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Abstract It is not trivial to build a classifier where the domain is the space of sym-
metric positive definite matrices such as nonsingular region covariance descriptors
lying on a Riemannian manifold. This chapter describes a boosted classification ap-
proach that incorporates the apriori knowledge of the geometry of the Riemannian
space. The presented classifier incorporated into a rejection cascade and applied to
single image human detection task. Results on INRIA and DaimlerChrysler pedes-
trian datasets are reported.

1 Introduction

Detecting and locating different types of objects in visual data is one of the funda-
mental tasks in computer vision. Object detection be considered as a classification
problem where each candidate image region is evaluated by a learned classifier for
being from the specific object class or not. This can be accomplished by generative
and discriminative learning [6, 25]; two of the major paradigms for solving predic-
tion problems in machine learning, each offering distinct advantages.

In generative approaches [7, 29], one models conditional densities of object and
non-object classes, and parameters are typically estimated using a likelihood-based
criterion. In discriminative approaches, one directly models the mapping from in-
puts to outputs (often via a prediction function); parameters are estimated by opti-
mizing objectives related to various loss functions. Discriminative approaches have
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shown better performance given enough data, as they are better tailored to the pre-
diction task and appear more robust to model mismatches. Most of the leading ap-
proaches in object detection can be categorized as discriminative models such as
neural networks (NNs) [12], support vector machines (SVMs) [3] or boosting [24],
convolutional neural nets (CNNs) [1, 14]. These methods became increasingly pop-
ular since they can cope with high dimensional state spaces and are able to select
relevant descriptors among a large set. In [22] NNs, and in [17] SVMs were utilized
as a single strong classifier for detection of various categories of objects. The NNs
and SVMs were also utilized for intermediate representations [5,16] for final object
detectors. In [28], multiple weak classifiers trained using AdaBoost were combined
to form a rejection cascade.

In this chapter, we apply local object descriptors, namely region covariance de-
scriptors, to human detection problem. Region covariance features were first in-
troduced in [26] for matching and texture classification problems, and later were
extended to many applications from tracking [20], event detection [11] and video
classification successfully [30]. We represent a human with several covariance de-
scriptors of overlapping image regions where the best descriptors are determined
with a greedy feature selection algorithm combined with boosting. A region co-
variance descriptor is a covariance matrix that measures of how much pixel-wise
variables, such as spatial location, intensity, color, derivatives, pixel-wise filter re-
sponses, etc., change together within the given image region. The space of these co-
variance matrices does not form a vector space. For example, it is not closed under
multiplication with negative scalars. Instead, they constitute a connected Rieman-
nian manifold. More specifically, nonsingular covariance matrices form a symmetric
positive definite manifold that has Riemannian geometry.

It is not possible to use classical machine learning techniques to design the clas-
sifiers in this space. Consider a simple linear classifier that makes a classification
decision by dividing the Euclidean space based on the value of a linear combina-
tion of input coefficients. For example, the simplest form a linear classifier in R2,
which is a point and a direction vector in R2, define a line which separates R2 into
two. A function that divides the manifold is rather a complicated notion compared
with the Euclidean space. For example, if we consider the image of the lines on
the 2-torus, the curves never divide the manifold into two. Typical approaches map
such manifolds to higher dimensional Euclidean spaces, which corresponds to flat-
tening of the manifold. They map the points on the manifold to a tangent space
where traditional learning techniques can be used for classification. A tangent space
is an Euclidean space relative to a point. Processing a manifold through a single
tangent space is restrictive, as only distances to the original point are true geodesic
distances. Distances between arbitrary points on the tangent space do not represent
true geodesic distances. In general, there is no single tangent space mapping that
globally preserves the distances between the points on the manifold. Therefore, a
classifier trained on a single tangent space or flattened space does not reflect the
global structure of the data points. As a remedy, we take advantage of the boost-
ing framework that consist of iteratively learning weak learners in different tangent
spaces to obtain a strong classifier. After a weak learner is added, the training data
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is reweighted. Misclassified examples are set to gain weight and correctly classi-
fied examples to lose weight. Thus, consecutive weak learners focus more on the
examples that previous weak learners misclassified. To improve speed, we further
structure multiple strong classifiers into a final rejection cascade such that if any
previous strong classifier rejects a hypothesis, then it is considered a negative exam-
ple. This provides an efficient algorithm due to sparse feature selection, besides only
a few classifiers are evaluated at most of the regions due to the cascade structure.
A previous version of the classification method presented in this book chapter has
been published in [27].

For completeness, we present an overview of Riemannian geometry focusing on
the space of symmetric positive definite matrices in the next Section 2. We explain
how to learn a boosted classifier on a Riemannian manifold in Section 3. Then,
we describe the covariance descriptors in Section 4 and their application to human
detection in Section 5 with experimental evaluations in Section 6.

2 Riemannian Manifolds

We refer to points on a manifold with capital letters X ∈ M, whereas symmetric
positive definite matrices with capital bold letters X ∈ Sym+

d and points on a tan-
gent space with small bold letters x ∈ TX . The matrix norms are computed by the
Frobenius norm ‖X‖2 = trace(XXT ), and the vector norms are the `2 norm.

2.1 Manifolds

A manifold M is a topological space which is locally similar to an Euclidean space.
Every point on the manifold has a neighborhood for which there exists a homeo-
morphic mapping the neighborhood to Rm. Technically, a manifold M of dimension
d is a connected Hausdorff space for which every point has a neighborhood that is
homeomorphic to an open subset of Rd .

A differentiable manifold Mc is a topological manifold equipped with an equiv-
alence class of atlas whose transition maps are c-times continuously differentiable.
In case all the transition maps of a differentiable manifold are smooth, i.e. all its
partial derivatives exist, then it is a smooth manifold M∞.

For differentiable manifolds, it is possible to define the derivatives of the curves
on the manifold and attach to every point X on the manifold a tangent space TX ,
a real vector space that intuitively contains the possible directions in which one
can tangentially pass through X . In other words, the derivatives at a point X on the
manifold lies in a vector space TX , which is the tangent space at that point. The
tangent space TX is the set of all tangent vectors at X . The tangent space is a vector
space, thereby it is closed under addition and scalar multiplication.
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2.2 Riemannian Geometry

A Riemannian manifold (M,g) is a differentiable manifold in which each tangent
space has an inner product g metric, which varies smoothly from point to point. It
is possible to define different metrics on the same manifold to obtain different Rie-
mannian manifolds. In practice, this metric is chosen by requiring it to be invariant
to some class of geometric transformations. The inner product g induces a norm for
the tangent vectors on the tangent space ‖x‖2

X =< x,x >X= g(x).
The minimum length curve connecting two points on the manifold is called the

geodesic, and the distance between the points d(X ,Y ) is given by the length of this
curve. On a Riemannian manifold, a geodesic is a smooth curve that locally joins
their points along the shortest path. Suppose γ(r) : [r0,r1] 7→M be a smooth curve
on M. The length of the curve L(γ) is defined as

L(γ) =
∫ r1

r0

‖γ ′(r)‖dr. (1)

A smooth curve is called geodesic if and only if its velocity vector is constant along
the curve ‖γ ′(r)‖ = const. Suppose X and Y be two points on M. The distance
between the points d(X ,Y ), is the infimum of the length of the curves, such that,
γ(r0) = X and γ(r1) = Y . For each tangent vector x ∈ TX , there exists a unique
geodesic γ starting at γ(0) = X having initial velocity γ ′(0) = x. All the shortest
length curves between the points are geodesics but not vice-versa. However, for
nearby points the definition of geodesic and the shortest length curve coincide.

Fig. 1 Illustration of a manifold M and the corresponding tangent space TX at X for point Y .

The exponential map, expX : TX 7→ M, maps the vector y in the tangent space
to the point reached by the geodesic after unit time expX (y) = 1. Since the veloc-
ity along the geodesic is constant, the length of the geodesic is given by the norm
of the initial velocity d(X ,expX (y)) = ‖y‖X . An illustration is shown in Figure 1.
Under the exponential map, the image of the zero tangent vector is the point itself
expX (0) = X . For each point on the manifold, the exponential map is a diffeomor-
phism (one-to-one, onto and continuously differentiable mapping in both directions)
from a neighborhood of the origin of the tangent space TX onto a neighborhood of
the point X .

In general, the exponential map expX is onto but only one-to-one in a neighbor-
hood of X . Therefore, the inverse mapping logX : X 7→ TX is uniquely defined only
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around a small neighborhood of the point X . If for any Y ∈M, there exists several
y ∈ TX such that Y = expX (y), then logX (Y ) is given by the tangent vector with the
smallest norm. Notice that both operators are point dependent.

From the definition of geodesic and the exponential map, the distance between
the points on manifold can be computed by

d(X ,Y ) = d(X ,expX (y)) =< logX (Y ), logX (Y )>X= ‖ logX (Y )‖X = ‖y‖X . (2)

2.3 Space of Symmetric Positive Definite Matrices

The d× d dimensional nonsingular covariance matrices, i.e. region covariance de-
scriptors, are symmetric positive definite Sym+

d , and can be formulated as a con-
nected Riemannian manifold. The set of symmetric positive definite matrices is not
a multiplicative group. However, an affine invariant Riemannian metric on the tan-
gent space of Sym+

d is given by [18]

< y,z >X= trace
(

X−
1
2 yX−1zX−

1
2

)
. (3)

The exponential map associated to the Riemannian metric

expX(y) = X
1
2 exp

(
X−

1
2 yX−

1
2

)
X

1
2 (4)

is a global diffeomorphism. Therefore, the logarithm is uniquely defined at all the
points on the manifold

logX(Y) = X
1
2 log

(
X−

1
2 YX−

1
2

)
X

1
2 . (5)

Above, the exp and log are the ordinary matrix exponential and logarithm operators.
Not to be confused, expX and logX are manifold specific point dependent operators,
i.e. X ∈ Sym+

d .
For symmetric matrices, these ordinary matrix exponential and logarithm opera-

tors can be computed easily. Let Σ = UDUT be the eigenvalue decomposition of a
symmetric matrix. The exponential series is

exp(Σ) =
∞

∑
k=0

Σ k

k!
= Uexp(D)UT (6)

where exp(D) is the diagonal matrix of the eigenvalue exponentials. Similarly, the
logarithm is given by

log(Σ) =
∞

∑
k=1

(−1)k−1

k
(Σ − I)k = Ulog(D)UT . (7)
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The exponential operator is always defined, whereas the logarithms only exist for
symmetric matrices with positive eigenvalues, Sym+

d . From the definition of the
geodesic given in the previous section, the distance between two points on Sym+

d
is measured by substituting (5) into (3)

d2(X,Y) = < logX(Y), logX(Y)>X

= trace
(

log2(X−
1
2 YX−

1
2 )
)
. (8)

An equivalent form of the affine invariant distance metric was first given in [9],
in terms of joint eigenvalues of X and Y as

d(X,Y) =

(
d

∑
k=1

(lnλk(X,Y))2

) 1
2

(9)

where λk(X,Y) are the generalized eigenvalues of X and Y, computed from

λkXvk−Yvk = 0 k = 1 . . .d (10)

and vk are the generalized eigenvectors. This distance measure satisfies the met-
ric axioms, positivity, symmetry, triangle inequality, for positive definite symmetric
matrices.

2.4 Vectorized Representation for the Tangent Space of Sym+
d

The tangent space of Sym+
d is the space of d × d symmetric matrices and both

the manifold and the tangent spaces are d(d + 1)/2 dimensional. There are only
d(d +1)/2 independent coefficients which are the upper triangular or the lower tri-
angular part of the matrix. The off-diagonal entries are counted twice during norm
computation.

For classification, we prefer a minimal representation of the points in the tangent
space. We define an orthonormal coordinate system for the tangent space with the
vector operation. The orthonormal coordinates of a tangent vector y in the tangent
space at point X is given by the vector operator

vecX(y) = vecI(X−
1
2 yX−

1
2 ) (11)

where I is the identity matrix and the vector operator at identity is defined as

vecI(y) = [y1,1
√

2y1,2
√

2y1,3 . . . y2,2
√

2y2,3 . . . yd,d ]
T . (12)

Notice that, the tangent vector y is a symmetric matrix and with the vector operator
vecX(y) we get the orthonormal coordinates of y which is in Rd . The vector oper-
ator relates the Riemannian metric (3) on the tangent space to the canonical metric
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defined as
< y,y >X= ‖vecX(y)‖2

2. (13)

2.5 Mean of the Points on Sym+
d

Let {Xi}i=1...N be a set of symmetric positive definite matrices on Riemannian man-
ifold M. Similar to Euclidean spaces, the Riemannian center of mass [13], is the
point on M which minimizes the sum of squared Riemannian distances

µ = arg min
X∈M

N

∑
i=1

d2(Xi,X) (14)

where in our case d2 is the distance metric (8). In general, the Riemannian mean for
a set of points is not necessarily unique. This can be easily verified by considering
two points at antipodal positions on a sphere, where the error function is minimal for
any point lying on the equator. However, it is shown in several studies that the mean
is unique and the gradient descent algorithm is convergent for Sym+

d [8] [15] [18].

Fig. 2 Illustration of iterative mean computation by mapping back and forth to tangent space.

Differentiating the error function with respect to X, we see that mean is the solu-
tion to the nonlinear matrix equation

N

∑
i=1

logX(Xi) = 0 (15)

which gives the following gradient descent procedure [18]

µ
t+1 = expµ t

[
1
N

N

∑
i=1

logµ t (Xi)

]
. (16)

The method iterates by computing first order approximations to the mean on the
tangent space. The weighted mean computation is similar to (16). We replace in-
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side of the exponential, the mean of the tangent vectors, with the weighted mean
1

∑
N
i=1 wi

∑
N
i=1 wilogµ t (Xi) as shown in Figure 2.

3 Classification on Riemannian Manifolds

We use a boosted classification approach that consist of iteratively learning weak
learners in different tangent spaces to obtain a strong classifier. After a weak learner
is added, the training samples are reweighted such that the weights of the misclassi-
fied examples are increased and the weights of the correctly classified examples are
increased with respect to a logistic regression rule. Boosting enables future learners
focus more on the examples that previous weak learners misclassified.

Furthermore, we adopt a rejection cascade structure such that if any previous
strong classifier rejects a hypothesis, then it is considered a negative example. This
provides an efficient algorithm as majority of hypotheses in a test image are nega-
tives that are dismissed early in the cascade.

Let {(Xi, li)}i=1...N be the training set with class labels, where li ∈ {0,1}. We aim
to learn a strong classifier F(X) : M 7→ {0,1}, which divides the manifold into two
based on the training set of the labeled items.

3.1 Local Maps and Weak Classifiers

We describe an incremental approach by training several weak classifiers on the tan-
gent spaces, and combining them through boosting. We start by defining mappings
from neighborhoods on the manifold to the Euclidean space, similar to coordinate
charts. Our maps are the logarithm maps, logX, that map the neighborhood of points
X ∈ M to the tangent spaces TX. Since this mapping is a homeomorphism around
the neighborhood of the point, the structure of the manifold is locally preserved. The
tangent space is a vector space, and we use standard machine learning techniques to
learn the classifiers on this space.

For classification task, the approximations to the Riemannian distances computed
on the ambient space should be as close to the true distances as possible. Since we
approximate the distances (3) on the tangent space TX,

d2(Y,Z)≈ ‖vecX(logX(Z))−vecX(logX(Y))‖2
2 (17)

is a first order approximation. The approximation error can be expressed in terms of
the pairwise distances computed on the manifold and the tangent space

ε =
N

∑
i=1

N

∑
j=1

(
d(Xi,X j)−

∥∥vecX(logX(Xi))−vecX(logX(X j))
∥∥

2

)2 (18)
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Fig. 3 Two iterations of boosting on a Riemannian manifold. The manifold is depicted with the
surface of the sphere and the plane is the tangent space at the mean. The samples are projected to
tangent spaces at means via logµ . The weak learners g are learned on the tangent spaces Tµ . Left:
sample X is misclassified therefore its weight increases. In the second iteration of boosting (right),
the weighted mean moves towards X.

which is equal to

N

∑
i=1

N

∑
j=1

(∥∥∥∥log
(

X−
1
2

i X jX
− 1

2
i

)∥∥∥∥
F
−
∥∥∥log

(
X−

1
2 XiX−

1
2

)
− log

(
X−

1
2 X jX−

1
2

)∥∥∥
F

)2

(19)
for the space of symmetric positive definite matrices using (5) and (13).

The classifiers can be learned on the tangent space at any point X on the mani-
fold. Best approximation, which preserves the pairwise distances is achieved at the
minimum of ε . The error can be minimized with respect to X which gives the best
tangent space to learn the classifier.

Since the mean of the points (14) is the minimizer of the sum of squared distances
from the points in the set and the mapping preserves the structure of the manifold
locally, it is also a good candidate for the minimizer of the error function (19).
However, for this a theoretical proof does not exist. For some special cases it can be
easily verified that the mean is the minimizer. Such a case arises when all the points
lie on a geodesic curve, where the approximation error is zero for any point lying on
the curve. Since mean also lies on the geodesic curve, the approximation is perfect.
Nevertheless, for a general set of points, we only have empirical validation based
on simulations. We generated random points on Sym+

d , many times with varying d.
The approximation errors were measured on the tangent spaces at any of the points
TXi=1...N and at the mean TXµ

. In our simulations, the errors computed on the tangent
spaces at the means were significantly lower than any other choice and counter
examples were not observed. The simulations were also repeated for weighted sets
of points, where the minimizers of the weighted approximation errors were achieved
at the weighted means of the points.

Therefore, the weak learners are learned on the tangent space at the mean of the
points. At each iteration, we compute the weighted mean of the points through (16),
where the weights are adjusted through boosting. Then, we map the points to the
tangent space at the weighted mean and learn a weak classifier on this vector space.
Since the weights of the samples which are misclassified during the earlier stages of
boosting increase, the weighted mean moves towards these points and more accurate
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classifiers are learned for these points. The process is illustrated in Figure 3. To
evaluate a test example, the sample is projected to the tangent spaces at the computed
weighted means, and the weak learners are evaluated. The approximation error is
minimized by averaging over several weak learners.

3.2 LogitBoost on Riemannian Manifolds

Consider the binary classification problem with labels li ∈ {0,1} on vector spaces.
The probability of x being in class 1 is represented by

p(x) =
eF(x)

eF(x)+ e−F(x) F(x) =
1
2

K

∑
k=1

fk(x). (20)

The LogitBoost algorithm learns the set of regression functions { fk(x)}k=1...K (weak
learners) by minimizing the negative binomial log-likelihood of the data (l, p(x))

−
N

∑
i=1

[li log(p(xi))+(1− li) log(1− p(xi))] (21)

through Newton iterations. At the core of the algorithm, LogitBoost fits a weighted
least square regression, fk(x) of training points xi ∈ Rd to response values zi ∈ R
with weights wi where

zi =
li− p(xi)

p(xi)(1− p(xi))
wi = p(xi)(1− p(xi)). (22)

The LogitBoost algorithm [10] on Riemannian manifolds is similar to the original
LogitBoost, except a few differences at the level of weak learners. In our case, the
domain of the weak learners are in M such that fk(X) : M 7→ R. Following the
discussion of the previous section, we learn the regression functions on the tangent
space at the weighted mean of the points. We define the weak learners as

fk(X) = gk(vecµ k
(logµ k

(X))) (23)

and learn the functions gk(x) : Rd 7→ R and the weighted mean of the points µk ∈
M. Notice that the mapping vecµ k

(11), gives the orthonormal coordinates of the
tangent vectors in Tµ k

.
The algorithm is presented in Figure 4. The steps marked with (∗) are the differ-

ences from original LogitBoost algorithm. For functions {gk}k=1...K , it is possible to
use any form of weighted least squares regression such as linear functions, regres-
sion stumps, etc., since the domain of the functions are in Rd .
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Input: Training set {(Xi, li)}i=1...N , Xi ∈M, li ∈ {0,1}

• Initialize weights wi = 1/N, i = 1...N, F(X) = 0 and p(Xi) =
1
2

• Repeat for k = 1...K

– Compute the response values and weights
zi =

yi−p(Xi)
p(Xi)(1−p(Xi))

, wi = p(Xi)(1− p(Xi))

– Compute weighted mean of the points through (16)
µk = argminX∈M ∑

N
i=1 wid2(Xi,X) (∗)

– Map the data points to the tangent space at µk
xi = vecµ k

(logµ k
(Xi)) (

∗)

– Fit the function gk(x) by weighted least-square regression of zi to xi using weights wi

– Update F(X)← F(X)+ 1
2 fk(X) where fk is defined in (23) and p(X)← eF(X)

eF(X)+e−F(X)

• Store F = {µk,gk)}k=1...K
• Output the classifier

sign[F(X)] = sign[∑K
k=1 fk(X)]

Fig. 4 LogitBoost on Riemannian manifolds.

4 Region Covariance Descriptors

Let {zi}i=1..S be the d-dimensional features (such as intensity, color, gradients, filter
responses, etc.) of pixels inside a region R. The corresponding d×d region covari-
ance descriptor is

CR =
1

S−1

S

∑
i=1

(zi−µ)(zi−µ)T (24)

where µ is a vector of the means of the features inside the regions. In Figure 5, we
illustrate the construction of region covariance descriptors. The diagonal entries of
the covariance matrix represent the variance of each feature and the nondiagonal
entries their respective correlations. Region covariance descriptors constitute the
space of positive semi-definite matrices Sym0,+

d . By adding a small diagonal matrix
(or guaranteeing no features in the feature vectors would be exactly identical), they
can be transformed into Sym+

d .

Fig. 5 Region covariance descriptor. The d-dimensional feature image Φ is constructed from input
image I. The region R is represented with the covariance matrix, CR, of the features {zi}i=1..S.
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There are several advantages of using covariance matrices as region descrip-
tors. The representation proposes a natural way of fusing multiple features which
might be correlated. A single covariance matrix extracted from a region is usually
enough to match the region in different views and poses. The noise corrupting in-
dividual samples are largely filtered out with the average filter during covariance
computation. The descriptors are low-dimensional and due to symmetry CR has
only d(d +1)/2 different values (d is often less than 10) as opposed to hundreds of
bins or thousands of pixels. Given a region R, its covariance CR does not have any
information regarding the ordering and the number of points. This implies a cer-
tain scale and rotation invariance over the regions in different images. Nevertheless,
if information regarding the orientation of the points are represented, such as the
gradient with respect to x and y, the covariance descriptor is no longer rotationally
invariant. The same argument is also correct for illumination, too.

4.1 Region Covariance Descriptors for Human Detection

For human detection, we define the features as[
x y |Ix| |Iy|

√
I2
x + I2

y |Ixx| |Iyy| arctan
|Ix|
|Iy|

]T

(25)

where x and y are pixel location, Ix, Ixx, .. are intensity derivatives and the last term
is the edge orientation. With the defined mapping, the input image is mapped to a
d = 8 dimensional feature image. The covariance descriptor of a region is an 8×8
matrix, and due to symmetry only upper triangular part is stored, which has only 36
different values. The descriptor encodes information of the variances of the defined
features inside the region, their correlations with each other and spatial layout.

Given an arbitrary sized detection window R, there are a very large number of
covariance descriptors that can be computed from subwindows r1,2,.... We perform
sampling and consider all the subwindows r starting with minimum size of 1/10
of the width and height of the detection window R, at all possible locations. The
size of r is incremented in steps of 1/10 along the horizontal or vertical, or both,
until r = R. Although the approach might be considered redundant due to overlaps,
there is significant evidence that the overlapping regions are an important factor in
detection performances [4, 31]. The greedy feature selection mechanism, that will
be described later, allows us to search for the best regions during learning classifiers.

Although it has been mentioned that the region covariance descriptors are ro-
bust towards illumination changes, we would like to enhance the robustness to also
include local illumination variations in an image. Let r be a possible feature sub-
window inside the detection window R. We compute the covariance of the detection
window CR and subwindow Cr using integral representation [19]. The normalized
covariance descriptor of region r, Ĉr, is computed by dividing the columns and rows
of Cr with the square root of the respective diagonal entries of CR,
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Fig. 6 Cascade of LogitBoost classifiers. The mth LogitBoost classifier selects normalized covari-
ance descriptors of subwindows rm,k.

Ĉr = diag(CR)
− 1

2 Crdiag(CR)
− 1

2 (26)

where diag(CR) is equal to CR at the diagonal entries and the rest is truncated to
zero. The method described is equivalent to first normalizing the feature vectors
inside the region R to have zero mean and unit standard deviation, and after that
computing the covariance descriptor of subwindow r. Notice that under the trans-
formation, ĈR is equal to the correlation matrix of the features inside the region R.
The process only requires d2 extra division operations.

5 Application to Human Detection

Due to the significantly large number of possible candidate detection windows R in
a single image as a result of search in multiple scales and locations, and due to the
considerable cost of the distance computation for each weak classifier, we adopt a
rejection cascade structure to accelerate the detection process.

The domain of the classifier is the space of 8-dimensional symmetric positive
definite matrices, Sym+

8 . We combine K = 30 strong LogitBoost classifiers on Sym+
8

with rejection cascade, as shown in Figure 6. Weak learners gm,k are linear regres-
sion functions learned on the tangent space of Sym+

8 . A very large number of co-
variance descriptors can be computed from a single detection window R. Therefore,
we do not have a single set of positive and negative features, but several sets corre-
sponding to each of the possible subwindows. Each weak learner is associated with
a single subwindow of the detection window. Let rm,k be the subwindow associated
with k-the weak learner of cascade level m.

Let R+
i and R−i refer to the Np positive and Nn negative samples in the training

set, where N = Np +Nn. While training the m-th cascade level, we classify all the
negative examples {R−i }i=1...Nn with the cascade of the previous (m−1) LogitBoost
classifiers. The samples which are correctly classified (samples classified as nega-
tive) are removed from the training set. Any window sampled from a negative image
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is a negative example, therefore the cardinality of the negative set, Nn, is very large.
During training of each cascade level, we sample 10000 negative examples.

We have varying number of weak learners Km for each LogitBoost classifier
m.Each cascade level is optimized to correctly detect at least 99.8% of the positive
examples, while rejecting at least 35% of the negative examples. In addition, we
enforce a margin constraint between the positive samples and the decision bound-
ary. Let pm(R) be the learned probability function of a sample being positive at
cascade level m, evaluated through (20). Let Rp be the positive example that has
the (0.998Np)-th largest probability among all the positive examples. Let Rn be
the negative example that has the (0.35Nn)-th smallest probability among all the
negative examples. We continue to add weak classifiers to cascade level m until
pm(Rp)− pm(Rn) > 0.2. When the constraint is satisfied, the threshold (decision
boundary) for cascade level m is stored as τm = Fm(Rn).

A test sample is classified as positive by cascade level m if Fm(R)> τm or equiv-
alently pm(R) > pm(Rn). With the proposed method, any of the positive training
samples in the top 99.8 percentile have at least 0.2 margin more probability than the
points on the decision boundary. The process continues with the training of (m+1)-
th cascade level, until m = 30.

We incorporate a greedy feature selection method to produce a sparse set of clas-
sifiers focusing on important subwindows. At each boosting iteration k of the m-th
LogitBoost level, we sample 200 subwindows among all the possible subwindows,
and construct normalized covariance descriptors. We learn the weak classifiers rep-
resenting each subwindow, and add the best classifier that minimizes the negative
binomial log-likelihood (21) to the cascade level m. The procedure iterates with the
training the (k+1)-th weak learner until the specified detection rates are satisfied.

The negative sample set is not well characterized for detection tasks. Therefore,
while projecting the points to the tangent space, we compute the weighted mean of
only the positive samples. Although rarely happens, if some of the features are fully
correlated, there will be singularities in the covariance descriptor. We ignore those
cases by adding very small identity matrix to the covariance.

The learning algorithm produces a set of 30 LogitBoost classifiers which are
composed of Km triplets Fm =

{
(rm,k,µm,k,gm,k)

}
k=1...Km

and τm, where rm,k is the
selected subwindow, µm,k is the mean and gm,k is the learned regression function
of the k-th weak learner of the m-th cascade. To evaluate a test region R with m-th
classifier, the normalized covariance descriptors constructed from regions rm,k are
projected to tangent spaces Tµm,k

and the features are evaluated with gm,k

sign [Fm(R)− τm] = sign

[
Km

∑
k=1

gm,k

(
vecµm,k

(
logµm,k

(
Ĉrm,k

)))
− τm

]
. (27)

The initial levels of the cascade are learned on relatively easy examples, thus there
are very few weak classifiers in these levels. Due to the cascade structure, only a few
are evaluated for most of the test samples, which produce a very efficient solution.
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Fig. 7 Left: Comparison with methods of Dalal & Triggs [4] and Zhu et.al. [31] on INRIA dataset.
The curves for other approaches are generated from the respective papers. Right: Detection rates
of different approaches for our method on INRIA dataset.

6 Experiments and Discussion

We conduct experiments on INRIA and DaimlerChrysler datasets. Since the sizes of
the pedestrians in a scene are not known apriori, the images are searched at multiple
scales. There are two searching strategies. The first strategy is to scale the detection
window and apply the classifier at multiple scales. The second strategy is to scale
the image and apply the classifier at the original scale. In covariance representation
we utilized gradient based features which are scale dependent. Therefore evaluating
classifier at the original scale (second strategy) produces the optimal result. How-
ever, in practice up to scales of 2x we observed that the detection rates were almost
the same, whereas in more extreme scale changes the performance of the first strat-
egy degraded. The drawback of the second strategy is slightly increased search time,
since the method requires computation of the filters and the integral representation
at multiple scales.

INRIA pedestrian dataset [4] contains 1774 pedestrian annotations (3548 with
reflections) and 1671 person free images. The pedestrian annotations were scaled
into a fixed size of 64×128 windows which include a margin of 16 pixels around the
pedestrians. The dataset was divided into two, where 2416 pedestrian annotations
and 1218 person free images were selected as the training set, and 1132 pedestrian
annotations and 453 person free images were selected as the test set. Detection on
INRIA pedestrian dataset is challenging since it includes subjects with a wide range
of variations in pose, clothing, illumination, background and partial occlusions.

First, we compare our results with [4] and [31]. Although it has been noted that
kernel SVM is computationally expensive, we consider both the linear and kernel
SVM method of [4]. In [31], a cascade of AdaBoost classifiers was trained using
HOG features, and two different results were reported based on the normalization
of the descriptors. Here, we consider only the best performing result, the `2-norm.
In Figure 7-left, we plot the detection error trade-off curves on a log-log scale. The
vertical-axis corresponds to the miss rate FalseNeg

FalseNeg+TruePos , and the horizontal-axis
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corresponds to false positives per window (FPPW) FalsePos
TrueNeg+FalsePos . The curve for

our method is generated by adding one cascade level at a time. For example, in
our case the rightmost marker at 7.5 ∗ 10−3 FPPW corresponds to detection using
only the first 11 levels of cascade, whereas the marker positioned at 4∗10−5 FPPW
corresponds to cascade of all 30 levels. The markers between the two extremes
correspond to a cascade of between 11 to 30 levels.

To generate the result at 10−5 FPPW (leftmost marker), we shifted the decision
boundaries of all the cascade levels, τm, to produce less false positives at the cost of
higher miss rates. We see that at almost all the false positive rates, our miss rates are
significantly lower than the other approaches. The closest result to our method is the
kernel SVM classifier of [4], which requires kernel evaluation at 1024 dimensional
space to classify a single detection window. If we consider 10−4 as an acceptable
FPPW, our miss rate is 6.8%, where the second best result is 9.3%.

Since the method removes samples which were rejected by the previous levels of
cascade, during the training of last levels, only very small amount of negative sam-
ples, order of 102, remained. At these levels, the training error did not generalize
well, such that the same detection rates are not achieved on the test set. This can be
seen by the dense markers around FPPW < 7∗10−5. We believe that better detection
rates can be achieved at low false positive rates with introduction of more negative
images. In our method, 25% of false positives are originated from a single image
which contains a flower texture, where the training set does not include a similar
example. We note that, in [23] a pedestrian detection system utilizing shapelet fea-
tures is described which has 20−40% lower miss rates at equal FPPWs on INRIA
dataset, compared to our approach. The drawback of the method is the significantly
higher computational requirement.

We also consider an empirical validation of the presented classification algorithm
on Riemannian manifolds. In Figure 7-right, we present the detection error trade-
off curves for four different approaches: 1) The original method, which maps the
points to the tangent spaces at the weighted means. 2) The mean computation step
is removed from the original algorithm and points are always mapped to the tangent
space at the identity. 3) We ignore the geometry of Sym+

8 , and stack the upper tri-
angular part of the covariance matrix into a vector, such that learning is performed
on the vector space. 4)We replace the covariance descriptors with HOG descriptors,
and perform original (vector space) LogitBoost classification.

The original method outperforms all the other approaches significantly. The sec-
ond best result is achieved by mapping points to the tangent space at the identity
matrix followed by the vector space approaches. Notice that, our LogitBoost imple-
mentation utilizing HOG descriptors has 3% more miss rate at 10−4 FPPW than [31]
which trains an AdaBoost classifier. The performance is significantly degraded be-
yond this point.

DaimlerChrysler dataset [16] contains 4000 pedestrian (24000 with reflections
and small shifts) and 25000 non-pedestrian annotations. As opposed to INRIA
dataset, non-pedestrian annotations were selected by a preprocessing step from the
negative samples, which match a pedestrian shape template based on average Cham-
fer distance score. Both annotations were scaled into a fixed size of 18× 36 win-
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Fig. 8 Left: Comparison with [16] on DaimlerChrysler dataset. The curves for other approaches
are generated from the original paper. Comparison of covariance and HOG descriptors on Daim-
lerChrysler dataset.

dows, and pedestrian annotations include a margin of 2 pixels around. The dataset
was organized into three training and two test sets, each of them having 4800 pos-
itive and 5000 negative examples. The small size of the windows combined with
a carefully arranged negative set makes detection on DaimlerChrysler dataset ex-
tremely challenging. In addition, 3600 person free images with varying sizes be-
tween 360×288 and 640×480 were also supplied.

In [16], an experimental study was described comparing three different feature
descriptors and various classification techniques. The compared feature descriptors
were the PCA coefficients, Haar Wavelets and local receptive fields (LRFs) which
are the output of the hidden layer of a specially designed feed forward NN. We com-
pare our method with the best results for each descriptor in [16]. The same train-
ing configuration is prepared by selecting two out of three training sets. Since the
number of non-pedestrian annotations was very limited for training of our method,
we adapted the training parameters. A cascade of K = 15 LogitBoost classifiers
on Sym+

8 is learned, where each level is optimized to detect at least 99.75% of the
positive examples, while rejecting at least 25% negative samples.

In Figure 8-left, we plot the detection error trade-off curves. The cascade of 15
LogitBoost classifiers produced a FPPW rate of 0.05. The detection rates with lower
FPPW are generated by shifting the decision boundaries of all the cascade levels
gradually, until FPPW = 0.01. We see that our approach has significantly lower
miss rates at all the false positive rates. This experiment should not be confused with
the experiments on INRIA dataset, where much lower FPPW rates were observed.
Here, the negative set consists of hard examples selected by a preprocessing step.

We also we set up a different test configuration on DaimlerChrysler dataset. The
3600 person free images are divided into two, where 2400 images are selected as
the negative training set, and 1200 images are selected for the negative test set. For
both the covariance descriptors and the HOG descriptors, we trained cascade of 25
classifiers. We observed that the object sizes were too small for HOG descriptors to
separate among positive and negative examples at the later levels of cascade. The
classifiers trained utilizing HOG descriptors failed to achieve the specified detection
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Fig. 9 Detection examples. White dots show all the detection results. Black dots are the modes
generated by mean-shift smoothing and the ellipses are average detection window sizes. There are
extremely few false positives and negatives.

(99.8%) and the rejection rates (35.0%). We stopped adding weak learners to a cas-
cade level after reaching Km = 100. The detection error trade-off curves are given in
Figure 8-right where we see that the covariance descriptors significantly outperform
HOG descriptors.

Utilizing the classifier trained on the INRIA dataset, we generated several de-
tection examples for crowded scenes with pedestrians having variable illumination,
appearance, pose and partial occlusion. The results are shown in Figure 9. The im-
ages are searched at five scales using the first strategy, starting with the original
window size 64×128 and two smaller and two larger scales of ratio 1.2. The white
dots are all the detection results and we filtered them with adaptive bandwidth mean-
shift filtering [2] with bandwidth 0.1 of the window width and height. Black dots
show the modes, and ellipses are generated by averaging the detection window sizes
converging to the modes.
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7 Remarks

The presented LogitBoost learning algorithm is not specific to Sym+
d and can be

used to train classifiers for points lying on any connected Riemannian manifold. In
addition, the approach can be combined with any boosting method including Gen-
tleBoost and AdaBoost classifiers on Riemannian manifolds using LDA, decision
stumps and linear SVMs as weak learners. In our experiments, the results of the
methods were comparable.
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