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ABSTRACT

A range of well-known treatment methods for destroying tumor and
similar harmful growth in human body utilizes the coherence be-
tween the inherently periodic movement of the affected body part
and periodic respiratory signal of the patient, with the objective
of minimizing damage to surrounding normal tissues. Such meth-
ods require constant monitoring by an operator who observes the
3D body motion via its 2D projection onto an ultrasound imaging
plane and studies the synchronism of this motion with the respira-
tory signal. Keeping an attentive eye on the respiratory signal as
well as the ultrasound video for the entire treatment period is often
inconvenient and burdensome. In this paper, we propose a video
visualization technique called CycleStack Plot which reduces this
cognitive overhead by blending the video and the signal together
in a stack-like layout. This visualization reveals the inherent syn-
chronism between the target’s movement and the respiratory signal,
visually highlights significant phase shifts of either of the two cyclic
phenomena, with the hope of arresting the operator’s attention. Our
proposed visualization also provides a visual overview for the post-
treatment analysis which enables educated users to quickly and ef-
fectively skim through the excessively long process. This paper
demonstrates the utility of CycleStack Plot with a case study using
real ultrasound videos. In addition, a user study has been performed
to evaluate the merits and limitations of the proposed method with
respect to the conventional way of watching a video and a signal
side-by-side. Even though the motivation of the proposed visual-
ization is improvement of medical applications that use ultrasound,
the core techniques discussed here have potential to be extended to
other application domains requiring analysis of cyclic patterns from
videos.

Index Terms: I.3.8 [Computing Methodologies]: COMPUTER
GRAPHICS—Applications

1 INTRODUCTION

As humans, we can easily perceive the spatial appearance changes
from a sequence of images, yet, it becomes quite a challenge when
we want to apprehend whether the temporal changes contain certain
cyclic behaviors or quantify their frequency and phase. This is a
natural result of the fact that we have sensors to see in 3D but not
in time, without being too philosophical.

Here, we dissect an ultrasound video application, namely res-
piration estimation, to better appreciate the challenges laid before
us. Ultrasound video is used for many purposes, one of which is
the observation of tumors. Based on these observations, certain di-
agnostic and treatment systems are developed. They all require a
high level of accuracy in identifying the location of the tumor, for
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instance, to reduce the damage to the surrounding normal tissues
in treatment procedures. The location of the tumor and the tissues
is influenced by several factors, especially the periodic movement
due to the patient’s respiration. As described in Saw et al.’s review
article [9], the respiratory movement of thoracic, pancreatic, renal
or liver tumors can be more than several centimeters, which adds
a considerable degree of uncertainty in the measured location of
the target. While using a larger treatment area can damage healthy
tissues, using a smaller area can underdose or miss the tumor, re-
ducing the efficiency and lengthening the time of the therapy.

The clinical techniques based on the respiratory movement uti-
lize the periodicity of the patient’s respiratory signal to control the
time and duration of the exposure. Several factors, however, can
influence the quality of the estimation. First, the respiratory sig-
nal of the patient is measured or sampled by sensing external or
internal markers, which can introduce noise and error. Second, the
target’s periodic movement can be quasi-dynamic, which implies
that the target may not always move according to the expectation
of the treatment plan. For instance, the patient may unconsciously
shift his/her body during the therapy causing a change in the loca-
tion and orientation of the targeting tumor, or the patient’s breathing
rate may vary during the treatment. Third, the treatment heavily re-
lies on the operator who has to carefully monitor to make sure the
treatment is correctly following the planned strategy and using the
correct parameters for the particular patient. Not only that, he also
needs to react accordingly if any abnormal condition is detected.

To monitor the course of the therapy, the operator needs to con-
sider two different sources of inputs. One source is a video of
the targeted tumor’s movement which can be obtained via onboard
imaging systems. Another source is the patient’s respiratory signal
obtained in real time. The operator’s task is to examine the video
as well as the respiratory signal to decide whether the location and
shape of the target tumor are nearly matching the values estimated
during the treatment planning stage. As long as the periodic move-
ment of the target in the video is seen to be maintaining an ex-
pected phase difference to the respiratory signal, the treatment can
be assumed to be proceeding normally. Otherwise, it implies that
the therapy course is possibly not following the therapy plan, and
thus requires intervention by the operator to either reset or manually
drive it in order to restore correctness and quality.

However, in course of doing so, a human observer may inexpli-
cably fail to precisely detect any abnormality in the target’s move-
ment, as the speed or frequency of the movement can be dynamic.
Besides, due to the limited memory of human mind, it is hard to
recollect a frame of the video or a pattern in the respiratory signal,
which is basically a time series, once it has moved out of the visible
window. As a result, comparing the video and the signal becomes
non-intuitive and imposes cognitive burden to the observer.

Comparison between the video and the signal is also required
for post-therapy analysis to assess the success of the therapy. But
as the time required to watch a video is proportional to the num-
ber of frames, watching it over and over again is impractical. Even
though several methods have been proposed for video surveillance
applications in order to visualize a video in constant time irrespec-
tive of its original length [1] [2] [3], none of them has been designed
to highlight the periodic pattern present in the video which is a re-
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(a) (b) (c)

Figure 1: Existing visualization techniques to reveal periodical pat-
tern in time series. (a): 2D spiral layout, which introduces distortion
and inconsistent orientation of the patterns. (b): 3D spiral layout,
which causes occlusion among the patterns. (c): Linear wrapping,
which can cut through the patterns at the boundaries of the display
window.

quirement in our case.

To address these shortcomings, we introduce a novel visualiza-
tion algorithm called CycleStack plot. Given a video and a time-
varying respiratory signal as the two inputs, the CycleStack algo-
rithm simultaneously plots them in a stacked layout in such a way
that the viewer can detect abnormally long or short cycles and sig-
nificant phase shifts of either input leading to asynchronism be-
tween the two. CycleStack also creates an effective overview of
the video which allows the user to efficiently compare the video
against the signal without having to watch through all the frames.
These benefits make CycleStack a useful tool for the human ob-
servers to monitor the course of dynamic changes in periodic video
data.

This paper is organized as follows. Section 2 overviews the re-
lated techniques about respiration-guided therapy, visualization al-
gorithms for videos and time series. Section 3 describes the pro-
cedure to create the CycleStack plot. Section 4 presents a case
study followed by a user study on real ultrasound videos, which
is followed by a short discussion on the limitations and potential
directions of future work.

2 RELATED WORK

2.1 Respiration-gated and Image-guided Therapy

Details about respiration-gated therapy can be found in the follow-
ing reviews [5] [9] [12]. Some alternative techniques attempt to
restrict the respiratory motion of the patient during the course of
the therapy, either by instructing the patient to hold his/her breath,
or by fitting a physical plate around the abdominal region to reduce
the moving range of the tumor. These types of treatments can be
impractical for certain types of diseases, and may cause discomfort
to the patient [9]. Meanwhile, a group of methods uses the respi-
ratory signal to automatically guide the dose of medication ([11],
[15]).

Image-guided therapy incorporates onboard imaging techniques
to locate and track the tumor during the therapy [10] [16]. A
popular method to sense the tumor’s 3D location and shape is 4-
Dimensional Computational Tomography (4DCT), which contains
the 3D shape of the tumor in each respiration phase [8].

2.2 Video Visualization and Time Series Visualization

Given a 2D video and a 1D signal or time series, our ultimate goal
is intuitively highlighting the periodicity of the underlying motion
in the video, and efficiently revealing its correlation with the 1D
signal. Watching a video to reveal information, however, is often
unacceptably time-consuming. To overcome this limitation, several
work such as [1] [2] [3] [4] [13] have been published in the domain
of video surveillance. By treating the video as a static spatiotem-
poral volume, low level image features such as gradient or motion
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Figure 2: Overview of the system.

flow are extracted from the volume at first. Once this is accom-
plished, conventional volume rendering techniques can be applied
to enhance those features in order to visualize the underlying events.
For instance, direct volume rendering with transfer functions that
assign high transparencies to static region can hide the background
in the scene [3], and flow visualization techniques such as glyphs or
streamlines integral can be applied to visualize the extracted motion
flow [2]. In addition to direct volume rendering, a video volume can
be rendered by slicing a cross section that is coplanar with the tem-
poral axis. This can create an effect similar to slit-scan photography
to visualize the trace of moving objects over time [4] [13].

While the common goal behind the above mentioned video vi-
sualization techniques is to visualize the motion in the video, our
focus is to emphasize the periodic patterns over time in the video
as well as in time series. Because the time series for real data can be
long, efficient utilization of the screen space is required. The detail
of the periodic pattern will be compressed otherwise. Weber et al.
utilizes spiral layouts as the time axis in order to render a long time
series in 2D or 3D space [14]. Figure 1 (a) and (b) are examples of
using 2D and 3D spiral layouts for a synthesized sin function. One
issue with the spiral layouts is that the periodic pattern gets dis-
torted as the orientation varies, making it difficult to compare the
neighboring patterns. As shown in Figure 1 (c), an alternative of
the spiral layout is to wrap the time series from a 1D long array into
a 2D matrix, that can be displayed as an image. But then the pat-
terns along the image boundary may become obscure since they are
likely to be placed on separate rows. Another technique is called
VizTree, which clusters the segments of quantized time series into
a tree structure [6]. While these techniques can be used to detect
periods of constant duration in a time series; the frequency and the
phase of respiratory signals, the time series dealt with in this paper,
can vary with time.

3 CYCLESTACK

Given a video and a respiratory signal as the inputs, the proposed
CycleStack plot can simultaneously display the periodic movement,
if any, of an object of interest inside the video and the periodic cycle
in the signal. The primary purpose of CycleStack plot is to provide
the viewer with an easy way of comparing the periodic movement
of the object against that of the signal.

An overview of the procedure to create CycleStack plot is pre-
sented in Figure 2. In our method, the movement of an object in
the video over a span of time is represented by an image called
Movement Trace Image. Independently, the respiratory signal is
also segmented across temporal axis so that each segment repre-
sents one respiratory cycle. Each of these segments is then overlaid
on the corresponding sub-image taken out from the movement trace
image. The method, in essence, superimposes two different visu-
alizations for each time period of the signal and then, stacks each
such superimposed plot in a bottom-up layout to form what we call
CycleStack plot. Each step of the procedure is described in detail in
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Figure 3: Movement trace. By collecting the pixel intensity along
the red line on the video frame over time, an image with a apparent
periodic pattern over time can be seen.

(a)

(b)

(c)

Figure 4: Sampling of the periodical movement in a video. (a): Sam-
pling along a line with apparent periodical change. (b): Sampling
along the same line in (a) with opposite direction. (c): Sampling
along a line with less periodical change.

the following subsections.

3.1 Movement Trace Image

The purpose of this step is to sample the periodic movement of
the object of interest, a tumor in our application, in the video. Intu-
itively, if the object of interest moves primarily along a line segment
on the screen, the pixel intensities along that line segment should
change with object movement. By recording the pixel intensities
along that line segment over time, the trace of the object along that
segment can be obtained. Figure 3 shows the construction of trace
from a sample ultrasound video. By sampling the pixel intensities
along the red line that intersects two black blobs (potential objects
of interest) in the video, the trace of the blobs over time can be
generated. The blue arrow indicates the direction in which time ad-
vances. This idea is similar to the Tear Slit [13] which can be used
to sample the time-varying pattern in a video.

If the pixel intensity along the specified line segment is sampled
as a vector, and the vectors from all time steps are vertically placed
next to each other in order of time, the resulting image (see Figure

4) whose number of vertical columns is equal to the number of time
steps is called a movement trace image. Formally, given a video
of W ×H pixels with T frames and the line segment between the
two points L0 = (x0,y0) and L1 = (x1,y1) on the screen, the pixel
intensity along the line segment in the t-th frame It is denoted as
It(L(s)) where t = 1 . . .T , s ∈ [0,1], and L(s) = L0 + s×L1. The
movement trace image M(s, t) is the cascade of the samples It(L(s))
from all time steps t; namely, M(s, t) = It(L(s)). Figure 4 (a) and
(b) are two examples of movement trace images, where periodic
nature of the movement is apparent, with the horizontal axis used
for time (increasing from left to right).

Since the shape and the motion of the object of interest can differ
widely from patient to patient, our current system requires the line
segment to be specified by the operator. Before beginning the treat-
ment, the operator can watch the video for a while to observe the
motion of the tumor, and then he can specify two points on screen
to define a line segment along which the periodicity will be well re-
flected. Some intuitions should be applied while specifying the line
segment. First, if the line does not cut through any region which
shows periodic movement of the object, the periodic pattern can
be obscured or totally absent in the result, as the example shown
in Figure 4 (c). Second, the order in which the points are being
specified can be critical as well, because the order determines the
direction of sampling. Figures 4 (a) and (b) which clearly display
patterns opposite to each other are the movement trace images sam-
pled from the same line segment between bounding points L0 and
L1, but along reverse directions. These two rules can help the op-
erator to adjust the orientation and sampling direction of the line
segment until he starts getting a satisfactory trace.

Two practical issues should be addressed for real object of inter-
est. First, the real object of interest may not always move as simply
as along a line segment . The periodic movement can include defor-
mation, rotation, and scaling. However, we have found that a linear
segment can represent the periodic movement reasonably well even
for more complex movements. Second, the ultrasound sampling
along the line segment should exhibit certain degree of heterogene-
ity in the scale in order to produce apparent patterns. For real ultra-
sound video, since the grayscale of the foreground and background
can be closed, our implementation applied histogram equalization
to the sampled line segment in each frame hence the contract among
the sample can be enhanced.

3.2 Periodic Cycle Segmentation

In this step, the temporal axis of the respiratory signal which is pe-
riodic in normal course is segmented into non-overlapping spans,
each of which represents a cycle. Since the signal is similar to a
sine or cosine function, it can be segmented across the time axis
using a single threshold. The segmentation results in two phases.
First, the consecutive time steps with signal value smaller than the
threshold form a part, called the inhale phase, of the cycle. Simi-
larly, the consecutive time steps having values greater than or equal
to the threshold constitute the rest, named as the exhale phase, of
the cycle. The names of the phases clearly indicate that each pair of
phases, inhale followed by the exhale phase, completes a respira-
tory cycle. Figure 5 (a) is an example of single-threshold segmen-
tation.

But the single threshold method is not sufficient for our appli-
cation because the respiratory signal collected in real time through
sensors is often noisy and the range of the signal values can be dy-
namic as well. As shown in Figure 5 (b), use of a single threshold
to segment a noisy signal can generate short segments which do not
correspond to the actual respiratory phases. In other words, local
variation of the signal value around the threshold due to noise can
be misinterpreted as transition of phase. To deal with this issue, a
2-threshold strategy as described below is applied. The signal value
at each time step is compared to both the thresholds, say δe and δi.
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Figure 5: Periodic cycle segmentation. (a): Segmentation of a signal
by using one threshold. The exhale and inhale phases are colored
in red and green, respectively. (b): Segmentation of a noisy signal
by using one threshold, which can create multiple short and false
phases. (c) and (d): Segmentation of a noisy signal by using two
thresholds. In the first step, as shown in (c), the time steps are larger
than the threshold e or smaller than the threshold i are marked as
red and green, respectively. In the second step, as shown in (c),
each phase is extended.

If the value is higher than the threshold δe, the time step is consid-
ered to be in the exhale phase. Otherwise, if the signal is lower than
the threshold δi, the time step is marked as one in the inhale phase.
If a time step’s signal value falls between the two thresholds, it is
assigned the phase of its immediate predecessor, phase of which
must have already been decided. This step ensures that a number
contiguous time steps with values between the thresholds together
gets assigned to a single phase, avoiding multiple false transitions
within. Like the single threshold method, each inhale phase fol-
lowed by an exhale phase builds a complete cycle. Result of the
2-threshold segmentation of the noisy signal is presented in Figures
5 (c) and (d). Absence of undesired short segments is noticeable. In
our system, we have normalized the range of the respiration signal
to [0,1], and the two thresholds δi and δe have been specified as 0.2
and 0.8 respectively.

3.3 Cycle Stack Rendering and Interpretation

Once the processes of segmenting the signal into periodic cycles
and the generation of movement trace image are on, the CycleStack
plot can be generated using these two inputs. The idea is to draw
each periodic cycle of the signal and the movement trace for the
corresponding time steps into a small individual plot and to orga-
nize each of these plots into an aligned layout so that the viewer can
visually compare the signal in a particular time step with the corre-
sponding movement trace and also can analyze plots from different
time steps against one another. The detailed procedure of plot and
layout generation is described below.

Each individual plot of the CycleStack occupies a 2D rectangular
region called cycle brick on the screen. The name suggests that
each plot corresponds to a cycle in the signal. Each cycle brick is
segmented into two horizontally adjacent smaller rectangles called
phase bricks (see Figure 6). Given a cycle brick, its left and right
phase bricks respectively represent the inhale and exhale phases in
the corresponding cycle. While the heights of all phase(or cycle)
bricks are equal, the width of the a phase(or cycle) brick is linearly
proportional to the duration of the corresponding phase(or cycle).

The cycle bricks are then vertically placed as a stack where the
order of the bricks from bottom to up follows the corresponding

Inhale

Phases

Bricks

Exhale 

Phases

Bricks

Time

Cycle 1 Cycle 2 Cycle 3

Cycle Brick 1

Cycle Brick 2

Cycle Brick 3

Signal CycleStack

Figure 6: Layout of CycleStacks. Given a signal with three periodic
cycles as an example, three cycles bricks are stacked. The left side
of the exhale phase bricks of all cycle bricks are aligned to the red
vertical line.

cycle’s order in time, i.e., a brick is placed above another iff the
cycle corresponding to the lower brick immediately precedes the
cycle corresponding to the upper brick. The cycle bricks are aligned
in such a way that the left (right) boundary of all exhale (inhale)
phase bricks coincides on a vertical line through the screen. Figure
6 provides an illustration of the layout of a sample signal.

For each cycle ranging from time steps [t0 . . .t1], the signal and
the movement trace image for that range are simultaneously plot-
ted on the corresponding cycle brick. The relevant sub-image taken
out from the entire movement trace image is rendered as the back-
ground of the cycle brick. The signal is plotted on the foreground as
a function over time, with time being represented along the horizon-
tal axis (from left to right). The superimposition of the sub-image
and the signal facilitates visual comparison of the two by the viewer
with reduced cognitive load. To speak in a formal way, the sub-
image, represented as a rectangle (s, t)∈ [0,T ]× [0,1] in the texture
space, is texture mapped onto the cycle brick which is denoted as
a rectangle (x,y) ∈ [l, l + w]× [b,b + h], where w and h are width
and height respectively on the screen space and (l,b) denotes the
bottomleft corner. The x(y) co-ordinates within the range [l, l + w]
([b,b + h]) of the cycle brick is linearly mapped to the s(t) compo-
nent of the movement trace image, as shown in Figure 7. Texture
mapping is followed by rendering of the signal. The signal for the
current cycle is plotted atop the background of the cycle brick as a
curve composed of a sequence of 2D data points (xi,yi), i = t0 . . .t1.
For each i, the horizontal coordinate xi of the curve is determined by
linearly mapping the index i within time steps [t0, t1] to the screen
coordinate [l, l +w] and the vertical coordinate yi is the value of the
signal at i-th time step, re-scaled and translated from function space
[0,1] to screen space [b,b+h].

The utility of the CycleStack plot thus generated is demonstrated
in detail in Section 4.1 with real ultrasound videos. In brief, the
CycleStack plot can convey the following information to the users:

1. Since the horizontal length of the cycle(phase) brick is propor-
tional to the duration of the corresponding cycle(phase) of the
signal, the user can easily compare the duration of all the vis-
ible cycles at any given moment to narrow down on unusually
long or short ones. Similarly, due to the vertical alignment of
the bricks at the point of phase transition (inhale to exhale),
comparing durations of any one phase from different cycles is
not difficult as well.

2. By plotting the signal atop the movement trace, we allow the
user to understand how the phase of the signal is related to the
movement trace, which represents the periodicity of the object
of interest in general. The user should also be able to easily
identify any deviation of phase difference from that general
pattern.
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Figure 7: Texture mapping from a movement trace image to Cy-
cleStacks. A periodic cycle in time steps t0 . . . t1 is linearly mapped
from the texture coordinate to a cycle brick with w× h pixels where
the screen coordinate of the lower-left corner is (l,b).

3.4 Online CycleStack

In the previous subsections, the construction of CycleStack plot has
been discussed with respect to a given video and a signal with a
static length. Unlike that, both the video and the signal expand with
time during the treatment. As a result, the number of cycle bricks
in the CycleStack plot keeps on increasing which eventually can
exceed the height of the display window. Not only that, the cycle
bricks corresponding to sufficiently long cycles can also exceed the
width of the display window. Such an event requires the operator
to manually adjust the position and scale of the plots which can be
quite an overhead during the treatment.

This issue leverages introduction of some screen space manage-
ment techniques. In our proposed method, the CycleStack plot au-
tomatically re-scales itself to fit a given display window. When the
plot for a new time step arrives, the bounding box of the plot is up-
dated and the CycleStack plot is re-scaled to fit the new bounding
box into the display window (see the accompanying video for this).

With the automatic re-scaling, less interaction with the visualiza-
tion is required of the user on events like generation of a new cycle
or expansion of length of the inhale or exhale phases. When a new
cycle appears, the heights of the existing bricks shrink. When a cy-
cle with a phase longer than all the ones stacked so far appears, the
width of the existing bricks corresponding to previous cycles are
reduced. But as seen in the accompanying video, both the changes
are gradual and subtle enough to be followed by the user.

4 EXPERIMENT

The effectiveness of CycleStack plots, which is designed with the
primary goal of reducing overhead of the viewer, should be evalu-
ated by allowing the users to interact with it. Hence we have con-
ducted a user study with real and synthesized videos on a moderate
sized population. The description and analysis of the user study in
Section 4.2 has been placed after a thorough case study in Section
4.1 with two ultrasound videos. The primary objective of the case
study is to show the readers how to interpret the CycleStack Plot so
that they can appreciate the response of the user study participants
in a better way.

Formally speaking, the purpose of this user study is to verify the
following hypothesis:

Hypothesis Compared to simply watching a video and a sig-
nal at the same time to detect any phase shift leading to a change of
correlation between the two, the CycleStack plot provides the user
a better means to achieve the same goal.

In our case study and user study, we are mainly interested to
see how CycleStack helps users detect two types of events, namely
Asynchronous and Opposite. Both the events occur when the phase

(a) (b)

(c) (d)

Figure 8: Test videos. (a): Video A, which is a subregion contained in
ultrasound video in (c). (b): Video B, which is a subregion contained
in ultrasound video in (d).

shift of either the video (movement trace image in case of Cy-
cleStack Plot) or the signal takes place. In case of an Asynchronous
Event, the shift destroys the correlation that existed between the
video and the signal so far. On the other hand, an Opposite Event
reverses the correlation between the two, leading to a special type
of asynchronism.

4.1 Case Study

This section explains how CycleStack provides intuitive visualiza-
tion of unusually long and short cycles, and significant phase shift
leading to opposite or asynchronous events. This is important be-
cause these events, whether detected online during the treatment or
offline during the post-analysis, require further investigation by the
professionals.

Figures 8 (c) and (d) shows the first frames of the two ultrasound
videos to be used for our case study. The videos use the green
rectangles to enclose the regions of interest (ROI), detailed view of
which are provided in Figures 8 (a) and (b), respectively. The test
video in Figure 8 (c), called Video A, contains 3240 frames which
takes 180 seconds to play. The second test video in Figure 8 (d),
refereed to as Video B, consists of 11629 frames playable in 401
seconds.

Figure 9 presents two temporal sections of the CycleStack Plot
generated from Video A. The last time step of each cycle is dis-
played as a label to its right. From the 3 cycle bricks visible in
Figure 9 (a), it can be observed that even though the respiratory
signal is noisy, the signal (the red curve) still loosely follow a white
band in the movement traces image. These three bricks are exam-
ples of cycles during which the video is synchronous to the signal.
Once the user familiarizes himself with this pattern, any deviation
from this should trigger his response. For instance, Figure 9 (b)
shows such deviations, namely asynchronous and opposite events.
For instance, for the cycles ending at time steps 2304 and 2429, the
signal (the red curve) does not align to the movement trace image
(the grayscale image) in the previously described manner. These
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Figure 10: Relevant Portions of the CycleStack plots for Video B. (a) four cycle bricks with synchronous movement traces and respiration signals.
(b): four cycle bricks from time step 1283 to 2229, including one asynchronous cycle (which ends at time steps 1998). (c): four cycle bricks from
time step 7680 to 8868, including one asynchronous cycle (which ends at time steps 8655).

(a)

(b)

Figure 9: Relevant portions of the CycleStack plots for Video A. (a): 3
cycle bricks with synchronous movement traces and respiration sig-
nals. (b): the cycle bricks from time step 1971 to 2776, displaying
synchronous cycles (end at time steps 2304 and 2409) and opposite
cycles (from time step 2430 to 2776).

two comparatively long cycles rather trigger a significant change in
the correlation between them. A cycle preceding these two, for ex-
ample the one with label 2117, and a cycle following these two, say
the one with label 2504, can be seen from Figure 9 (b) to observe
that the movement trace image has almost reversed its position with
respect to the signal, causing a (Opposite Event). This example il-
lustrates how Cyclestack plot allows the user to mentally juxtapose
different cycles for comparative analysis. In fact, a simple interac-
tion technique such as select-and-drag can be incorporated to enable

Table 1: User Study Result for Asynchronous Events

Video Method Rate Mean Std.Dev.

Synthesized Video/Signal 100% 1370.67 13.46

CycleStack 100% 1388.11 25.66

Ultrasound Video/Signal 44.4% 1887.00 32.72

Video B CycleStack 88.9% 1966.38 141.83

Table 2: User Study Result for Opposite Events

Video Method Rate Mean Std.Dev.

Synthesized Video/Signal 100% 1155.86 55.84

CycleStack 100% 1171.00 51.40

Ultrasound Video/Signal 88.9% 2488.88 206.06

Video A CycleStack 100% 2557.00 102.36

visual juxtaposition of multiple cycles from different time zones.
One more observation: in the periodic cycle that ends at time step
2639, one can observe that there are actually two periodic cycles in
the grayscale rectangle. This indicates probable malfunction of the
algorithm that segments the respiratory signal into cycles.

Figure 10 presents temporal snapshots of the CycleStack Plot
corresponding to Video B. The four cycle bricks in Figure 10 (a)
provide example of the synchronism present between the signal and
the movement trace image in normal course. This example illus-
trates that the signal does not necessarily need to follow a bright or
dark band in the movement trace image, as was the previous case;
but there exists a similarity among the four displayed bricks which
the user can subjectively learn without much difficulty. Figure 10
(b) shows four cycle bricks where the signal in the cycle brick that
ends at time step 1998 has generated a different pattern, which is
fairly obvious, with the movement trace image, leading to an Asyn-
chronous event. To understand the difference from opposite event,
we encourage the reader to compare cycle 1675, which precedes
1998, to cycle 2229 which follows 1998. Unlike the example of
opposite event discussed in last paragraph with reference to 9 (b),
these two cycles exhibit similarity which means the cycle ending at
1998 has not reversed the correlation. Another asynchronous cycle
which ends at time step 8655 is detectable in Figure 10 (c).

4.2 User Study

The user study has been performed with 18 participants. We have
divided the participants into two groups. After a brief demonstra-
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tion of the technique by us, one group has watched the test videos
and the signal on two separate windows. The other group has in-
teracted with the CycleStack plots generated from the same videos.
Both groups have been assigned the same set of tasks so that our
hypothesis, already mentioned in Section 4, can be tested by com-
paring the overall responses of the two groups.

The participants of both groups have been requested to respond
when they have identified either the asynchronous event or oppo-
site event. During the test, our application displays a dialog box
with two buttons, one for each event. The respective button can be
pressed by the participant when he/she detects an event. For each
user, the timestamp(s) when a button was pressed have been stored
into a log for subsequent analysis. We have analyzed the detec-
tion rate and the accuracy of the detected timestep for each type of
event. Two test videos, one synthesized and one ultrasound, have
been used for each type.

For the asynchronous event, our synthesized video contains a
sphere whose radius changes over time. The change indeed follows
a cyclic pattern, but with a random time period. One cycle with
abnormally long time period has been intentionally incorporated to
initiate a phase shift. The ultrasound Video B introduced in Section
4.1 has been used as the second test video. From our case study, it is
apparent that an asynchronous cycle exists between time step 1675
and 1998. Therefore, during analysis, we have checked the num-
ber of participants who have recorded an event between these two
time steps to obtain the detection rate. We have also measured the
average and the standard deviation of all the time steps of response
from users of each group. The average and the standard deviation
indicates how quickly they have responded to the event.

Table 1 presents the result from the user study. The third col-
umn (Rate) in Table 1 lists the detection rate, expressed as percent-
age. The asynchronous event in the synthesized video is equally de-
tectable by either technique: watching video/signal or CycleStack
Plot. But only 4 of the 9 participants watching video/signal have
detected the asynchronous event between time steps 1675 and 1998
in the ultrasound Video B; whereas it has been recorded by all but
one participants using CycleStack. A possible reason for this: Cy-
cleStack keeps completed cycles on the screen, allowing the viewer
to detect the asynchronous cycle even after it has gone by. But the
viewer of video/signal is deprived of that scope.

The fourth column (Mean) and the fifth column (Std.Dev.) in Ta-
ble 1 report the average and the standard derivation of the recorded
time steps respectively. For both the videos, the average time step
in case of video/signal is slightly ahead of that in case of the Cy-
cleStack, whereas the video/signal method has led to smaller stan-
dard deviation than its counterpart. The same factor which led to
higher detection rate of CycleStack Plot has a role to play here as
well. In case of video/signal, the user either detects the event or
misses it. So there is almost no possibility of delayed response.
On the contrary, a CycleStack user may, in fact, wait until the be-
ginning of the next cycle to be certain about his intuition. Because
with a few more cycles on top of it, the anomaly of a cycle often be-
comes much more apparent that when it appeared on the top of the
stack. This may have led to delayed response for a few participants
leading to the higher mean and standard deviation.

For the opposite event, the synthesized video contains a sphere
whose centroid moves back and forth on a horizontal line. After a
while, the movement undergoes a pause during a pre-defined time
step for half a period in order to have the correlation reversed. The
ultrasound Video A in Section 4.1 is the other one used to test the
opposite event. We have tested whether the viewer can detect the
opposite cycles after time step 2000, as described in Section 4.1.
Table 2 presents the result. The third column in Table 2 shows
that the opposite event in the synthesized video have claimed re-
sponse from all participants of both groups. Regarding the ultra-
sound video, only one participant who watched video/signal have

e

i

Figure 11: A failure case of our two-threshold cycle segmentation
algorithm. The thresholds e and i are plotted as the two blue dashed
lines. This cycle brick actually contains two periodic cycles, while the
first one is not segmented since the signal value during first cycle
does not exceed the threshold e.

failed to detect the opposite cycle. The comparable detection rate
of the video/signal and CycleStack watchers can be attributed to
the nature of the opposite event itself. This is something which af-
fects all the timesteps that follows and that effect is observable in
the video also. This eventually provides the video/signal users with
more time to detect it, even if at late. From the fourth and fifth
columns in Table 2, it can be seen that although the average time
step of detection for video/signal users is smaller than that of the
CycleStack watchers, the standard derivation of video/signal group
is much larger. This again indicates that some participants who have
watched video/signal might have taken late action.

Currently, our conclusion from the user study is that CycleStack
Plot ensures higher detection rate of asynchronous events in the ul-
trasound video because of the viewer’s chance of detecting a missed
event later. CycleStack Plot also can help users detect the opposite
events within a more precise range around the actual time step of
occurrence.

5 LIMITATION

This section discusses the known limitations of CycleStack plot and
our current method of evaluation, followed by potential improve-
ments and possible extension of the technique to other application
domains.

Limitations of the CycleStack algorithm include the following.
First, layout of the CycleStack depends on the segmentation of the
signal (see Section 3.2). The two-threshold segmentation scheme
that has been used in our case study is parameter-dependent. Hence,
to ensure correct result, tuning of the two thresholds which are the
parameters is crucial and requires extra effort by the user. The al-
gorithm may occasionally fail to segment a cycle even after choos-
ing parameters carefully. One example is the long cycle brick in
Figure 11 (a), which is clearly seen to have contained two cycles.
Furthermore, the current segmentation scheme is designed mainly
for respiratory signal which is of sinusoidal nature. More robust
segmentation, such as scale-space analysis for time series [7], thus
should be studied for accurate segmentation of various types of sig-
nal. Meanwhile, currently only movements along a line are sam-
pled, thus requiring deeper study on more flexible sampling for
other applications. Finally, CycleStack plot can only display pe-
riodic patterns from two inputs (the movement trace image from
the video and the respiratory signal from the patient in our case).
In order to visualize multivariate time-varying data with a similar
technique, some way of displaying more than two inputs at a time
is needed.

The user interface has scopes of improvement as well. For in-
stance, with more and more cycle bricks accumulating on the stack,
the height of each brick continues to shrink. Currently our inter-
face allows the viewer to zoom in or drag the CycleStack plot to
focus on a region of interest which might have already become too
small to be clearly visible. As an improvement, we can either refine
our layout scheme, such as deleting the earliest cycles to reuse the
space for new cycles, or add more flexible user interaction widgets
in the future. For example, The user can be given the right to assign
different weights to all or to the important cycle bricks on-the-fly
so that they maintain a desired height and aspect ratio.
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To evaluate our proposed method, we have performed a user
study which also has room for improvement. Since the current
version of CycleStack plot is primarily designed to be applied in
ultrasound-based treatment methods, a user study with trained op-
erators will be performed in near future to obtain the real users’ un-
derstanding of the problem and their feedback about the interface.
In addition to comparing our technique with the conventional way
of watching video and signal together, CycleStack plot also needs
to be evaluated with reference to other time-series data visualization
techniques to understand its effectiveness in revealing patterns and
anomalies in a more precise manner. Besides, more real ultrasound
videos should be collected and tested.

6 CONCLUSION

In this paper, we have proposed an effective visualization algorithm
called CycleStack Plot which can benefit the medical professionals
who deal with variety of ultrasound-based treatment methods. In
general, by superimposing the movement of an object of interest
in a video onto a signal, CycleStack allows the viewer to under-
stand the underlying synchronism between the two, and organizes
the individual plots in an aligned layout so that any deviation from
the synchronism becomes evident. In the context of medical ap-
plications, the visualization helps analyze the relation between the
periodic movement of the affected body part and the patient’s res-
piratory signal.

In the future, our main focus will be to verify the benefit of Cy-
cleStack Plot by having it employed in an actual medical system.
Collecting comments and feedback from the operators of such a
system is going to be a necessary step to improve the interface. Be-
sides, to see if the use of CycleStack Plot has positively influenced
the success rate of the treatment over a considerable period of time
can be an indirect way of evaluating its effectiveness.
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