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Abstract—We introduce a novel implicit representation for 2D and 3D shapes based on Support Vector Machine (SVM) theory. Each

shape is represented by an analytic decision function obtained by training SVM, with a Radial Basis Function (RBF) kernel so that the

interior shape points are given higher values. This empowers support vector shape (SVS) with multifold advantages. First, the

representation uses a sparse subset of feature points determined by the support vectors, which significantly improves the

discriminative power against noise, fragmentation, and other artifacts that often come with the data. Second, the use of the RBF kernel

provides scale, rotation, and translation invariant features, and allows any shape to be represented accurately regardless of its

complexity. Finally, the decision function can be used to select reliable feature points. These features are described using gradients

computed from highly consistent decision functions instead from conventional edges. Our experiments demonstrate promising results.

Index Terms—Shape matching, 2D and 3D representation, support vector machines

Ç

1 INTRODUCTION

THE shape of an object represents the geometrical
information that is independent of the transformational

(scaling, rotation, articulation, etc.) effects. Understanding
shape is essential in many computer vision applications, from
recognition of people and their actions in video surveillance
to design and inspection in industrial manufacturing [6], [28].

Recent psychophysical findings [54] suggest that the
perceptual representation of a shape is primarily based on
qualitative properties whose topological structures remain
relatively stable over transformational conditions. Other
empirical studies [29], [44] have shown that the neural
processing of shape in the brain is broadly distributed
throughout the ventral (what) pathway that is involved in
object recognition and the dorsal (where) pathway that is
involved in spatial localization. In other words, an adequate
mathematical representation of shape needs to be invariant
to viewpoint changes and articulated object motion and
discriminative enough to enable detection and classification.

Two main approaches dominate previous work on shape
representation: Global approaches model an object as a
whole segment, while part-based approaches advocate
segmentation of shape into constituent regions. The draw-
back of a purely global approach is the exclusion of
articulation and sensitivity to occlusion. The drawback of a
purely part-based approach is that a consistent partitioning is
generally not possible in the face of numerous combinations

of possibilities and object shape variations. Besides, segmen-
tation itself is ill-posed, except under controlled environ-
ments or in restricted application domains.

Global models cover a wide range of methods. Promi-
nent global shape representations include variational [11]
and level set approaches [45], [39]. These approaches have
been applied for scene segmentation [13] and tracking [46],
[48]. Brookstein initiated the use of thin-plate splines [8] to
analyze deformable shape, which were then improved by
[9], [10]. These methods are landmark based and suffer
from inconsistency in landmark selection. Wang et al. [59]
fit a parametric model to a shape using mixture of Gaussian
densities. This method requires a clustering process to
estimate cluster centers and therefore has the same draw-
back as other landmark-based approaches. Gorelick et al.
[22] assign every internal point of the silhouette a value
proportional to mean time of random walk from the point
to the boundary. This can be achieved by solving a Poisson
equation. Other popular methods are statistical moments
[41], eigenshapes [23], curvature scale space [1], elastic
matching [3], parametric curves (polylines), image signa-
tures, etc. Zernike moments are a class of orthogonal
moments that are invariant to rotation and translation.
Eigenshapes decompose a distance matrix of boundary
points into an ordered set of eigenvectors and finds the
modes of these eigenvectors. Elastic matching evaluates
the similarity as a sum of local deformations needed to
change one shape into another. Scale space representation
successively smooths to the contour while decreasing the
number of curvature zero crossings. In general, global
models need additional mechanisms to compensate for
articulated motion and nonrigid deformation.

In comparison, part-based approaches describe shapes in
terms of their part structure. Parts are defined to be nearly
convex shapes separated from the rest of the object at
concavity extrema [31], [32], [33], [37]. It is possible to build
a discriminative classifier from a collection of parts [24] or a
bag of feature to solve correspondence [5]. These methods
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often require a multitude of training samples, prior knowl-
edge on the number of parts, and precise formulation of
articulation. Other part-based methods try to learn the part
structure by considering the shape interior. For instance,
shock graphs [51] are defined as the cyclic tree of
singularities of a curve evolution. The inner distance [35],
geodesic distance [25], and random walk [21] also consider
the interior of the shape to build descriptors. Given a pair of
points, the inner distance is determined by finding their
closest points on the shape skeleton, then measuring the
distance along the skeleton. The geodesic distance is the
length of the shortest path on the surface, while shock
graphs benefit from the skeleton’s robustness to articula-
tion, they suffer from boundary noise. The inner and
geodesic distances are robust to disturbances along bound-
aries, yet they are highly sensitive to occlusions and
fragmentations. Recently, Flach and Schlesinger [18] pro-
posed Gibbs Random Fields to model shapes as spatial
compositions of simple parts.

Pioneering work on the spin image [27] describes the
relative spatial distribution of shape points around a set of
feature points. It considers a cylindrical support region and
accumulates a histogram of points. The shape context (SC)
[4], [19] is similar to the spin image except that the support
region is a sphere. Since both generate sparse matrices, the
distance computation is sensitive to the shape structure. In
[7], each shape is indexed based on a variety of features,
such as inner distance, euclidean distance, contour distance,
etc., that characterize pairwise geometric relationships
between interest points on the shape. Shapes in the database
are ordered according to their similarity to the query shape
and similar shapes are retrieved using a scheme which does
not involve shapewise alignment.

The above methods provide satisfactory results under
ideal conditions with strong priors and clean segmentation
masks. Their representation capacity substantially degrades
when the shape boundary is noisy (part-based methods,
shock graphs), the shape has internal crevices, branching
offshoots, and excessive discontinuities (inner distance, spin
images, shape context), and nonconforming articulations
(global models). Besides, they would not necessarily extend
to higher dimensions or generalize over most shape classes.

Quite differently from existing approaches, we propose a
novel implicit shape representation based on Support Vector
Machine (SVM) theory. Each shape is represented by a
classification decision function obtained by training SVM
with interior and exterior shape points providing positive
and negative training samples, respectively. The radial basic
function (RBF) kernel is used with SVM to make our
representation rotation and translation invariant. The
decision boundary is a hypersurface on the high-dimen-
sional feature space that separates the positive labeled
points, shape, from the negative labeled points, its surround-
ings. Our shape representation is not just the shape
boundary or the decision function boundary but the function
itself. Instead of using the edge or surface gradients on a
discrete grid, we use the gradient of the classification decision
function, which is an analytic function that is defined
everywhere in the data space. Furthermore, the use of the
RBF kernel enables SVM to model any complicated shape

due to the infinite dimensional nature of the associated

Hilbert space. Several other advantages are explained in the

following section.
To summarize the main contributions, this paper

. proposes a novel method to represent 2D and 3D
shapes using support vector classifiers,

. provides an in-depth theoretical analysis for a better
understanding of this representation, and

. presents a variety of detailed experimental results to
evaluate its performance on challenging datasets.

Section 2 introduces the SVS and explains in detail the

SVS representation, choice of classification algorithms, and

their stability and robustness properties. Sections 3 and 4

present alternative ways of selecting feature points and

constructing local descriptors. Experimental results on

several benchmark datasets are presented in Section 5 for

2D shapes and Section 6 for 3D range images.

2 SUPPORT VECTOR SHAPE

We define the SVS representation to be the decision

function of a classifier. The name SVS comes from the fact

that the decision function is parameterized by a set of

support vectors that is learned from Support Vector

Machine. Throughout the paper, the terms “SVS” and

“decision function” are used interchangeably. This repre-

sentation facilitates the extraction of feature points that

correspond to salient components of the shape, which are

then described using local statistics of the decision function

around each point.
To the best of our knowledge, we are the first to consider

the shape representation as a classification problem. This

classifier-based representation offers several advantages.

First, it is general enough to be applied to 2D shapes and 3D

volumes. Second, the classification function depends only

on a sparse subset of key points, which makes the

representation robust against noise, missing data, and other

artifacts, including interior fragmentations. Finally, the

descriptors are also more discriminative and stable against

transformation and disturbances than edge-based descrip-

tors [27], [61], [35] since they are extracted from the dense

gradient field of the decision function but not from the

original data.
Basically, SVS involves the following tasks:

1. learn a decision function from a given shape,
2. select feature points using the gradient, i.e., the first

derivative, of the decision function. (Section 3),
3. compute local descriptors (Section 4),

which are explained in the following sections.
As will be clear, SVS enables selecting a small set of

salient features for shape matching and retrieval. These

features are described using local statistics of the decision

function around each point. For instance, a 2D variant of

SVS features picks the high gradient points of the decision

function as the feature points and uses the local histogram

of oriented gradients (HOG) computed on the decision

function as the descriptors.
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2.1 Learning a Decision Function

Let S ¼ fxngNn¼1 be a set of points representing a shape1 and
�S be the set of points not in S, i.e., outside. We wish to learn
a classifier

fðxÞ ¼ � 0; x 2 S
< 0; x 2 �S:

�
ð1Þ

Two classifiers, fðxÞ and gðxÞ, are said to represent the
same shape if

sign½fðxÞ� ¼ sign½gðxÞ� ¼ � 0; x 2 S
< 0; x 2 �S:

�
ð2Þ

The following theorem states that if the binary shapes
generated by taking the zero-level crossings of these
classifiers are equivalent (as in 2) to each other, then the
decision functions are equivalent with a constant factor.

Theorem 1 (Curtis and Oppenheim [15]). Let fðxÞ and gðxÞ
be real, 2D, band-limited, and irreducible functions. If fðxÞ
and gðxÞ take on both positive and negative values in a closed-
bounded region D � IR2 and sign½fðxÞ� ¼ sign½gðxÞ� for all x
in D, then fðxÞ ¼ �gðxÞ, where � is a real positive constant.

Here, irreducible function means that its Fourier transform
is not factorable. The band-limited condition implies the
Fourier transform will exist and it will have a compact
region of support for finite-energy signals (interested
readers are referred to [53] for further discussions on
band-limitedness condition).

The above theorem suggests that the gradient orientation
is equivalent for such two functions satisfying the above
constraints. In other words, two decision functions repre-
senting the same shape will be consistent and exhibit
invariance properties in terms of their gradient orientations
if these functions are real, 2D, band-limited, irreducible, and
have almost identical responses.

One such example is the radial basic function that
support vector machine [58] operates on. It is real and band
limited: It has the form of the sum of finite number of
weighted exponential; thus, its Fourier transform is a sum
of weighted exponentials, which has finite energy and a
compact region of support especially when insignificant
coefficients of the radial kernels are disregarded. A theorem
for the irreducibility of the general class of functions
including the RBF kernel is given below, with the proof in
Section 7.

Theorem 2. A function of the following form:

fðxÞ ¼
Xm
i¼1

�igðx� x�i Þ; m � 5; ð3Þ

is irreducible if the Fourier transform of gðxÞ does not have any
zero (either real or complex).

For an ideal shape classifier as defined in (1), the decision
function is positive for the shape regions, zero on the shape
boundary B, and negative otherwise. In other words, the
gradient of the decision function along the tangent space of a
point on the boundary B is zero (see Fig. 1). This means that

the gradient of the decision function must be perpendicular
to the tangent plane; thus, the gradient itself coincides with
the normal vector of the shape.

Proposition 1. Gradient rfðxÞ at a shape boundary point is a
close approximation for the normal vector at that point.

This property is very desirable for SVS since the normal
direction is an essential input for the construction of many
descriptors [4], [16], [27]. It is especially useful for comput-
ing descriptors from 3D point clouds where the knowledge
about points orientations is missing.

Moving from the boundary B to the interior of shape, the
gradients rfðxÞ result from combining effects of local edge
segments. This effectively creates fusions of local topologies
that enhance the discriminative power of local descriptors
(Section 4).

We are interested in representing a shape by a contin-
uous function that has the mathematical form of (3) and at
the same time satisfies (1) as much as possible. Notice that
the class of functions in (3) contains the decision function of
SVM with the RBF kernel [50], [49]. Therefore, we employ
SVM to learn our parametric shape representation. To our
advantage, the SVM decision function is analytic, i.e., it is in
the form of weighted sum of kernel responses; thus, its
gradient can be efficiently computed at a point in the space.
Furthermore, the RBF kernel functions can effectively map
data xn to an1-dimensional space where S and �S would be
linearly separable; thus, even for intricate boundaries, a
high classification performance, and therefore accurate
shape representation, is guaranteed.

SVMs construct a hyperplane in a high (or infinite)-
dimensional feature space between a set of labeled input
vectors x that can be either þ1 for shape pixels or �1 for
nonshape pixels by definition for binary SVMs. The
decision boundary is defined in terms of a typically small
subset of training examples, called support vectors, that
result in a maximum margin separation between these
classes. The decision function of SVM is given as

fðxÞ ¼
Xm
i¼1

�i½�ðxÞ:�ðx�i Þ�; ð4Þ

where x�i are support vectors, �i are the corresponding
weights of the support vectors, m is the number of nonzero
support vectors, and � is a mapping function in some dot
product space H. By defining a similarity measure k in H as

kðx;x�i Þ ¼ �ðxÞ:�ðx�i Þ; ð5Þ

every dot product in the decision function is replaced by a
kernel function. This allows efficient computations without
having to venture into the high-dimensional feature
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1. We denote vectors in bold letters.

Fig. 1. Illustration of SVS decision boundary. The dotted line is the
tangent space.



space H. The transformation may be nonlinear; thus,
though the classifier is a hyperplane in H, it may be
nonlinear in the original input space. If the kernel used is a
Gaussian, the corresponding feature space is a Hilbert space
of infinite dimension:

�ðxÞ:�ðx�i Þ ¼ exp
�
� �kx� x�i k

2�; ð6Þ

where � stands for the Gaussian kernel width. By using the
RBF, it is always possible to find a decision function that
perfectly represents a shape. Such a decision function has
the form:

fðxÞ ¼
Xm
i¼1

�i exp ��kx� x�i k
2

� �
ð7Þ

and the final classification is made by lðxÞ ¼ sign½fðxÞ�. It is
worth noting that the set of support vectors is usually small
in comparison with the entire training set.

Since the decision function in (7) only depends on the
distance between points, the SVS representation is robust to
translation and rotation.2 This can be observed from Fig. 2
which shows that the gradient directions computed from
SVS decision functions of transformed versions of the same
shape are almost the same.

Furthermore, the � multiplier in the kernel function is
inversely proportional to the squared scale change. For a
given shape with unknown scale change from its original,
the mean of pairwise distances between all points can be
used to normalize the shape. This scale normalization
technique has been used in shape context [19] and has been
proven to be effective. In addition, our analysis demon-
strates that small variations of � would not perturb the best
possible classification accuracy.

For training, we select a random subset of internal points
to be positive training samples from a given shape. Another
random subset of points surrounding the shape is chosen to
be negative samples. Random selection is preferred just for
computational efficiency. The input to the classifier is the
coordinates and the corresponding inside/outside labels of
the training points.

Fig. 3 shows support vectors and decision boundaries for
a sample shape. It can be noticed that support vectors are
not required to lie on shape edges. This is because the
kernel is mapping data to the high-dimensional space,
where nonedge points might happen to lie on the decision
boundary of the learning algorithms. The number of
support vectors typically varies from 0.1 to 3 percent of
the total number of points.

2.2 �-SVM and One-Class SVM

We employ �-SVM [50] and one-class SVM [49] for learning
the decision function as its parameters have a natural
interpretation for shapes. Given a set of labeled samples
ðxi; yiÞ, the learning problem of �-SVM is formulated as the
minimization of

arg min
w;�;�

1

2
kwk2 � ��þ 1

l

Xl
i¼1

�i ð8Þ

subject to

yi:ðw:�ðxiÞ þ bÞ � �� �i; ð9Þ

�i � 0; � � 0; ð10Þ

where � is a function that maps the input data to some
Hilbert space. The above optimization tries to correctly
classify as many data as possible by penalizing the
misclassified samples through variable �i. At the same
time, the minimization of kwk keeps the model as simple as
possible, and the margin is made as large as possible
through maximization of variable �.

The tradeoff between the model complexity and the
training error is controlled by parameter � 2 ½0; 1�. It is
also the lower and upper bound on the number of
examples that are support vectors and lie on the wrong
side of the hyperplane, respectively. The larger (smaller)
we make �, the more (less) points are allowed to lie inside
the margin, which gives coarser (finer) shape representa-
tions. It is possible to use a small value which results in a
larger number of support vectors to allow accurate
representation of complex shapes, while smaller numbers
of support vectors enhance the robustness against cor-
rupted training data.

The formulation and parameters of one-class SVM is
similar with �-SVM. The only difference is that one-class
SVM allows learning from data with positive samples only.
It separates data from the origin in the feature space instead

VAN NGUYEN AND PORIKLI: SUPPORT VECTOR SHAPE: A CLASSIFIER-BASED SHAPE REPRESENTATION 973

2. Note that for linear and polynomial kernels such an invariance does
not apply as they impose inner products of point coordinates.

Fig. 2. The orientation of rfx remains stable even if the shape
transforms. A different set of parameters and points is used to train the
SVS on the right.

Fig. 3. Support vectors (red circles �i > 0, blue circles �i � 0), the
decision function boundaries fðxÞ ¼ 0 (yellow), and the original shape
(green) for support vector numbers 25, 44, and 61. Classifier accuracies
are 93, 97.2, and 99.8 percent, respectively. The original shape contains
� 54K points (� 1K points on the boundary), yet only a small fraction
(e.g., 61) of points are needed to encode the shape.



of separating positive samples from negative samples. This
becomes extremely useful to deal with missing data due to
occlusion and camera sampling error.

The selection of parameters for SVM algorithms
(e.g., kernel width � of (6), error margin � of (8)) is done
automatically by imposing a constraint on the cross-
validation accuracy. Specifically, we divide the data points
into two subsets, one for training and another one for
testing. We then perform cross validation and select the set
of parameters that produce a classification accuracy higher
than 99 percent. Note that if heavy occlusions are present,
we allow the classification accuracy to be lower.

Fig. 4 illustrates the robustness of SVS representation
under different noise effects. In particular, we compare the
color-coded response of the decision functions for a car
shape and an A-letter shape before and after being
distorted. As for the car, we randomly remove pixels from
the shape and also add noise to the background. The
A-letter shape is interwoven with white spaces to create
distortion of the shape boundary. For both cases, it can
be seen from Fig. 4 that the color-coded responses, and thus
the associated decision functions, remain quite stable.

From the computational perspective, SVS complexity is
essentially the same with that of SVM algorithms. In
general, it is polynomial in the number of input points. In
our experiments, it takes about 0.15 seconds to compute
SVS for a shape in the MPEG7 dataset [30] using a 2.4 GHz
Quad Core machine. The learning process can be signifi-
cantly sped up using approximate variants of SVM [26],
[55]. The query of the decision function is very efficient. It is
linear in the number of support vectors, which is a small
fraction of the total number of points (e.g., 1 percent). In
addition, it can be accelerated by two orders of magnitude
[12] using statistical approximations.

3 SVS FEATURE POINTS

Shape matching algorithms using SVS representation are
comprised of two constituents: feature (interest) points and
their descriptors. This section discusses possible ways of
selecting the feature points. All these methods are based on
the previously explained decision function fðxÞ.

The feature points are desired to be stable under local
and global shape perturbations (including affine transfor-
mations and articulated motion) as well as noise and other
artifacts. Such feature points should be reliably computed

with high degree of reproducibility. In addition, the local
descriptors computed at these feature points have to be
discriminative enough for reliable shape matching and
registration; therefore, structure around the feature points
should be rich in terms of local information content. In what
follows, we will elaborate on different possibilities of
selecting good feature points for SVS representation.

3.1 Gradient-Based Feature Points

A corollary of Theorem 1 is that the gradient orientation is
stable while gradient magnitude differs only by a constant
factor. The gradient orientation is given by

rfðxÞ
krfðxÞk ; where ð11Þ

rfðxÞ ¼ 2�
Xm
i¼1

�i exp
�
� �kx� x�i k

2��x�i � x
�
: ð12Þ

To evaluate the stability of the gradient orientation, we
randomly choose a set of 500 points on each of 70 SVSs
created from different shapes in the MPEG7 database [30]
and examine their gradients as the training parameters
ð�; �Þ vary (� by 6	 and � by 10	 with respect to the
smallest value of each parameter). Note that each different
parameterization may generate a different decision function
in magnitude; however, we are interested in how the
direction of the gradient of the decision function changes.
Therefore, to account for the multiplication factor of the
decision function, we normalize the decision function
values by their mean value yielding relative magnitudes.

Fig. 5 shows how the standard deviation of gradient
direction changes with respect to the relative gradient
magnitudes for 500 points from one of the 70 SVSs. One can
easily notice that the gradients vary with respect to the
training parameters. This is because large variation of the
training parameters ð�; �Þ results in different classification
functions that do not strictly satisfy the condition sign½fðxÞ� ¼
sign½gðxÞ� as in Theorem 1.

However, the variation exhibits a strong dependency on
gradient magnitude. The higher the gradient magnitude
gets, the smaller the standard deviation is. For points with
gradient magnitude of more than two, the standard
deviation, which directly corresponds to direction changes,
is as small as 4 degree. Note that in practice the variation
should be smaller than what we see in Fig. 5 since the
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Fig. 4. Comparison of the decision function responses for noise-free and noisy shapes. In the first experiment, a car shape is distorted by randomly
removing 20 and 50 percent of points and adding speckle noise to the background. In the second experiment, the letter A is interleaved with blank
spaces. The differences of decision function for both cases are hardly noticeable. They are both trained using one-class SVM.



constraint of high classification accuracy implicitly requires
a consistent set of parameters ð�; �Þ.

Since the gradient orientation is stable especially for
higher gradient magnitude points, we choose a small subset
of such points for matching. We apply an iterative search
method that finds the maximum gradient magnitude point
on rfðxÞ until it selects 100 points and build a list by
ordering them according to their angles from the center of
the shape in a circular fashion. The starting (0 degrees)
orientation of circular sweep is set with respect to a
dominant gradient direction of rfðxÞ.

Severe occlusions or distortions might lead to change of
the dominant gradient directions. In such a scenario, we
allow the generation of multiple sets of descriptors
corresponding to different tentative orientations. During
the shape matching phase, the distance between two shapes
is the smallest matching cost among all the orientations.
Fig. 6 shows the selected feature points for a sample shape.

3.2 Support Vector-Based Feature Points

The support vectors are sufficient to construct the decision
function and its gradient; thus, they are good candidates for
feature points.

One can ask whether the set of support vectors enable
reliable shape matching. The answer to this question largely
depends on the problem at hand. For nonarticulated
transformations, the support vectors remain stable. In
Fig. 7, we show that support vector locations are quite

stable when the kernel width varies 2	. Constraining the
classification accuracy to be sufficiently high (e.g., 99 per-
cent) and preventing the kernel width from changing too
much would produce similar support vectors. Yet, if the
kernel width changes too much, e.g., 20	, support vectors
change significantly, as in Fig. 3. Besides, the support vectors
are sensitive to shape articulations due to the topology
changes, as illustrated in Fig. 7 bottom pair.

3.3 Curvature-Based Feature Points

It is possible to select points with high curvature on SVS by
looking at the Hessian matrix of a decision function. More
specifically, for the 2D case, we first solve the eigenvalues of
the Hessian matrix, which is proportional to curvatures:

H ¼

@2f

@x2
1

@2f

@x1@x2

@2f

@x1@x2

@2f

@x2
2

2
664

3
775 ¼ Q

�1 0
0 �2

� �
Q�1: ð13Þ

Points with high curvatures associate with large eigenva-
lues of both dimensions (�1, �2). We randomly sample
200 points to compute curvatures. Feature points are chosen
where the first eigenvalue �1 and the second eigenvalue �2

are larger than the median of �1 and �2, respectively. To
mitigate noise effects, the decision function can be
smoothed at different scales before computing curvatures.
Gaussian smoothing of the decision function (7) is a mixture
of Gaussian functions, which can be computed efficiently
with a closed-form expression.

An advantage of this selection scheme is that local
descriptors are highly discriminative. For instance, SIFT can
be computed to find pointwise correspondences for align-
ing two similar shapes. However, this point selection
method is not appropriate for shape matching. For example,
choosing only those points around corners makes it
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Fig. 6. Decision function responses (left) and the gradient magnitude of
the decision function (right) for the SVS representing the Stanford
Bunny. Points with higher values in rðfxÞ seem to be good candidates
to be selected as discriminative feature points. Black circles are the 51
feature points (102 support vectors).

Fig. 7. Stability of support vectors with respect to variation of RBF kernel
width (�) and articulation. Top: Support vectors when � varies. � ¼
0:0027 in the first shape and � ¼ 0:0054 in the second shape. Sixty-two
out of 78 support vectors in the first shape appear in the second shape.
The overall positioning of the support vectors is very similar. Bottom:
Support vectors with shape articulation. Blue circles indicate SVs that do
not have correspondences on the other shape. Eighty-three out of 114
SVs in the first shape appear in the second shape.

Fig. 5. The relative gradient magnitude at a point is computed by dividing
its gradient magnitude by the mean of gradient magnitude across the
entire shape.



impossible to differentiate a rectangle from a square. This
disadvantage arises for shapes characterized mainly by
their dimensions and shapes characterized by the arrange-
ment of similar local structures. Another disadvantage of
this method is the difficulty of computing curvatures when
generalizing to higher dimension.

3.4 Entropy-Based Feature Points

Another possibility is selecting a small subset of points
whose local gradient orientation have high entropy. To
compute this entropy, we first create a histogram of
gradients over the local window of size 0:25	 0:25 (with
respect to mean pairwise distances). The entropy is then
computed as follows:

�
Xn
i¼1

pilog2ðpiÞ; ð14Þ

where pi is the weight of the ith bin and n is the number
of bins in the histogram. High entropy is equivalent to
high variation of gradient orientations. Therefore, it is a
good indication of complex local topologies of SVS, and
thus more discriminative local descriptors. This strategy
has similar philosophy as the high-curvature selection
method. However, it does not involve the computation of
principal curvatures, which can be difficult for higher
dimensional cases.

4 SVS DESCRIPTORS

SVS facilitates the computation of a set of descriptors
extracted from the decision function. Below, we give only a
few examples of possible descriptors for 2D and 3D data.

4.1 Two-Dimensional Descriptors

We compute a local histogram of oriented gradients
descriptor around each of the points on the decision function
gradient rf but not on the conventional edge gradient; thus,
our HOGf is significantly different from the existing
descriptors.

For a given feature point, a 4	 4 array of eight-bin
orientation histograms is constructed within a local win-
dow. The size of the window is set to be 0:25	 0:25 (relative
with respect to mean pairwise distance). Our experiments
indicated that this size provides satisfactory results for both
very coarse and fine shapes. A histogram is populated for
each subblock by aggregating the gradient magnitude of the
decision function into the corresponding orientation bin of
the gradient direction of the decision function.

Since gradients with larger magnitudes are more stable,
the contribution of each gradient to the histogram is set to
be proportional to its magnitude. We impose a Gaussian
kernel to weight gradients based on their relative distances
with respect to the feature point. This spatial weighting
puts more emphasis on the gradients that are closer to the
center and helps improve the discriminative power of the
local descriptors.

To prevent problems due to the coarse binning issues,
the value of each gradient point is interpolated into adjacent
histogram bins. Finally, the mean of gradients for the local
window is taken to be the orientation of the descriptor and
the histogram bins are reoriented accordingly with respect

to this mean orientation to achieve the rotation invariance of
the descriptor. The histograms are then concatenated into a
128-dimensional vector.

Fig. 8 shows a comparison of the Inner Distance Shape
Context descriptors (IDSC) [35] with the SVS descriptors for a
pair of images where one contains irregularity in the shape
(assuming that, even after some morphology, such artifacts
remain). The inner distance responses change drastically,
while the descriptors computed from SVS stay very robust.
Fig. 9 demonstrates the strength of the SVS descriptors even
for very noisy data (note that fitting an outer shell,
morphological filtering, etc., would not help for this shape
as the noise is dispersed into the background). In this case,
we compare with Shape Context since IDSC will not work
due to the disconnected interior. To the best of our knowl-
edge, there is no other representation that can give such a
robustness that SVS provides for heavily noisy and dis-
connected data. For all of the experiments presented in Figs. 8
and 9, we use one-class SVM to learn the decision functions.

4.2 Three-Dimensional Descriptors

Concentric Ring Signature (CORS) [2] is used as the
descriptor for our 3D feature points. CORS is constructed
in a circular fashion around a center point. Each point is
projected onto a fitted plane. The orthogonal distances are
indexed by rotation angles and radial distances. The
advantage of CORS over other 3D descriptors, e.g., the
spin image proposed by Johnson and Hebert [27], is that it
is more compact and discriminative. Another advantage is
that CORS computation can be accelerated if points are
oriented. Since SVS provides each point cloud with a stable
orientation of the decision function, it allows the efficient
construction of CORS descriptors.
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Fig. 8. Comparison of IDSC with the SVS computed at four locations
indicated by square dots on the shapes. Descriptors are displayed from
left to right corresponding to the following order of dots’ colors: red,
yellow, green, and cyan. The second image has a crack in the shape.
IDSC changes drastically (it highly depends on the boundary), while the
SVS remains robust generating almost the identical descriptors. Box
color indicates the severity of the mismatch: green (< 20 percent),
orange (20! 50 percent), red (> 50 percent).



5 EXPERIMENTS IN 2D

For our experiments, we need to establish the distance
between two shapes. Given two SVS decision functions
fAðxÞ and fBðxÞ, for shapes A and B, respectively, we
compute a distance score between their descriptors.

As we explained before, since the feature points are
already ordered with respect to the dominant gradient
direction, initial alignment for the shapes with similar
overall structures is almost accurate. Next, we use the local
descriptors for comparison of two shapes. The advantage of
using local descriptors is that they are robust against
occlusion and shape articulation.

Let two sets of the descriptors for two shapes A and B be
�A : f�A1 ; �A2 ; ::�At g and �B : f�B1 ; �B2 ; ::�Bs g, where t does not
have to be equal to s assuming t � s. The correspondence is
established through a mapping function h such that
h : �B ! �A. If a descriptor �Bi is matched to another �Aj ,
then hðiÞ ¼ j. We define a cost function as

EEEEðhÞ ¼
X

1�i�s
	ðhðiÞ; iÞ; ð15Þ

where the descriptor distance is computed using 
2 statistic:

	ðhðiÞ; iÞ ¼
X

1�k�128

	
�AhðiÞðkÞ � �Bi ðkÞ


2
�AhðiÞðkÞ þ �Bi ðkÞ

: ð16Þ

This cost represents the overall distance for the correspond-
ing pairing of the descriptors. Note that the mapping h is
neither one-to-one nor overlapping, but keeps the ordering
of the descriptors.

To minimize EEEE, we use dynamic programming to find
the solution to (16). It is worth noting that the start points
and the end points of two sequences are already roughly
aligned for the dynamic programming algorithms to

converge to the correct solution. Under certain conditions,
the initial alignment provided by the ordered lists may not
be valid. To overcome this, we find and compensate for the
angle that maximizes the correlation between two “global”
histogram of oriented gradients, which are defined as
HOGf yet computed for the entire shapes, of two given
shapes before minimizing the above cost function.

We run the first set of experiments on the entire MPEG7
shape benchmark dataset [30], which has 70 classes and
20 shapes for each class, a total of 1,400 images. The
performance is measured by the standard Bullseye test. For
each shape, the retrieval accuracy is measured by counting
how many of 20 correct shapes are in the top 40 matches.

For the gradient-based method, we apply an iterative
search method that finds the maximum gradient magnitude
point on rfðxÞ until it selects 100 features. In the entropy-
based feature selection method, 200 points are randomly
selected in each shape where HOGf descriptors and their
entropy are computed. Points associated with entropy
larger than 1.5 times the median of overall entropy value
are selected for matching. In the curvature-based method,
we also randomly sample 200 points to compute curva-
tures. Feature points are chosen where the first
eigenvalue �1 and the second eigenvalue �2 are larger than
the median of �1 and �2, respectively. For the support
vector-based method, we randomly select half of the
support vectors set as feature points for shape matching
(we observed that using only the most significant support
vectors in fact deteriorates the performance).

Table 1 gives the correct retrieval percentages for four
feature point selection methods (gradient based, support
vector based, curvature based, and entropy based) pre-
sented in Section 3. Results indicate that the gradient-based
method produces more consistent feature points and better
matching performances. We also compare our perfor-
mances with HOG computed on the edges gradients
(30.25 percent) to verify that SVSs improve the discrimina-
tive power of our descriptors. Edge gradients are commonly
used to extract feature points for 2D shape representation.

As in Table 1, the best overall accuracy on the MPEG7
dataset using the Bulleyes test is 91.07 percent, which is
based on the gradient-based feature selection method. This
is better than the performances of SC [4] (76.51 percent),
IDSC [35] (85.40 percent), the post-refined version of [7]
(86.48 percent), and shape tree [17] (87.70 percent), as
summarized in Table 2. The best performance, 93.67 per-
cent, is reported in [20]; however, their part-based
algorithm is highly sensitive to segmentation errors
especially for noisy data. A matching scheme [60], which
takes into account the influence of the other shapes while
computing the similarity of a pair of shapes, has reported
an accuracy of 93.32 percent. SVS can be effectively used as
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TABLE 1
Comparison of MPEG7 Classification Results Using Four

Different Feature Point Selection Methods in Section 3 Based
on Gradients, Support Vectors, Curvatures, and Entropies

The last column shows the baseline classification result when gradients
are computed from edges instead of SVS.

Fig. 9. Comparison of shape context with the SVS computed at four
locations, indicated by square dots on the shapes. Descriptors are
displayed from left to right corresponding to the following order of dots’
colors: red, yellow, green, and cyan. Box color indicates the severity of
the mismatch: green (< 20 percent), orange (20! 50 percent), red
(> 50 percent).



the shape representation in [60]. Fig. 10 shows sample

retrieval results in descending order of matching scores

using the gradient based features.
We also investigate the tradeoff between the model

complexity and the classification performance by varying

the number of feature points from 10! 300. The results are

summarized in the Table 3. In general, more feature points

would yield better accuracies. However, it can be noticed

that the classification accuracy suffers slightly when going

beyond 100 features. This is because a large number of

features inevitably leads to less-discriminative interest

points being selected, therefore negatively interfering with

the shape matching algorithm.
In the second experiment, we pick a subset of six shape

classes (eight samples per class) from the MPEG7 database

and add random distortions into them. The performance is

measured by counting how many of eight correct shapes

appear in the first 16 matches for each shape. Instead of

using �-SVM algorithm like in the first two experiments, we

use one-class SVM for this experiment since it produces

better retrieval results. In addition to classification using
SVS and IDSC, we zero threshold our SVS representations
to reconstruct the original binary shapes. These binary
shapes are then used as the input for computing IDSC. We
call this scheme denoised IDSC.

The overall performance of IDSC is 57.0 percent, while
the SVS method, using gradient-based feature points, gives
93.7 percent, as given in Table 4. Besides, Table 4 shows that
denoised IDSC (85.9 percent) performs significantly better
than IDSC. The result implies that our shape representation
provides some denoising effects over random distortions.
We also compare the performance of SVS when using the
bag-of-word approach (81.4 percent) instead of the dynamic
programming technique. Fig. 11 shows retrieval results for
both IDSC and SVS methods in descending order of the
matching scores. IDSC’s performance dramatically de-
grades on this database because artifacts within a shape
severely change the inner distances. Shape context and
other edge-based methods will also have the same issue. In
contrast, the SVS method invariably gives accurate retrieval
results thanks to classifier-based representation.

In the third set of experiments, we test our matching
algorithm with the gradient-based feature selection strategy
on the articulation database reported in [35]. This database
includes 40 images from eight objects with different
articulations, as shown in Fig. 12. This consists of highly
similar shapes like types of scissors with only minor
differences but significant articulations. The recognition
result is evaluated for each shape by choosing the four most
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Fig. 10. SVS results: Red circles show the incorrect matches. Note that none are in top four rankings.

TABLE 2
Comparison on MPEG7 Data Set

TABLE 3
MPEG7 Classification Results versus the Number of

Features Selected Using the Gradient-Based Selection Strategy

TABLE 4
Random Distortion Results on the Partial MPEG7 Dataset



similar matches and then sorting them according to their
matching scores. Table 5 summarizes the matching results.
We compare against the ‘2 distance on a bag of features, the
shape context, the inner distance with shape context, the
multiple feature indexing [7], and the layered graph
matching [34]. In this experiment, the SVS uses the
gradient-based feature point selection. It is apparent that
our method handles articulation as well as (even better for
later matches) IDSC, and much more accurately than the SC
thanks to the robust nature of the SVS feature point
selection and the locality of its descriptor.

6 EXPERIMENTS IN 3D

For many recognition and registration tasks, it is desirable
for features to be selected consistently at similar locations
on both target and model shapes. In the first experiment, we
examine the repeatability of our 3D/2.5D feature points
selection using the 3D Stanford shapes [14], [57]. The

database contains both full 3D shapes and their 2.5D range
images. Repeatability is the percentage of features which
are detected on the target shapes and correctly matched to
their associated locations on the 3D model shapes.

Similarly to 2D, we use one-class SVM to learn a decision
function for 3D/2.5D data using ðx; y; zÞ coordinates of
points. Features points are selected where entropy of local
HOGf is larger than a predefined threshold. In construction
of HOGf , rfðxÞ is computed at uniformly sampled points
within the local sphere. The sphere’s radius is set to be five
times the scanner resolution.

After selecting a subset of discriminative points, local
descriptors are computed for recognition and registration
tasks. We use CORS as the local descriptors since it is
compact, discriminative, and easy to compute. In addition, a
consistent orientation rf at each point enables efficient
approximation of CORS and reduction of computational
cost. Readers are referred to [2] for details on the construc-
tion and approximation of CORS descriptors.

Fig. 13 shows the repeatability scores obtained by our
method. Fig. 14 shows sample features matching between
two range scan images of the Buddha shape.

In the second experiment, we perform 3D objects
recognition and registration using the publicly available
database [42], which contains five objects and 50 scenes.
Our goal is to detect if there is any objects of interest in a
scene and register the full 3D shapes to any detected objects.
An object is said to be correctly detected if the resulting
errors of the translation and pose estimations compared to
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Fig. 12. Samples from the articulation database. Note that each column
corresponds to a different object.

TABLE 5
Matching Results on the Articulation Dataset

Fig. 11. Comparison of the retrieval results for the noisy dataset. The accuracy of IDSC is 57.0 percent and SVS is 93.7 percent. Red circles show
incorrect matches.

Fig. 13. Repeatability scores for feature selection using HOGf -entropy.

Two feature locations are similar if they are within the radius of five times

the scanner resolution.



the ground truth are smaller than 1/10 of the object’s

diameter and 12 degrees, respectively. These criteria are the

same as that of Drost et al. [16], therefore allowing the

comparison to their methods.
Similarly to the first experiment, we use one-class SVM

to learn SVSs for 3D point clouds using ðx; y; zÞ coordinates

of points. We adopt a bag-of-feature approach. In this

framework, CORS descriptors are computed from SVSs at

keypoint locations. Approximate k-NN is used to provide

tentative correspondences between 2.5D scenes and the 3D

objects. We use RANSAC to estimate the transformation

matrices. The full 3D shapes are then transformed into the

scene’s coordinates.
The algorithm acknowledges the presences of the objects

within the scenes if the number of overlapping points
between the scenes and the 3D shapes are more than a
threshold, where two points are said to overlap if their
distance is smaller than three times the scanner resolution.
The threshold is set to be 15 percent of the number of
points in the 3D shapes. A lower threshold triggers too
many false alarms and a higher threshold does not allow
the detection of many objects in the database with more
than 80 percent occlusion. Fig. 15 shows our detection
performance in comparison with the state-of-the-art. SVS
seems more robust for higher occlusion. Fig. 16 shows
sample recognition and registration results for the Chef
shape, Parasaurolophus shape, and T-rex shape.

7 PROOF OF SVM-RBF IRREDUCIBILITY

The decision function of SVM with RBF kernel has the

following form:

fðxÞ ¼
Xm
i¼1

�i exp
�
� �kx� x�i k

2�: ð17Þ

Fourier transform of the function is as follows:

Fð!Þ ¼
Xm
i¼1

�iFfexpð��kx� x�i k
2Þg

¼
Xm
i¼1

�iFfexpð��kxk2Þg expð�j!x�i Þ

¼
Xm
i¼1

�i

ffiffiffi
�

�

r� �n
exp ��

2

�
k!k2

� 

expð�j!x�i Þ

¼ �ð!Þ�ð!Þ;

ð18Þ

where n is the dimension of x and

�ð!Þ ¼
ffiffiffi
�

�

r� �n
exp � �

2

�
k!k2

� 

ð19Þ

�ð!Þ ¼
Xm
i¼1

�i expð�j!x�i Þ; ð20Þ

where n is the dimension of x. The Fourier transform of RBF

kernel obviously does not have any zero.
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Fig. 15. Comparison of the detection rates versus the percentage of
occlusions: for the spin image [27], tensor matching [42], Drost method
[16], and SVS-CORS.Fig. 14. Correspondences between two views of the Buddha range scan

images.

Fig. 16. Detection and registration results of the Chef, Parasaurolophus, and T-rex shapes. Yellow color represents partial scenes and green color
represents fully reconstructed 3D models. The average registration error is 0.86, 0.62, and 0.77 for the three scenes, respectively.



From now on, consider �ð!Þ as the Fourier transform of
an arbitrary kernel function. By assumption, the entire
function �ð!Þ never vanishes, i.e., it does not have any zero,
just like the case of the RBF kernel. Therefore, it remains to
show that the function �ð!Þ is not factorable to conclude
that fðxÞ is irreducible.

Assume that �ð!Þ is reducible. It means that it can be
factored into a product of two entire functions. These
functions are required to have nonempty zeros set (either
real or complex). Then, they must have the following form:

XK
k¼1

ak expð�j!ykÞ
XL
l¼1

bl expð�j!zlÞ

¼
XK
k¼1

XL
l¼1

akbl expf�j!ðyk þ zlÞg:
ð21Þ

Note that an exponential function ej!� never vanishes. This
property, together with nonempty zeros set constraint,
implicitly requires

K � 2; L � 2: ð22Þ

The number of constrains when equating (21) to (20) is
ðKLþmÞ. The breakdown of constraints is as follows:

. KL constrains to equate the set of exponents fyk þ zlg
with the set fx�i g.

. m constrains to equate fakblg with f�ig.
The total number of variables is 2ðK þ LÞ, and we

require this to be at least equal to the total number of
constrains, which gives

2ðK þ LÞ � KLþm: ð23Þ

It is easy to verify that this condition does not hold because
K � 2, L � 2, m � 5, due to (22) and our initial assumption.
Therefore fðxÞ in (3) is irreducible.

8 CONCLUSION

We introduced a novel shape representation and explained
its application in 2D and 3D. To our observations, this
representation is very robust against noise, data acquisition
problems, articulation, affine motion, etc. As future work,
we plan to investigate alternative descriptors especially
tuned for 3D applications.
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