimate the most accurate state for the frame It+1.

As it may already noted, these two solutions are not the
only possible approaches, in fact the causal case can be
considered as a special form of the latency scenario where
we cannot change the previous tracking estimates.

4. Experimental Results

We tested the recurrent tracking methods on several
synthetic and real-world sequences to demonstrate the per-
formance. In experiments, the state X of objects is described
by an ellipsoid as X = [cx, cy] or X = [cx, cy, a, ρ] where
(cx, cy) is the center, a is the short axis, and ρ is the rotation
angle of the ellipse. The aspect ratio of the long and short
axes is kept the same which is calculated at the initialization.

Figure 5. Recurrent tracker states for Football.

To make a fair comparison between the pooled trackers of
the mean-shift and the particle filter variants, we used color
histograms to model and compute the likelihood only within
the intermediate stages of the inter-frame correspondence
for all algorithms. Using different object descriptors such
as histogram of oriented gradients, shape, eigenmodels, etc.
would not change the relative rankings of these pooled
trackers.

In our experiments the pooled trackers contain the mean-
shift algorithm and the particle filters with varying number of
particles. The computationally fastest tracker in out pool is
the mean-shift algorithm, which does local iterative density
estimates. Therefore, it can track an object if only it has
overlapping areas between the consecutive frames. Due to
this motion constraint, we consider the mean-shift also as
the basic tracker in our pool. Particle filters that use more
particles are considered to be more complex trackers than the
ones using lesser number of particles, which also complies
with the Bayesian theory.
Football sequence is a challenging synthetic sequence

with a football moving randomly in a time-varying cluttered
noisy background. The tracker pool included the mean-shift
with Gaussian kernel and the particle filters with 200 and
1700 particles. We set the fold time to 6 frames, the mutual
consistency threshold to τn = 0.95, and the minimum
number of frames to switch to a more complex tracker
(Figure 4) to nstop = 6. The particle filter with 1700
particles generated the most accurate results without losing
any objects as expected. The recurrent tracker adaptively
switched to this version of the particle filter and achieved a
similar mean squared error while having tracked all objects.
The actual switching response is shown in Figure 5. Yet,
the computational load of the recurrent tracker is around the
half of the corresponding particle filter.

Figure 7 (PETS09 sequence) shows a person walk across
another person with similar appearance. Our method suc-
cessfully detects the loss of tracking as shown the drop of
mutual consistency score. And the drop is more sensitive
than the appearance based similarity score.



Table 1. Performance on Football sequence

CPU time (millisecond per frame) Performance
Mean-shift 34.15 Fails after 137 frames

Particle filter I 54.82 Fails after 138 frames
Particle filter II 291.41 Average MSE 0.94

Recurrent tracker 158.09 Average MSE 1.15

S.S.: 0.859 0.797 0.551 0.576 0.576
M.C.: 0.972 0.963 0.048 0.014 0.052

Figure 7. A person walks across another person with similar appearance. Our method detects the tracking
confusion. SS represents similarity score based on color information, and MC denotes multifold consistency.

(a)

(b)

(c)

(d)

Figure 6. Tracking results of (a) the mean-shift and (b)
Particle filter I (c) Particle filter II (d) recurrent tracking
on Football sequence.

Figure 9. Multifold consistency for two algorithms ex-
tracted from campus sequence using Eq. (4). We ob-
tained these graphs by initializating the object at every
frame (for strictly illustration purposes as the recurrent
tracking does not compute the consistency score for all
algorithms at every frame). As visible, the computation-
ally simpler algorithm causes more failures.

Figure 8 shows a nearby identical ball exists at the
location the first ball exits from the image. Our method
competently detects the exit event. The mutual consistency
score suddenly drops when our algorithm detects that ball
disappears, while the appearance based similarity score
cannot. We accomplish this without having to make motion
history assumptions as Kalman smoothing.

Figure 9 shows the multifold consistency curves obtained
for the mean-shift and particle filters (300 particles) for the
campus sequence that depicts a person walks and runs in
succession. The mean-shift tracking is generally faster than
the particle filter, but it can not deal with large motion.



S.S.: 0.825 0.791 0.882 0.863 0.857
M.C.: 0.998 0.994 0.106 0.123 0.132

Figure 8. An object is exiting out of the scene at a location where there is a nearby identical object. SS represents
the similarity score based on color information, and MC denotes the multifold consistency. Our method detects the
exit event as its value suddenly drops, which indicates tracker is not on the original object any longer. In comparison,
the appearance based similarity score fails to detect the exit event; its scores are still high, which means it considers
the tracking is on the original object.

However, the particle filter can compensate for the large
motion in case the sampling space (in this example the
spatial window) is big proportionally with the number of par-
ticles. We present a comparison of the conventional mean-
shift tracking and the recurrent tracking for this sequence
in Figure 10. As shown, our technique switches to the
particle filter whenever the multifold consistency is low, and
generates perfect tracking results.

As shown in Figures 11 and 12, the recurrent tracking
outperformed the mean-shift and the particle filter in a
side-by-side comparisons. Our results demonstrate that the
proposed consistency score is an accurate and effective
measure of quality and the opportunistic recurrent tracking
is a competent switching technique.

5. Conclusions

We described a novel instantaneous quality score compu-
tation method and utilized it to improve the object track-
ing performance by adaptively selecting the most accu-
rate tracker. Our solution does not have any limitations
and it is able to incorporate any available core tracking
algorithms. Since we rank the pool of trackers according
to their computational loads, our method provides a novel
approach to minimize the complexity while achieving the
best results. As a future study, we will extend the recurrent
tracking to multi-hypothesis testing and graph-based tracklet
connectivity techniques.
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(a)

(b)

Figure 10. Experimental results of (a) the mean-shift and (b) recurrent tracking on Campus sequence.

(a)

(b)

Figure 11. Results of (a) the mean-shift, and (b) recurrent tracking.

(a)

(b)

Figure 12. Results of (a) the conventional particle filter, and (b) recurrent tracking.


