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Abstract

Multi-class classification schemes typically require
human input in the form of precise category names or
numbers for each example to be annotated – providing
this can be impractical for the user when a large (and
possibly unknown) number of categories are present. In
this paper, we propose a multi-class active learning model
that requires only binary (yes/no type) feedback from the
user. For instance, given two images the user only has
to say whether they belong to the same class or not.
We first show the interactive benefits of such a scheme
with user experiments. We then propose a Value of
Information (VOI)-based active selection algorithm in the
binary feedback model. The algorithm iteratively selects
image pairs for annotation so as to maximize accuracy,
while also minimizing user annotation effort. To our
knowledge, this is the first multi-class active learning
approach that requires only yes/no inputs. Experiments
show that the proposed method can substantially minimize
user supervision compared to the traditional training
model, on problems with as many as 100 classes. We also
demonstrate that the system is robust to real-world issues
such as class population imbalance and labeling noise.

1. Introduction
In most image classification problems, we typically have

a large number of unlabeled images. Intelligently exploiting
the large amounts of data is a challenging problem. Active
learning aims to select informative images from large data
to train classifiers, and has received substantial interest
for binary [21] and recently even multi-class classification
settings [25, 11, 13, 12, 14, 23]. Even though multi-class
active learning methods successfully reduce the amount of
training data required, they can be labor intensive from a
user interaction standpoint for the following reasons: (i) for
each unlabeled image queried for annotation, the user has
to sift through many categories to input the precise one.
Especially for images, providing input in this form can
be difficult, and sometimes impossible when a huge (or

Sample images from Caltech-101 Query image

Query image Sample image
Figure 1. Top row: sample interaction in traditional multi-class active
learning approaches. The user needs to input a category name/number for
the query image from a large dataset possibly consisting of hundreds of
categories. Bottom row: the binary interaction model we propose: the user
only needs to say whether or not the query image and the sample image
belong to the same category.

unknown) number of categories are present; (ii) the time
and effort required increase with an increase in the number
of categories; (iii) the interaction is prone to mistakes in
annotation, and (iv) it is not easily amenable to distributed
annotation as all users need to be consistent in labeling.

Image datasets are ever increasing in their size and the
image variety - it is not uncommon to have thousands of
image classes [4, 22]. In order to design systems that are
practical at larger scales, it is essential to allow easier modes
of annotation and interaction for the user. Towards this
objective, we propose here a general framework for multi-
class active learning that requires only yes/no feedback
from the user. A simple illustration of the different
interaction models is depicted in Figure 1. During each
instance of interaction, the user is presented with two
images and has to say whether those images belong to the
same category or not. Giving such input is extremely easy,
and since only two images need to be compared every time,
it is also less prone to human mistakes. It easily allows
distributed annotation as well.
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Figure 2. Block schematic of the active learning setting. Our focus in this
paper is on the query and sample selection algorithms – depicted in white
boxes with red borders (see text for details).

1.1. Ease of interaction
In order to quantitatively compare the two interaction
modalities, we conducted experiments on 20 users with
50-class and 100-class data, obtained from the Caltech-
101 object categories dataset [8]. Each user was asked to
interact with two modalities: i) giving category labels (out
of a given set of labels) to randomly queried images, as is
typically used for training, and ii) giving yes/no responses
to two images based on whether they came from the same
class. We measured interaction time and the number of
errors made in both modalities by each user, along with an
overall satisfaction score from 1 through 5, indicating the
ease of interaction experienced (1 being the easiest). Table
1 summarizes the results.

Modality Response time (s) % errors Satisfaction
BF – 50 classes 1.6 (±0.2) 0.80 1.2

MCF – 50 classes 11.7 (±3.1) 12.7 4.1
BF – 100 classes 1.7 (±0.2) 0.82 1.1

MCF – 100 classes 28.8 (±5.3) 14.3 4.9

Table 1. Comparing the two interaction modalities.

First, it can be seen that binary feedback (BF) requires
far lesser user time than giving multi-class feedback (MCF).
Although BF in principle also provides lesser information
than MCF, we demonstrate in our experiments that the
BF interaction model still achieves superior classification
accuracy than MCF with the same expenditure of user time.
Second, as seen in the table, MCF has much more noise
associated – users make many more errors when sifting
through potential categories and finding the correct one.
In contrast, BF is much cleaner since it is much easier
to simply look at two images and determine whether they

belong to the same class or not. Third, the interaction time
and annotation errors in MCF increase with the number of
categories. This is expected as annotation requires browsing
over all possible classes. In contrast, in the BF model,
there is no observed increase in user time with increasing
number of categories. This aspect is particularly appealing,
as the main objective is to scale well to larger problems
with potentially thousands of classes. Four, as seen from the
satisfaction scores, users are much more satisfied with the
overall interaction in BF, since it does not need browsing
through many images, and can be done quickly. Apart
from the above advantages, distributed annotation across
many trainers is easily possible in the BF model. Also,
it is straightforward to allow exploration of the data when
new categories continuously appear (as opposed to a setting
often used previously, wherein the initial training set is
created by including examples from all classes [10]), or
when notions of categories change with time.

In summary, binary feedback provides an extremely
appealing interaction model for large problems with many
classes. In Section 4, we also quantitatively demonstrate the
benefits of the binary model through experiments.

1.2. Learning setup
Figure 2 shows a block schematic of the proposed active
learning setup. The active pool consists of a large number of
unlabeled images from which the active learning algorithm
can select images to query the user. The training set consists
of images for which category labels are known and can
be used for training the classifier. Throughout the paper,
we use Support Vector Machines (SVM) as the underlying
classification algorithm, since it provides state-of-the-art
performance on the datasets used for evaluation. For the
multi-class case, one-vs-one SVM (classifiers trained for
each pair of classes) are used.

In the traditional multi-class active learning setting, an
unlabeled image (query image) needs to be selected for user
annotation. In our case, however, since user input is only
binary, we also require an image from a known category to
show the user for comparison. Selecting this image from
the training set is a new aspect of active selection that our
framework requires. We refer to this comparison image
from a known category as the “sample image.” We focus
on query and sample selection algorithms in this paper –
denoted by white boxes with red borders in Figure 2.

Our approach for query as well as sample selection
is probabilistic, i.e., based on the current training set,
class membership probability estimates are obtained for
the images in the active pool. We use Platt’s method
[19, 17] to estimate binary probabilities based on the SVM
margins, combined with pairwise coupling [24] with one-
vs-one SVM for multi-class probability estimation on the
unlabeled images.

In Figure 2, the query selection algorithm selects a
query image from the active pool using the estimated
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class membership probabilities. Based on the estimated
membership probabilities for the query image, the sample
selection algorithm selects a sample image from the current
training set. The query-sample pair is shown to the user
for feedback. If a “match” response is obtained, indicating
that the query and sample images belong to the same
category, the query image is added to the current training
set along with its category label. If a “no-match” response
is obtained, the sample selection algorithm is again invoked
to ask for a different sample image. This process goes on
until either the label for the query image is obtained (with a
“match” response), or until the query image does not match
any of the categories in the training set. In the latter case,
a new category label is initiated and assigned to the query
image1. Through such a mechanism, the learning process
can be started with very few training images initially chosen
at random (seed set). As the process continues, the active
selection algorithm requires far fewer queries than random
selection to achieve similar classification rate on a separate
test set. Note that the system is also able to exploit
feedback in terms of precise category annotation (as in
the typical setting), if available. Binary feedback however
generalizes the applicability and allows learning in new
unknown environments for exploration.

Binary input has been employed previously in the
context of clustering data, by asking the user for pairwise
must-link and cannot-link constraints [2]. This approach
can be adapted to the active learning framework by
choosing even the sample images from unlabeled data and
performing a (unsupervised) clustering step before user
annotation. However, in our observation, such an approach
was prone to noise due to unsupervised clustering, which
can lead to an entire cluster of incorrectly labeled training
data. Noise reduction in the preclustering approach is an
interesting future work direction. On the other hand, in this
paper, we demonstrate empirically that the setup we employ
is robust to labeling noise.

2. The active learning method
There are two parts to binary feedback active learning: (i) to
select a query image from the active pool, and (ii) to select
a sample image from a known category to be shown to the
user along with the query image.

2.1. Query selection
The goal here is to query informative images, i.e.,

images that are likely lead to an improvement in future
classification accuracy. We use the Value of Information
framework [16, 15, 23] employed in decision theory for
query selection in this paper. The broad idea is to select
examples based on an objective function that combines
the misclassification risk and the cost of user annotation.

1Initiating a new category can require many user responses when many
classes are present – we later discuss how to overcome this through a fast
new class initialization step along with cluster merging.

Consider a risk matrix M ∈ Rk×k for a k-class problem.
The entry Mij in the matrix indicates the risk associated
with misclassifying an image having true label i as
belonging to class j. Correct classification incurs no risk
and hence the diagonal of M is zero, Mii = 0,∀i.

Denote the estimated class membership distribution for
an unlabeled image x as px = {p1x, . . . , pkx}. Note
that since the true class membership distribution for x
is unknown, the actual misclassification risk cannot be
computed – we instead find the expected misclassification
risk for x as

R{x}L =

k∑
i=1

k∑
j=1

Mij · (pix|L) · (pjx|L), (1)

where L is the set of labeled examples based on which the
probabilities are estimated. Consider that the test set T
consists of N images x1, . . . , xN . The total expected risk
over the test set (normalized by size) is

RL =
1

|T |
∑
x∈T

k∑
i=1

k∑
j=1

Mij · (pix|L) · (pjx|L). (2)

Note that the above expression requires that the test set be
available while computing the total risk. Typically, the test
set is not available beforehand, and we can use the images in
the active pool A for computing the expected risk. Indeed,
most work on classification uses surrogates to estimate the
misclassification risk in the absence of the test set. In many
scenarios, the entire available set of unlabeled images is
used as the active pool and is typically very large, thus an
estimate of risk on the active pool is fairly reliable.

Now, if y ∈ A is added to the labeled training set by
acquiring its label from the user, the expected reduction in
risk on the active pool can be computed as

RL −RL′ =
1

|A|
∑
x∈A

k∑
i=1

k∑
j=1

Mij · (pix|L) · (pjx|L) (3)

− 1

|A′|
∑
x∈A′

k∑
i=1

k∑
j=1

Mij · (pix|L′) · (pjx|L′),

where L′ = L ∪ {y}, and A′ = A \ {y}. The above
expression captures the value of querying y and adding
it to the labeled set. However, we also need consider
the cost associated with obtaining feedback from the user
for y. Assume that the cost of obtaining user annotation
on y is given by C(y). In our framework, we wish to
actively choose the image that reduces the cost incurred
while maximizing the reduction in misclassification risk.
Assuming risk reduction and annotation cost are measured
in the same units, the joint objective that represents the
value of information (VOI) for a query y is

V (y) = RL −RL′ − C(y). (4)

The termRL in the above equation is independent of y, the
example to be selected for query. Therefore, active selection
for maximizing VOI can be expressed as a minimization:
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y∗ = argmin
y∈A

RL′ + C(y). (5)

Note that the above framework can utilize any notions
of risk and annotation cost that are specific to the
domain. For instance, we can capture the fact that
misclassifying examples belonging to certain classes can
be more expensive than others. Such a notion could be
extremely useful for classifying medical images so as to
determine whether they contain a potentially dangerous
tumor. Misclassifying a ‘clean’ image as having a
tumor only incurs the cost of the doctor verifying the
classification. However, misclassifying a ‘tumor image’ as
clean could be potentially fatal in a large dataset wherein
the doctor cannot manually look at all the data. In such
scenarios, the different misclassification risks could be
suitably encoded in the matrix M .

As in most work on active learning, our evaluation is
based on classification accuracy. As such we employ equal
misclassification cost, so that Mij = 1, for i 6= j.

2.2. Sample selection

Given a query image, the sample selection algorithm should
select sample images so as to minimize the number of
responses the user has to provide. In our framework, the
sample images belong to a known category; the problem
of selecting a sample image then reduces to the problem of
finding a likely category for the query image from which
a representative image can be chosen as the sample image.
When presented with a query image and a sample image,
note that a “match” response from the user actually gives us
the category label of the query image itself! A “no match”
response does not provide much information. Suppose
that the dataset consists of 100 categories. A “no match”
response from the user to a certain query-sample image
pair still leaves 99 potential categories to which the query
image can belong. Based on this understanding, the goal of
selecting a sample image is to maximize the likelihood of a
“match” response from the user.

Selecting a sample image (category) can be
accomplished by again using the estimated class
membership probabilities for the selected query image.
For notational simplicity, assume that the query image
distribution {p1, . . . , pk} is in sorted order such that
p1 ≥ p2 ≥ . . . ≥ pk. The algorithm proceeds as follows.
Select a representative sample image from class 1 and
obtain user response. As long as a “no match” response is
obtained for class i − 1, select a sample image from class
i to present the user. This is continued until a “match”
response is obtained. Through such a scheme, sample
images from the more likely categories are selected earlier
in the process, in an attempt to minimize the number of
user responses required.

2.2.1 Annotation cost
In the binary feedback setting, our experiments indicated
that it is reasonable to assume that each binary comparison
requires a constant cost (time) for annotation. Thus,
for each query image, the cost incurred to obtain the
class label is equal to the number of binary comparisons
required. Since this number is unknown, we compute
its expectation based on the estimated class membership
distribution instead. If the distribution is assumed to be
in sorted order as above, the expected number of user
responses to get a “match” response is

C(x) = px1 +

k∑
j=2

(1− px1) . . . (1− pxj−1) · pxj · j, (6)

which is also the user annotation cost. We can scale the
misclassification risk (by scaling M ) with the real-world
cost incurred to find the true risk, which is in the same
units as annotation cost. Here we choose the true risk
as the expected number of misclassifications in the active
pool, and compute it by scaling M with the active pool
size. Along with our choice of C(x), this amounts to
equating the cost of each binary input from the user to every
misclassification, i.e., we can trade one binary input from
the user for correctly classifying one unlabeled image.

2.3. Stopping criterion
The above VOI-based objective function leads to an
appealing stopping criterion – we can stop whenever
the maximum expected VOI for any unlabeled image is
negative, i.e., argmaxx∈A V (x) < 0. With our defined
notions of risk and cost, negative values of VOI indicate
that a single binary input from the user is not expected
to reduce the number of misclassifications by even one,
hence querying is not worth the information obtained. It
should be noted that different notions of real-world risk
and annotation cost could be employed instead if specific
domain knowledge is available. The selection and stopping
criteria directly capture the particular quantities used.

2.3.1 Initiating new classes
Many active learning methods make the restrictive
assumption that the initial training set contains examples
from all categories [10]. This assumption is unrealistic for
most real problems, since the user has to explicitly construct
a training set with all classes, defeating our goal of reducing
supervision. Also, if a system is expected to operate over
long periods of time, handling new classes is essential.
Thus, we start with small seed sets, and allow dynamic
addition of new classes. In the sample selection method
described above, the user is queried by showing sample
images until a “match” response is obtained. However, if
the query image belongs to a category that is not present
in the current training set, many queries will be needed to
initiate a new class.
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Input: Labeled set L, active pool A, cost matrix M

1. L0 := L; A0 := A
2. for round r = 0 to n− 1 do
3. foreach image xi ∈ A(r) do
4. for class yi = 1 to k do
5. Train multi-class classifier with

L(r) ∪ {xi, yi}
6. Estimate class membership probabilities

for images in the active pool A(r)

7. Compute risk on the active pool R(xi,yi)

8. end
9. Compute expected risk (L′r = Lr ∪ {xi})

RL′r =
∑

l P (yi = l) ·R(xi,l)

10. Compute expected annotation cost C(xi)
11. end
12. Find image x∗ = argminxi∈A(r) RL′r + C(xi)
13. Find V (x∗) using Eqn. (4)
14. if V (x∗) > 0 then
15. Query user with query image x∗ and likely

sample images until true label k∗ is obtained
16. Set L(r+1) := L(r) ∪ {x∗, k∗}; and

A(r+1) := A(r) \ {x∗}
17. else return L(n) = L(r)

18. end

Output: The new labeled set L(n)

Figure 3. Multi-class active learning with binary feedback.

Instead, we initiate a new class when a fixed small
number (say 5) of “no-match” responses are obtained. With
good category models, the expected distributions correctly
capture the categories of unlabeled images – hence, “no-
match” responses to the few most likely classes often
indicates the presence of a previously unseen category.
However, it may happen that the unlabeled image belongs
to a category present in the training data. In such cases,
creating a new class and assigning it to the unlabeled
image results in overclustering. This is dealt with by
agglomerative clustering (cluster merging), following the
min-max cut algorithm [5], along with user input.

The basic idea in agglomerative clustering is to
iteratively merge two clusters that have the highest
similarity (linkage value) l(Ci, Cj). For min-max
clustering the linkage function is given by l(Ci, Cj) =
s(Ci, Cj)/(s(Ci, Ci)s(Cj , Cj)), where s indicates a cluster
similarity score: s(Ci, Cj) =

∑
x∈Ci

∑
y∈Cj

K(x, y).
Here K is the kernel function that captures similarity
between two objects x and y (the same kernel function is
also used for classification with SVM).

In our algorithm, we evaluate cluster linkage values after
each iteration of user feedback. If the maximum linkage
value (indicating cluster overlap) is for clusters Ci and
Cj , and is above a threshold of 0.5, we query the user by

showing two images from Ci and Cj . A “match” response
results in merging of the two clusters. Note that our setting
is much simpler than the unsupervised clustering setting
since we have user feedback available. As such, the
method is relatively insensitive to the particular threshold
used, and lesser noise is encountered. Also, note that we
do not need to compute the linkage values from scratch at
each iteration – only a simple incremental computation is
required. In summary, new classes are initiated quickly, and
erroneous ones are corrected by cluster merging with little
user feedback.

3. Computational considerations
The computational complexity of each query iteration in
our algorithm (Figure 3) is O(N2k3), with an active pool
of size N and k classes. Although it works well for small
problems, the cost can be impractical at larger scales. In this
section, we use some approximations to significantly reduce
the computational expense, and make the implementation
efficient for large problems with many classes.

3.1. Expected value computation
In the above algorithm, estimating expected risk is
expensive. For each unlabeled image, we need to train
classifiers assuming that the image can belong to any of
the possible categories (line 4). This can be slow when
many classes are present. To overcome this, we make
the following observation: given the estimated probability
distribution of an unlabeled image, it is unlikely to belong
to the classes that are assigned low probability values, i.e.,
the image most likely belongs to the classes that have the
highest estimated probabilities. As such, instead of looping
over all possible classes, we can only loop over the most
likely ones. In particular, we loop over only the top 2 most
likely classes, as they contain most of the discriminative
information, as noted in [13], while the smaller probability
values contain little information. Such an approximation
relies to some extent on the correctness of the estimated
model, which implies an optimistic assumption often made
for computational tractability [10]. Further, we can use the
same “top-2” approximation, for computing the expected
risk (line 9) on unlabeled images, as an approximation to
Eqn. (1).

3.2. Clustering for estimating risk
In the above algorithm, the risk needs to be estimated
on the entire active pool. Instead, we first cluster the
unlabeled images in the active pool using the kernel k-
means algorithm [20]. Then we form a new unlabeled
image set by choosing one representative (closest to the
centroid) image from each cluster, and estimate risk on
this reduced set. The clustering needs to be performed
only once initially, and not in every query iteration. In
our implementation, we fix the number of clusters as
1/100 fraction of the active pool size. Experiments
showed that this approximation rarely (less than 5% of the
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Figure 4. Active learning in the BF model requires far lesser user training time compared to active selection in the MCF model. US: uncertainty sampling,
RND: random. (a) USPS, (b) Pendigits, (c) Caltech-101 datasets.

time) changes the images selected actively, and makes a
negligible difference in the estimated risk value, and the
future classification accuracy.

Another approximation used is sampling of examples
from the active pool to obtain a smaller set on which
VOI computation is performed. Efficient active selection
heuristics such as uncertainty sampling can be exploited
to form the small set. Using the uncertainty sampling
algorithm from [13], we first sample a small set of about
50 images from the active pool, and then select the images
from this smaller set using VOI.

With the above approximations, the complexity of each
query iteration is O(Nk2), a large improvement over the
original version. This is much better than the often observed
cubic scaling for active selection [11, 14]. Supplementary
material has more details about algorithm complexity.

4. Experiments
In this section, we evaluate the proposed algorithm

on various datasets and compare it with other learning
modalities. Table 2 summarizes the datasets used for
experiments. USPS and Pendigits datasets were obtained
from the UCI repository [1]. Scene-13 is a dataset of 13
natural scene categories [7], for which we employ GIST
features [18]. Precomputed pyramid match kernel matrices
[9] were used as features for the Caltech-101 dataset.

For implementation we used Matlab along with the
LIBSVM toolbox [3] (written in C, interfaced with Matlab
for SVM and probability estimation). With an active pool
size of 5000 images for a 10-class problem (USPS) each
query iteration on average takes about 0.9 seconds on a 2.67
Ghz Xeon machine. For the Caltech dataset with an active
pool of size 1515 images with 101 classes, a query iteration
takes about 1.3 seconds. This time is lesser than the average
amount of time taken by the user to give binary feedback
(see Table 1). Thus, computation time is not a bottleneck
and the system is interactively appealing.

4.1. User interaction time
We have previously demonstrated the benefits of the BF

model as compared to MCF from the ease of interaction
standpoint. Here we compare the total user annotation

Dataset #classes #features # Pool # Test Kernel
USPS 10 256 5000 2000 Gaussian

Pendigits 10 16 5000 2000 Linear
Scene-13 13 320 [18] 5000 2000 Linear

Caltech-101 101 N/A 1515 1515 From [9]

Table 2. Dataset details. # pool = active pool size, # test = test set size.

time required with various methods to achieve similar
classification rates. The comparison shows the following
methods: our proposed VOI method with binary feedback
(VOI+BF), VOI with MCF, active learning using the
uncertainty sampling method in [13] (US+MCF), and
random selection with both BF and MCF. Figure 4 (figures
best viewed in color) shows the substantial reduction in
user training time with the proposed method. For all
the datasets, the proposed VOI-based algorithm beats all
others (including active selection with MCF), indicating
that the advantages come from both our active selection
algorithm, as well as the binary feedback model. Further,
note that the relative improvement is larger for the Caltech
dataset, as it has a larger number of categories. As such,
we can train classifiers in a fraction of the time typically
required, demonstrating the strength of our approach for
multi-class problems.

4.2. Importance of considering annotation cost
As mentioned before, we use uncertainty sampling(US)-

based active selection to form a smaller set from which
the most informative images are selected using VOI
computation. Here we demonstrate that the good results are
not due to uncertainty sampling alone. Figure 5 compares
the number of binary comparisons the user has to provide in
our algorithm along with the uncertainty sampling method
(also in the BF model) in the initial stages of active
learning. The figure shows two plots with 50 and 70 class
problems, obtained from the Caltech-101 dataset. Our
method significantly outperforms US in both cases, and the
relative improvement increases with problem size. As the
number of classes increases, considering user annotation
cost for each query image becomes increasingly important.
The VOI framework captures annotation cost unlike US,
explaining the better performance for the 70 class problem.
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Figure 6. Confusion matrices with (a) active (VOI), and (b) random
selection (max. trace = 1515). VOI leads to much lower confusion.
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text for details).
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Figure 9. Sensitivity to label noise, (a) 10%, (b) 20%. VOI with noisy
data outperforms the random selection with clean data.

4.3. Active selection (VOI) v/s random selection
Figure 6 shows the confusion matrices for active selection
with VOI as well as random selection on the Caltech 101
class problem. Active selection results in much lesser
confusion, also indicated by the trace of the two matrices.
This demonstrates that the algorithm offers large advantages
for many category problems. Figure 7 shows per-class
classification accuracy of both VOI and random selection
methods on the Scene-13 dataset. VOI achieves higher
accuracy for 9 of the 13 classes, and comprehensively beats
random selection in the overall accuracy.

4.4. Noise sensitivity
In many real-world learning tasks, the labels are noisy,

either due to errors in the gathering apparatus, or even
because of human annotation mistakes. It is therefore
important for the learning algorithm to be robust to a
reasonable amount of labeling noise. In this section, we
perform experiments to quantify the noise sensitivity of the

methods. We artificially impart stochastic labeling noise to
the training images. For example, 5% noise implies that
training images are randomly given an incorrect label with
a probability of 0.05. The algorithms are then run on the
noisy as well as clean data – results for the USPS dataset
are shown in Figure 9.

The figure shows both active and random selection
on clean as well as noisy data (10% and 20% noise).
Expectedly, there is a reduction in classification accuracy
for both algorithms when noise is introduced. Interestingly,
however, even with as much as 10% label noise, the active
learning method still outperforms random selection on
clean data, whereas with about 20% noise, active learning
still matches random selection on clean data. This result
shows that active selection can tolerate a significant amount
of noise while giving a high classification rate.

One reason why active selection can be robust to noise
arises from the fact that the algorithm selects “hard”
examples for query. In most cases, these examples lie
close to the separating boundaries of the corresponding
classifiers. Intuitively, we expect noise in these examples
to have a smaller effect, since they change the classification
boundary marginally. In contrast, a misclassified example
deep inside the region associated with a certain class can
be much more harmful. In essence, through its example
selection mechanism, active learning encounters noise
that has a relatively smaller impact on the classification
boundary, and thus the future classification rate.

4.5. Population imbalance
Real-world data often exhibits class population

imbalance, with vastly varying number of examples
belonging different classes [6]. For example, in the
Caltech-101 dataset, the category ‘airplanes’ has over 800
images, while the category ‘wrench’ has only 39 images.

We demonstrate here that active selection can effectively
counter population imbalances in order to generalize better.
The experiment is conducted as follows. The active pool
(from which unlabeled images are selected for query)
consisting of vastly varying number of examples of each
class is generated for the Pendigits dataset. However,
the test set is kept unmodified. In this scenario, random
example selection suffers since it obtains fewer examples
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from the less populated classes. Active selection, on the
other hand, counters the imbalance by selecting a relatively
higher number of examples even from the less populated
classes. Figure 8 demonstrates the results. The three bars
show (normalized) number of examples per class in the
unlabeled pool, and in the training sets with active and
random selection. Random selection does poorly – for
instance, it does not obtain even a single training image
from class ‘9’ due to its low population in the unlabeled
pool. Active selection overcomes population imbalance
and selects many images from class ‘9’. This is further
reinforced by computing the variance in the normalized
population. The standard deviation in the (normalized)
number of examples selected per class with active and
random selection is 0.036 and 0.058 respectively. The
significantly smaller deviation shows that active selection
overcomes population imbalance to a large extent.

4.6. Fast initiation of new classes
Dataset W/ clustering Naive

Caltech-101 2560 sec 3200 sec

Table 3. User training time required to encounter all 101 classes.

In Section 2.3.1, we described our method of quickly
initiating new classes and then merging the erroneous ones
using agglomerative clustering and user feedback. Table
3 summarizes the advantages of the approach (i.e., w/
clustering) compared to simple category initiation when
a new image does not match any training image (naive).
We start with a small seed set of 20 images, and run
the experiment until both methods encounter all the 101
categories in the data. Note the large reduction in user
training time with clustering, due to the fewer number of
binary comparisons requested. This aspect is increasingly
important as the number of classes increases.

5. Conclusions and future work
In this paper, we presented a new multi-class active

learning framework that requires only binary feedback from
the user. Experiments on large datasets demonstrated the
benefits of our approach, in terms of substantially reducing
user training time and effort. The proposed method was also
shown to be robust to real-world issues such as population
imbalance and noise. Future work will focus on choosing
even sample images from unlabeled data, in the hope of
further reducing training effort.
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