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Abstract— With ever-increasing volumes of video data, auto-
matic extraction of salient object regions became even more sig-
nificant for visual analytic solutions. This surge has also opened
up opportunities for taking advantage of collective cues encap-
sulated in multiple videos in a cooperative manner. However,
it also brings up major challenges, such as handling of drastic
appearance, motion pattern, and pose variations, of foreground
objects as well as indiscriminate backgrounds. Here, we present a
cosegmentation framework to discover and segment out common
object regions across multiple frames and multiple videos in a
joint fashion. We incorporate three types of cues, i.e., intraframe
saliency, interframe consistency, and across-video similarity into
an energy optimization framework that does not make restrictive
assumptions on foreground appearance and motion model, and
does not require objects to be visible in all frames. We also intro-
duce a spatio-temporal scale-invariant feature transform (SIFT)
flow descriptor to integrate across-video correspondence from the
conventional SIFT-flow into interframe motion flow from optical
flow. This novel spatio-temporal SIFT flow generates reliable
estimations of common foregrounds over the entire video data
set. Experimental results show that our method outperforms the
state-of-the-art on a new extensive data set (ViCoSeg).

Index Terms— Video object co-segmentation, energy
optimization, object refinement, spatio-temporal scale-invariant
feature transform (SIFT) flow.

I. INTRODUCTION

W ITH the faster growth of video data, efficient and
automatic extraction of the interest object from

multiple videos is quite important and very challenging.
Maybe these objects of interest exhibit drastically different
in their appearance or motions. Moreover, foreground
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Fig. 1. Video co-segmentation. (a) Input videos where objects have large
variations. (b) Results by [32], which lacks the joint information between
the videos. (c) Results by video co-segmentation method of [25]. Over-
fragmentation is visible. Also, parts of foregrounds (e.g. bird) are merged
into background as its global model heavily relies on the chroma and motion.
(d) Our video object co-segmentation results.

appearance or motions from various videos are much
different, while possibly low contrast with the background.
These challenges cause great difficulties on existing video
segmentation techniques [3], [11], [12], [16], [19], [33], which
usually benefit from visual cues such as motion or appearance.
Additionally, these methods rely on the assumption that the
motion or appearance of object is dramatically distinct
from background, which is against the situation as we
mentioned before. Moreover, the lack of taking into account
the joint information between videos leads to unsatisfactory
performance of these methods designed for single video on
this issue (see Fig. 1 (b)).

In contrast to previous object segmentation methods for
a single video, video co-segmentation has been proposed
to extract the main common object from a set of related
videos. Video co-segmentation utilizes visual properties
across multiple videos to infer the object of interest with the
absence of priori information about videos or foregrounds.
There are a few methods designed for this problem till
now [21], [22], [25]. While these approaches make quite
strong assumptions on the motion patterns or appearance of
foreground. For example, Rubio et al. [21] make assumptions
that the foreground objects from different videos have similar
motion patterns and similar appearance model which is
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distinct from the background. Chen et al. [22] emphasize that
the coherent motion of regions and similar appearance are
able to conduct the segmentation. Additionally, one general
limitation of these approaches [21], [22] is that the set of
videos is assumed to be similar or related for foregrounds
and backgrounds. Chiu and Fritz [25] treat the task of
video co-segmentation as a multi-class labeling problem,
but its classification results heavily rely on the chroma and
motion features (see Fig. 1 (c)). Totally, these previous video
co-segmentation approaches [21], [22], [25] have two main
limitations. First, both approaches abuse motion or appearance
based cues and ignore the fact that there are considerable
videos with the common object low contrast with the
background. Second, in both approaches, the process of
inferring common objects does not effectively explore the
correspondence of objects from different videos, which is
essential for the task of video co-segmentation. These methods
simply assume that the objects are similar in motion patterns
or appearance, which is not suitable for the scene that includes
objects with large variations in appearance or motion. Besides,
there are considerable videos that include some frames not
containing the common object of the whole video sequence.
For instance, the foreground object moves out of camera or
the switching between video shots. However, this general
fact is ignored by most previous work in both video object
segmentation and co-segmentation methods. Most of methods
assume that the foreground object appears in every frame,
and hence they are unable to perform well for this issue.

This paper presents a co-segmentation framework for
detecting and segmenting out common objects from
multiple, contextually related videos without imposing
above constraints. In our approach, we explore the underlying
properties of video objects in three levels: intra-frame saliency,
inter-frame consistency and across-video correspondence.
Based on these properties, we introduce a spatio-temporal
SIFT flow descriptor to capture the relationship between
foreground objects. We establish an object discovery energy
function utilizing the spatio-temporal SIFT flow and inter-
frame consistency to discover the common objects. Our
source code will be publicly available online.1

Compared to existing video co-segmentation approaches,
the proposed method offers following contributions:

• A novel video co-segmentation method is proposed for
automatically segmenting out the foreground object with
low constraint for their appearance and motion patterns.

• We are the first to fully explore the properties of
foreground object in video: intra-frame saliency,
inter-frame consistency and across-video similarity.
These important cues are further formulated into our
video co-segmentation framework as the optimization
problems.

• An efficient spatio-temporal SIFT flow is developed
to build reliable correspondences between different
videos, which can infer the common object over entire
video dataset and refine the segmentation accuracy for
objects.

1http://github.com/shenjianbing/robustvideocoseg

• We are the first to emphasize the fact that some frames
perhaps do not contain the common object. A novel
object discovery energy function is proposed to discover
the common object with this situation by utilizing the
proposed spatio-temporal SIFT flow and those properties
of foreground object.

II. RELATED WORK

We give a short overview of the previous work along
two major themes: video co-segmentation and video object
segmentation techniques below.

Video Co-Segmentation: Video co-segmentation has
received attentions only recently, thus there are very few
methods [21], [22], [25] specially designed for this purpose
to the best of our knowledge.

Rubio et al. [21] provided an iterative optimization
framework to achieve such a video co-segmentation task. This
work is based on a dense feature matching process executed
on region and tube levels using joint appearance and motion
models of the foreground and background. While this approach
made quite strong assumptions that foreground objects from
different videos have similar motion patterns and similar
appearance models which are distinct from background.
Obviously, its applicability is limited by its unmatched
assumptions. The work by Chen et al. [22] utilized the motion
coherence and appearance cues to separate the common object
in a pair of related videos. However, this method attempted to
group the regions into foreground and background according
to the coherent motion and similar appearance, which
leads to unsatisfactory performance for the video with similar
foreground and background motions or appearance. Moreover,
both Rubio et al. [21] and Chen et al. [22] required the input
videos to be similar. Therefore, they may fail for cases that
have large variations in foreground appearance and complex
backgrounds. Chiu and Fritz [25] performed multi-class
video co-segmentation by building a non-parametric Bayesian
model based on Dirichlet Processes that relies on the chroma
similarity and motion distinction constraints. As a result, the
discrimination power of this model is limited in complex
scenarios. When the input videos with more common scenario,
their results sometimes are consistent with the regions that
exhibit coherent appearance or motion instead of a particular
object. It can be seen that video object co-segmentation is still
an emerging research problem to be intensively investigated.

Video Object Segmentation: The goal of video object
segmentation is to detect the primary object and extract
the object from a single video. There has been a large
body of work concentrating on this task last decade. Video
object segmentation methods can be broadly classified into
two categories: interactive (supervised) methods and
automatic (unsupervised) methods. For interactive video
object segmentation [2], [4], [5], [11]–[13], [28], user
interactions and optimization techniques employing motion
and appearance constraints are often introduced to produce
high quality segmentation results.

Our method is more closed to unsupervised video
object segmentation. Unsupervised video object segmentation
aims at autonomously merging pixels into foreground or
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Fig. 2. Overview of our object discovery step. (a) Four input videos where bird is the common object. This object discovery process does not need to be
performed at full frame rate. There are five frames between frame f k and frame f k+1. (b) Saliency information and spatio-temporal SIFT flow are introduced
into this step to get the common object in video set. (c) Output of the object discovery step is a coarse estimation for the common object regions in each
frame based on the object discovery energy function as in (13).

background within their video. Earlier automatic segmentation
methods [6], [14], [15], [30], [31] employed appearance or
motion based cues for a bottom-up segmentation. Several
methods [16], [19], [32] were proposed to select primary
object regions in object proposal domain based on the notion
of what a generic object looks like. These methods benefit
from the work of object hypotheses proposals [8]–[10] that
offer considerable object candidates in every image/frame.
Therefore, segmenting video object is transformed into an
object region selection problem. In this selection process,
both motion and appearance cues are reasonably used to
measure the object-ness of a proposal. In recent years,
Lee et al. [16] introduced an alternative clustering process,
Ma and Latecki [19] attempted to model the selection process
as a constrained maximum weight cliques problem, and
Zhang et al. [32] proposed a layered directed acyclic graph
based framework.

III. OUR APPROACH

A. Overview
Our goal is to jointly segment multiple videos containing

a common object in an unsupervised manner. We consider
this task as an object optimization process consists of object
discovery, object refinement and object segmentation executed
on the whole set of videos. In this optimization process,
we use a spatio-temporal SIFT flow that integrates optical
flow, which captures inter-frame motion, and conventional
SIFT flow, which captures across-videos correspondence
information.

Our algorithm has three main stages: object discovery
among multiple videos, object refinement between video pairs,
and object segmentation on each video sequence.

Object Discovery: We use saliency and spatio-temporal
SIFT flow to estimate common object regions in the entire
video dataset. In this stage, an initial assignment of pixels
belongs to object is performed.

Object Refinement: The goal is to refine the estimated object
regions generated by prior step. This object refinement process
is executed across a pairs of videos.

Object Segmentation: Since the correct estimation for object
in each video is available, we can model the appearance of
foreground and make segmentation on each video sequence to
get more accurate results.

B. Object Discovery

In this stage, our method explores the video dataset structure
and associates the global information with the intra-frame
information like saliency to discover the common object from
multiple videos, even in the presence of some frames without
the common object. Three main properties of targeted object
are helpful for object discovery: a) intra-frame saliency–the
pixels of foreground should be relatively dissimilar to other
pixels within a frame; b) inter-frame consistency–the pixels
of foreground should be more consistent within a video;
c) across-video similarity–the pixels of foreground should
be more similar to other pixels between different videos
(with possible changes in color, size and position). We propose
a new spatio-temporal SIFT flow algorithm that integrates
saliency, SIFT flow and optical flow to explore the correspon-
dences between different videos. Thus, an object discovery
energy function is then designed to effectively infer the
common objects without the constraints that the object must
exist in each frame. An overview of our algorithm is shown
in Fig. 2.

Saliency of a pixel reflects how salient the pixel is, namely,
the degree of its dissimilarity within the image. There are
several methods in computer vision that concentrate on this
topic. We use [24] yet any other saliency methods such
as [23] can be incorporated. Let V = {V1, V2, ..., VN } be
a set of N input videos. Fn = {F1

n , F2
n , ..., Fi

n , ...} is a set
of frames belong to video Vn . We compute a normalized
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saliency map Mi
n for frame Fi

n . Based on intra-frame saliency
property, the larger value of Mi

n(x), the more likely that the
pixel x = (x, y) belongs to object. Then we build a saliency
term Ai

n(x) to define the cost of labeling pixel x for foreground
(li

n(x) = 1) or background (li
n(x) = 0):

Ai
n(x) = ex p − {Mi

n(x)} · li
n(x)

+ ex p − {1 − Mi
n(x)} · (1 − li

n(x)). (1)

Optical flow [7] is represented as a 2D vector, which
reflects the motion information of pixel x based on the color
consistency assumption between consecutive frames. Optical
flow algorithms can be used to estimate the inter-frame motion
at each pixel in a video sequence. Let vi

n denote the flow
field between frame Fi

n and Fi+1
n . Here, a pixel x and its

motion compensated pixel x + vi
n(x) are similar between

two consecutive frames Fi
n and Fi+1

n , which represents the
inter-frame consistency property. However, correspondences
between object pixels in different videos could not be com-
puted by optical flow since regions corresponding to the same
object in different videos change in color, shape and position,
which conflicts with the basic assumption of optical flow.

As an alternative, SIFT flow [17], [18] can be used to
build a dense correspondence map across different scenes
and object appearances. SIFT flow is shown to accom-
modate variations. We combine optical flow and local
saliency into a superior spatio-temporal SIFT flow to build
dense correspondences between pixels in different videos.
Through spatio-temporal SIFT flow, reliable correspondences
wii ′

nn′ = (uii ′
nn′ , v ii ′

nn′ ) between the pixels of frame Fi
n and Fi ′

n′
from different videos are established. In other words, pixel x of
frame Fi

n is associated with the pixel x+wii ′
nn′(x) of frame Fi ′

n′ .
These correspondences indicate whether pixels belong to the
common object (even when it may be very salient within
its frame).

We establish correspondences between a part of the pixels
with high saliency values of one frame and the pixels from
the frame of the other video. We select the pixels
Ri

n = {x|Mi
n(x) > τ} to explore their correspondences.

In experiments, we fixed τ = 0.4. This strategy improves
matching accuracy by reducing the disturbance of those
un-salient pixels which are very close to background, and it
enables our method to remove some salient pixels that do not
belong to common object.

Let si
n and si ′

n′ be two SIFT fields of frame Fi
n and Fi ′

n′
respectively that we want to match. The terms si+1

n and si ′+1
n′

refer to the SIFT fields of frame Fi+1
n and Fi ′+1

n′ respectively.
Fi+1

n is the consecutive frame for Fi
n , and Ns is the spatial

8-neighborhoods of a pixel. Given the set of salient pixels Ri
n ,

the energy function for spatio-temporal SIFT flow is defined
as follows:

E = ES + α1 EOS + α2 EDisp + α3 ESmooth + α4 ESal (2)

where the energy function contains the SIFT based data term

ES(wii ′
nn′)=

∑

x∈Ri
n

∥∥∥si
n(x) − si ′

n′(xwii ′
nn′)

∥∥∥
1
, (3)

Fig. 3. Illustration of the data term ((3) and (4)) in the proposed
spatio-temporal SIFT flow energy.

the optical flow compensated SIFT based data term

EOS(wii ′
nn′) =

∑

x∈Ri
n

∥∥∥si+1
n (x + vi

n(x))

−si ′+1
n′

(
xwii ′

nn′ + vi ′
n′ (xwii ′

nn′)
)∥∥∥

1
, (4)

displacement term

EDisp(wii ′
nn′)=

∑

x∈Ri
n

{|uii ′
nn′(x)| + |v ii ′

nn′ (x)|}, (5)

the smoothness term

ESmooth(wii ′
nn′) =

∑

x,y∈Ri
n

x,y∈Ns

min
{|uii ′

nn′(x) − uii ′
nn′(y)|, d

}

+ min
{|v ii ′

nn′ (x) − v ii ′
nn′ (y)|, d

}
, (6)

the saliency term

ESal(wii ′
nn′) =

∑

x∈Ri
n

(
1 − Mi ′

n′ (xwii ′
nn′(x))

)

+
(

1−Mi ′+1
n′ (xwii ′

nn′(x) + vi ′
n′(xwii ′

nn′ (x)))
)
, (7)

and we use the shorthand notation for SIFT matched pixels

xwii ′
nn′(x) = x + wii ′

nn′(x).

The data terms ES and EOS account for outliers in SIFT
matching. The displacement term EDisp models discontinuities
of the pixel displacement field. The smoothness term ESmooth

employs one �1 norm to ensure the smoothness of field with
the threshold d . This saliency constraint encourages matching
the foreground pixels in frame Fi

n (Fi+1
n ) with the pixels

that have high saliency values in Fi ′
n′ (Fi ′+1

n′ ). Optical flow
information is further introduced in data term (4). That is
to say, if the SIFT descriptors of pixel x and xwii ′

nn′(x) have
been matched by the data term in (3), the SIFT descriptors of
pixels x + vi

n(x) and xwii ′
nn′(x) + vi ′

n′(xwii ′
nn′ (x)) on the optical

flow direction should also be matched by the data term in (4).
Fig. 3 shows an indication for the data term ((3) and (4))

in the spatio-temporal SIFT flow function. Note that our
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Fig. 4. Comparison between our spatio-temporal SIFT flow and traditional
SIFT flow [17]. (a) A pair of frames need to be matched (top: frame Fi

n ;

bottom: frame Fi′
n′ ). (b) Saliency mask of frame Fi

n (the pixel x with

Mi
n (x) > τ is indicated as foreground) and saliency map Mi

n of frame Fi′
n′ .

(c) The SIFT flow and the result that frame Fi′
n′ warped onto frame Fi

n
according to SIFT flow. The black region means the unsatisfying matching
region outside the image range. (d) The spatio-temporal SIFT flow computed
without saliency constraint, and the corresponding result that frame Fi′

n′
warped onto frame Fi

n . (e) The result of spatio-temporal SIFT flow by
considering the saliency mask and saliency map in (b).

algorithm tries to match a portion of pixels (indicated by Ri
n)

instead of all the pixels within its frame in contrast to
what the original SIFT flow [17] aims at. Belief propagation
algorithms [17], [29] are applied to optimize above energy
function.

Fig. 4 shows a comparison between the proposed spatio-
temporal SIFT flow and traditional SIFT flow. Fig. 4(a) depicts
two frames Fi

n and Fi ′
n′ need to be matched. Fig. 4(b) are

the computed saliency mask (of frame Fi
n) and the saliency

map Mi
n of frame Fi

n′ . Fig. 4(c) shows the result that frame Fi ′
n′

warped onto frame Fi
n according to traditional SIFT flow.

The black region is the matched area outside the image
range, which is incorrect. Fig. 4(d) gives the result of spatio-
temporal SIFT flow without saliency constraint. It is visible
that spatio-temporal SIFT flow is more accurate than the
conventional SIFT flow. Still, the performance of matching is
not sufficient enough due to the disturbance of the background.
The correct result should be that a ‘lion’ likes the one in
frame Fi

n is presented in frame Fi ′
n′ . Fig. 4(e) shows the

result of spatio-temporal SIFT flow by considering the saliency
mask in Fig. 4(b), where the performance gains significant
improvement.

Instead of using all the frames, it is possible to sample only
a few representative frames or sample at a low frame-rate
from video to perform the object discovery process (Fig. 2(a)).
We select frame fn = { f 1

n , f 2
n , ..., f k

n , ...} every other five
or ten frames from video Vn to perform object discovery
process. For the k-th frame f k

1 , f k
2 , ..., f k

N of every video,
we compute their spatio-temporal SIFT flow to capture their
correspondence (Fig. 2(b)). Next, we calculate the distance of
the point x of frame f k

n from its corresponding points of other
frames ℵ( f k

n ) = { f k
1 , ..., f k

n−1, f k
n+1, ... f k

N } in SIFT feature:

Sk
n (x) = 1

|N − 1|
∑

f k
n′ ∈ℵ( f k

n )

‖sk
n (x) − sk

n′(x + wkk
nn′ (x))‖1. (8)

We normalize this term with values in [0, 1], where the
smaller values indicate greater chance belonging to common
object since the smaller distances to corresponding points.

Fig. 5. Effective object discovery from multiple videos even with some
frames not containing the common object. The first row shows two related
video sequences and the common object plane does not appear in every frame.
The object-like area of each frame estimated through (10) are presented in the
second row. The bottom row shows the more correct object discovery results
through (13) with further utilizing the inter-frame consistence property. Those
frames with the ratio κ ≤ 0.2 are considered not to contain the common object,
which are marked in the red rectangles.

Similar to the saliency term, we build a matching term Mk
n(x)

to define the cost of labeling pixel x for foreground (lk
n(x) = 1)

or background (lk
n(x) = 0):

Mk
n(x) = ex p − {Sk

n (x)} · lk
n(x)

+ ex p − {1 − Sk
n (x)} · (1 − lk

n(x)). (9)

For frame f k
n , we use the above saliency and matching terms

to build an object discovery energy function as:

Ek
n (x) = ε1Ak

n(x) + ε2Mk
n(x) + Vk

n (x), (10)

where the smooth term Vk
n (x) for frame f k

n is expressed as:

Vk
n (x, y) =

∑

x,y∈Ns

‖Ck
n (x) − Ck

n (y)‖2 · |lk
n(x) − lk

n(y)|, (11)

where Ck
n (x) indicates the color value of pixel x in f k

n , spatial
pixel neighborhood Ns consists of eight spatially neighboring
pixels within one frame. This object discovery energy can be
efficiently solved by traditional graph cut algorithm [27] and
we are able to roughly estimate the common object over the
video dataset. The scalars ε weight the various terms.

Effective object discovery from multiple videos even with
some frames not containing the common object. The first
row shows two related video sequences where the common
object plane does not appear in every frame. The object-like
area of each frame estimated through (10) is presented in
the second row. The bottom row shows more accurate object
discovery results through (13) with further utilizing the
inter-frame consistence property. Those frames with the ratio
κ ≤ 0.2 are considered not to contain the common object,
which are marked in the red rectangles.

There are many videos that include frames that do not
contain the common object (e.g. the first row of Fig. 5).
Current video co-segmentation approaches disregard this
challenge and assume common object appears in every frame.
Our method effectively handles this difficulty. One intuition is
that the frames that do not contain the common object are not
consistent with the frames that contain the object. Therefore,
we further leverage the inter-frame consistency property.
Based on (10), we get object-like areas and background areas
for each frame. Suppose frame f k−1

n contains the common
foreground while f k

n does not. Their estimated object-like
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Fig. 6. Overview of our object refinement stage on frame f k and frame f k+1. (a) After object discovery step, a pair of videos is randomly selected to perform
object refinement. (b) Object-like area is obtained after the object discovery step. (c) Visualization of spatio-temporal SIFT flow field. The discontinuities of
spatio-temporal SIFT flow field reveal the variation of object structure. (d) Result of over-segmentation on spatio-temporal SIFT flow field. (e) A more accurate
object partitioning is obtained by removing the pixels that are similar to background. (f) GMM for kth frame is updated based on the updated estimation
in (e).

area should be different. We employ Gaussian mixture
models (GMM) to characterize the common object appearance.
For frame f k−1

n , the GMMs for object-like area and back-
ground are defined as {GM M f

f k−1
n

, GM Mb
f k−1
n

}, respectively.

We introduce an object consistence term to measure the
consistency of estimated objects in video according to the
appearance model of object. For frame f k

n , this object
consistence term is defined as:

Ck
n (x) = ex p − {pk

n(x)} · lk
n(x)

+ ex p − {1 − pk
n(x)} · (1 − lk

n(x)), (12)

where pk
n(x) denotes the probability of pixel x for foreground,

which is obtained from {GM M f

f k−1
n

, GM Mb
f k−1
n

} of prior

frame f k−1
n .

Then we add this object consistence term into our object
discovery energy function:

Ek
n (x) = ε1Ak

n(x) + ε2Mk
n(x) + ε3Ck

n (x) + Vk
n (x). (13)

We set parameter ε1 = ε2 = ε3 = 50 for all the test videos
in our experiments. Since five or ten frames between frame
f k−1
n and f k

n , the estimated GMM for frame f k−1
n is helpful

for identifying whether the frame f k
n contains the common

object. From Fig. 5 we see that the object discovery energy
function in (13) is a better choice for detecting the frames not
containing common object due to the inter-frame consistency.

We use Tk
n to denote the object-like area in frame f k

n and
the number of pixels belonging to the object-like area Tk

n is
expressed as | Tk

n |. We consider whether frame f k
n contains

the common object in case the ratio

κk
n =|Tk

n | / |Tk−1
n |, (14)

is relatively large (κk
n > 0.2) and conclude that the foreground

object of frame Fk
n is not changed. Conversely, if this ratio

is small, we assume the objects between frame Fk−1
n and Fk

n
are not consistent. In this case, frame Fk

n is considered to not
contain the common object and we set Tk

n = ∅. The GMM
of the frame f k

n is set as:

GM M f
f k
n

= GM M f

f k−1
n

,

GM Mb
f k
n

= GM Mb
f k−1
n

.

In this way, the GMM for common object is kept consistent
across the whole video sequence by ignoring the ‘noise’
frames. The frames that are detected to not contain the objects
in object discovery step, will be not taken into consideration
in next object refinement process.

C. Object Refinement

In the previous step, we obtain a coarse estimation for
the common object in the dataset. Based on this, we seek
to obtain a more accurate estimation for foreground object
in every video. Our intuition is to remove the pixels that
are similar to background based on the estimation result.
Nevertheless, this also requires determining what foreground
would look like. To filter out background pixels we divide
the object-like area into sub-regions based on their variations.
We utilize spatio-temporal SIFT flow for this purpose.

Fig. 6 illustrates the procedure of the object refinement
step. First, a pair of videos (Vn, Vn′) is randomly selected
from dataset. Their spatio-temporal SIFT flow between
frames f k

n and f k
n′ is constructed. As shown in Fig. 6(c),

discontinuities of spatio-temporal SIFT flow field reflect the
variation of object structure (but not color variation) yet
robust to object details. This property of spatio-temporal SIFT
flow field is very important. Through the computation of the
discontinuities of spatio-temporal SIFT flow field, we divide
the object-like area into a few regions depending on the
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structure variation. This enables us to estimate every part of the
object-like area whether belongs to foreground using GMMs.

Properties of flow field boundaries reveal the physical cues
of object as investigated in the past [20], [26]. In [20], an
embedding discontinuity detector is proposed for localizing
object boundaries in trajectory spectral embedding, however
this is not suitable for our work. In [26], an algorithm is
presented to detect the motion boundary and determine which
pixels reside inside the moving object is presented. This
method faces difficulty when the foreground motion patterns
are not distinct. Moreover, it divides the frame only into
two parts, while we want to divide the object-like area into
multiple regions based on the structure variations.

Based on the visualization of spatio-temporal SIFT flow
field using [1], numerous over-segmentation methods can
be introduced and the object-like area can be efficiently
partitioned into regions as shown in Fig. 6(d). Each pixel
denotes a flow vector where the orientation and magnitude are
represented by the hue and saturation of the pixel, respectively.

For each region t of object-like area Tk
n , we build the

GM Mb
t for background T

k
n and the GM M f

t for the remaining
region (object) Tk

n \ t. The likelihood ρk
n (xt ) of pixels xt ∈ t

for foreground is estimated using {GM M f
t , GM Mb

t }.
We compare the texture of region t with the background and

object-like area using the local binary pattern (LBP) features,
which is used for describing the local spatial structure of an
image. To model the texture of foreground and background
in frame f k

n , two normalized histograms (H f
t and H b

t ) are
calculated in LBP domain. For region t, the pixels belonging
to the object-like area Tk

n\t are used for formulating the LBP
histogram H f

t while the pixels belonging to the background

area T
k
n are sampled for forming H b

t . Thus the probabil-
ity �k

n(xt ) of pixels xt ∈ t for foreground is estimated through
these two LBP histograms as follows:

�k
n(xt ) = H f

t [xt ]
H f

t [xt ] + H b
t [xt ]

, (15)

where H f
t [xt ] (with value in [0, 1]) indicates the value of

histogram H f
t at pixel xt .

We combine ρk
n (xt ) and �k

n(xt ) as follows:

ok
n(xt ) = β · ρk

n (xt ) + (1−β) · �k
n(xt ) 0 < β < 1, (16)

where the term ok
n(xt ) denotes the probability of the pixel

xt for foreground according to both appearance and texture
models. If ok

n(xt ) < 0.5, pixel xt will be classified into
background. There is no need to consider all of regions t ∈ Tk

n .
If the area of region t is too large or too small, we will ignore
these regions. These constraints will take fewer regions into
account and enhance the efficiency of our object refinement.
In our experiments, the region with |t|

|Tk
n | > 0.5 or |t|

|Tk
n | < 0.05

will be directly classified into foreground.
After frame f k

n has been refined, we update
{GM M f

f k
n
, GM Mb

f k
n
} (Fig. 6(f)) to provide guidance for the

following object segmentation process. As shown in Fig. 6,
this object refinement process is executed across video pairs
and more correct estimation for foreground object is achieved.

D. Object Segmentation by Optimization

Once the correct estimations for foreground of each video
are obtained, a graph-cut based method is employed to
get per-pixel segmentation results. Recall our definition
of fn = { f 1

n , f 2
n , ..., f k

n , ...} is that we select frame fn

every other five or ten frames from video Vn . After the
object refinement process, we get more correct estimation for
common object and update the appearance model of the object
and background {GM M f

f k
n
, GM Mb

f k
n
} for frame f k

n , which
can be used to conduct the segmentation in next five or ten
frames of f k

n . For frame Fi
n , we obtain the likelihood of

pixel x for foreground as pi
n(x) using our appearance models

estimated by its temporally nearest frame of fn .
For video Vn , we update the labelling {li

n}i for all pixels to
obtain the final segmentation results through an object segmen-
tation function. This object segmentation function Fn(x) based
on spatio-temporal graph by connecting frames temporally can
be defined as follows:

Fn(x) =
∑

i

{
∑

x

U i
n(x)+γ1

∑

x,y∈Ns

V i
n(x, y)+γ2

∑

x,y∈Nt

W i
n(x, y)},

(17)

where the set Ns contains all the 8-neighbors within one frame
and the set Nt contains the backward nine neighbors in pairs of
adjacent frames. The parameters γ are the positive coefficient
for balancing the relative influence between various terms.

The unary term U i
n defines the cost of labeling pixel x

with foreground and background according to our appearance
model:

U i
n(x) = ex p − {pi

n(x)} · li
n(x)

+ ex p − {1 − pi
n(x)} · (1 − li

n(x)). (18)

where pi
n(x) denotes the probability of pixel x for foreground

as we mentioned before. The pairwise terms V i
n and W i

n
encourage spatial and temporal smoothness, respectively.
These two terms favor assigning the same label to neighboring
pixels that have similar color:

V i
n(x, y) =

∑

x,y∈Ns

‖Ci
n(x) − Ci

n(y)‖2 · |li
n(x) − li

n(y)|,

W i
n(x, y) =

∑

x,y∈Nt

‖Ci
n(x) − Ci+1

n (y)‖2 · |li
n(x) − li+1

n (y)|.

(19)

We use binary graph cuts [27] to obtain the optimal solution
for (17), and thus get the final segmentation results. The
final labelling {li

n}i for all pixels in all frames represents a
segmentation of the video Vn .

IV. EXPERIMENTAL RESULTS

A. ViCoSeg Dataset

The purpose of this work is to automatically co-segment
the common objects from related videos with large foreground/
background motion patterns or appearance variations, even
when some frames do not contain the common object.
There has been very little comparative work to address
these problems. To deeper explore these issues and establish



3144 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 10, OCTOBER 2015

TABLE I

DATASET STATISTICS

Fig. 7. The histogram of the number of frames in videos.

a benchmark for future work, we introduce a video
co-segmentation dataset, called ViCoSeg, which is
collected from existing databases and Youtube with similar
characteristics in order to perform co-segmentation. While
previous works have experimented with a few of videos, this
dataset consists of 12 groups of videos including 30 videos
totally, together with their corresponding pixel-level ground
truth. Each group of videos includes two to four video clips.
Table 1 lists some statistics of our introduced dataset. We note
that this dataset is significantly larger than those used in
previous works (Rubio et al. [21] and Chiu and Fritz [25]).
Chiu and Fritz [25] proposed a video co-segmentation dataset
with multiple objects, which is not very suitable for the task
of single object video co-segmentation. This dataset is also
limited with the number of video groups. Rubio et al. [21]
offered a dataset for single object video co-segmentation. This
dataset is not satisfactory since it only consists of 4 video
groups, and the same foreground is simply pasted into different
backgrounds.

Our proposed dataset is the largest co-segmentation dataset
as far as we know, and the number of frames in each video is
also shown in Fig. 7. These selected video sequences range
in length from 20 to 125 frames and exhibit major challenges
such as foreground/background color overlap (e.g. Tiger),
large shape deformation (e.g. Gokart), and various motion
patterns (e.g. Boat), etc. Four groups (Gokart, Lion, Horse,
Tiger) of our dataset have similar objects. Different from
previous datasets, the introduced video groups include
six video groups (Bird, Boat, Car, Cat, Moto, Plane)
that have large intra-class variations. In fact, most previous
works assume the common objects share similar appearance
model. Moreover, the Car2 and Plane2 contain some frames
without the common object, which increases difficulties for
the co-segmentation task. In particular, there are very few
methods emphasis on this issue. We will further evaluate the
performance of our proposed approach in these scenes and
give detailed discussion in the following subsections.

B. Experiments

We have tested our method on four video groups with
similar foreground from our ViCoSeg dataset. In order to
demonstrate the effectiveness of our algorithm on segmenting
out the common object from diverse categories, we further test
on video groups with large variations on foreground class.
We finally evaluate our method on Car2 and Plane2 video
groups, these two video groups have some frames not
containing the common object.

We present qualitative video co-segmentation results and
comparisons with multiple-class video co-segmentation [25]
and video object segmentation [32]. [25] proposed a multi-
class video co-segmentation method using a non-parametric
Bayesian model. Since the video dataset is divided into
multi-class, we select the class that has the most overlap
with the ground truth as its foreground segmentation result.
[32] proposed an approach to extract primary object segments
in videos in the object proposal domain by combining motion,
appearance and predicted-shape similarity across frames.
We use the publicly available implementations by authors of
these methods and set their free parameters so as to maximize
their performance for fairness.

We also present quantitative comparisons with previous
methods [25], [32]. In our experiments, two main metrics
are employed for the evaluation. Segmentation performance
is measured by the average per-frame pixel error [11], which
is the number of falsely labeled pixels both foreground and
background. This measurement is defined as |XOR(R,GT )|

K ,
where R indicates the segmentation result, GT and K corre-
spond to ground truth and the number of frames respectively.
Additionally, we adopt the intersection-over-union score [25]
for evaluation, which is the standard in PASCAL challenges
and defined as R∩GT

R∪GT as criterion. Since both accuracy and
temporal coherence are very important for video segmentation,
we further provide the demo video of co-segmentation in
our website2 for demonstrating the temporal coherence of the
proposed approach.

C. Video Co-Segmentation With Similar Foreground

We collect four video groups that have same or similar
object, and also a pixel-level segmentation ground-truth
for each video is available. Our approach is evaluated
on these video groups and compared to object-based
video segmentation (OS) [32] and multi-class video
co-segmentation (MC) [25]. Fig. 8 shows the comparison
results between our algorithm and previous methods. Each
group of the categories Gokart and Lion consists of
two source videos, while each of the rest ones comprises
three videos.

OS [32] extracts primary object for single video segmenta-
tion using object proposals. Their method presented a motion
scoring function by optical flow gradients and shape similarity
for selection of object proposals. However, the performance
becomes not well in complex videos such as Tiger video set.
The visual similarity between background and foreground

2http://github.com/shenjianbing/robustvideocoseg/demo.mp4



WANG et al.: ROBUST VIDEO OBJECT COSEGMENTATION 3145

Fig. 8. Video co-segmentation results on four groups of videos with similar foreground. In each group, the segmentation results from top to bottom are
generated by MC [25], OS [32] and our method, respectively.

Fig. 9. The intersection-over-union metric on our video sets with similar
foreground.

misleads the inference of common object, which causes the
poor segmentation performance. The effective utilization of
saliency, motion and SIFT features in our spatio-temporal field
proves more correct indication for foreground object and leads
to significant improvements.

MC [25] provided a way that combines global appearance
and motion cues to perform multi-class video co-segmentation.
However, their estimation for global appearance model relies
on chroma and motion features. The discrimination power of
this model is limited to objects with complicated appearance.
For instance, in the videos of Horse and Tiger, their classi-
fication does not correspond to a particular object but only to
regions that exhibit coherent appearance or motion.

Our method utilizes a deeper understanding of the
properties of foreground object, including intra-frame saliency,
inter-frame consistency and across-video similarity. These
properties are further integrated into our spatio-temporal SIFT
flow and object discovery energy function, which enables
our method to produce more accurate results and outperform
the state-of-the-art approaches. For Lion group, our method
extracts the entire foreground lion from the backgrounds,
although the zebra also looks like foreground. For Tiger
group, the foreground tiger is not very distinctive from the
background in terms of color, but it is still successfully
discovered by our algorithm due to good correspondences to
other related videos. Fig. 9 and Table. 2 report the quantitative
comparisons by the intersection-over-union metric and the
average per-frame pixel errors respectively. Experiment shows
that our method produces much higher segmentation accuracy.

TABLE II

AVERAGE PER-FRAME PIXEL ERRORS

D. Video Co-Segmentation With Large Intra-Class Variations

Our framework can automatically produce object
co-segmentation results for videos with unrelated backgrounds
and is robust to the intra-class variation. To further illustrate
this advantage of our algorithm, we collect 6 video groups
with large variations in foreground appearance and apply
our approach to co-segment these challenging video groups.
As shown in Fig. 10, we compare our video co-segmentation
results with the ones generated by previous methods OS [32]
and MC [25]. Video groups of both Bird and Boat have
four source videos, while others include a pair of two videos.
Most foreground objects have little appearance similarities,
which are very challenging for segmentation. Even so, the
experimental results clearly show that the performance of our
method is much better than OS [32] and MC [25] in this
issue.

The segmented result by OS [32] is not accurate in many
videos in Fig. 10. For example, in Bird videos, a lot part of
background is wrongly divided into foreground bird together.
That is because it lacks of considering inter-video object
correspondence which is much helpful to predict meaningful
segmentations. In contrast, our method infers the object of
interest across videos based on spatio-temporal SIFT flow,
which robustly discovers object over the entire database.
Moreover, OS [32] emphasizes that optical flow gradients are
able to discriminate objects and background. But in many
scenes, object does not have distinct motions from the back-
ground. For example, in the group of Boat videos, the boat
is moving and the river is flowing, the similar motion cues of
object and background lead to incorrect segmentation results
of OS [32].

As a video object co-segmentation method, MC [25]
takes into account the correspondences of objects across
videos. But this relationship is based on the similarity of
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Fig. 10. Video co-segmentation results on six groups of videos with high intra-class variations. In each group, the results from top to bottom are generated
by MC [25], OS [32] and our method, respectively.

object appearance and lacks of high level features. As a
result, it does not correctly discriminate foreground across
videos when the common object has appearance variations
and wrongly merges object classes from the foreground and
background. In Cat videos we have observed that a part of cat
(black label) in the first video is wrongly classified together
with the background tree in the second video. In addition,
the lackness of high level features for common object brings
difficulties in capturing the foreground object in its entirety.
MC [25] produces fragment in class labeling, as shown
in the third video of Bird and the second video of Cat
in Fig. 10.

Our algorithm builds the correspondences of objects,
incorporates object structure, texture related cues to capture
the variability of object and refines the estimation results
for object. In this way, our algorithm provides significant
improvement over previous methods OS [32] and MC [25]. For
instance, in Car videos, the foreground car in the first clip is
obviously different from the one in the second clip, while our
method outputs nearly perfect segmentations according to the
reliable foreground correspondences by our spatio-temporal
SIFT flow. For Moto group, there is large foreground scale
change and different foreground appearance. For Boat group,
the boat in the first clip moves fast while the one in the third
video is almost static. Our method is robust enough to produce
more satisfactory and accurate co-segmentation results, since
our algorithm associates various cues for foreground object.
The intersection-over-union metric is shown in Fig. 11 and
the average per-frame pixel errors are illustrated in Table 3.
With an overall average performance of 85.21% of our

Fig. 11. The intersection-over-union metric on our video sets with large
intra-class variations.

TABLE III

AVERAGE PER-FRAME PIXEL ERRORS

method in intersection-over-union metric measurement,
we make significant improvement for co-segmentation results
over OS (52.71%) and MC (44.74%).

E. Co-Segmenting Some Frames Without Common Object

It is very common that some frames do not contain the
object of interest in real video data, such as object moving
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Fig. 12. Video co-segmentation results on two groups of videos with some frames not containing the common object. In each group, the results from top
to bottom are generated by MC [25], OS [32] and our method, respectively.

out of camera or the shot switching effect. But there are
very few methods notice this fact, most of co-segmentation
methods assume every frame contains the interesting object,
which cannot handle these issues well. The proposed method
tries to tackle these problems and is evaluated on the newly
collected two video groups: Car2 and Plane2, since there
are no suitable video co-segmentation datasets for this issue.
Both Car2 and Plane2 have two source videos and some
frames do not contain the foreground object. The frames
without common object are naturally indicated by returning
an empty labeling through our method. As shown in Fig. 12,
our co-segmentation results clearly show that our method
handles such situation better than OS [32] and MC [25], which
maintains the good segmentation performance even though the
objects are not appear in every frame.

The co-segmentation results by OS [32] are not satisfying,
especially for the frames not containing object. For instance,
background road is wrongly classified into foreground in
Car2 videos. The OS approach does not consider the situation
that objects do not appear in each frame in the video clip.
Moreover, we can find that OS does not work well for the
large foreground object or with low contrast to background.
This issue is particularly prominent in the second video in
Plane2, where the plane occupies almost all the picture and
is not distinct with background. That maybe because OS
heavily relies on the initial proposals estimated for foreground.
When the foreground is difficult to identify, the objectness
measure for proposals is not accurate and segmentation errors
then occur. MC [25] builds a global appearance model by
considering the color information of different classes. Based
on this effort, the segments of the same class are linked
within and across videos. For Car2, all the backgrounds
are correctly labeled for the frames not containing the
foreground car. However, when the backgrounds are visually

Fig. 13. The intersection-over-union metric on our video sets with large
intra-class variations.

TABLE IV

AVERAGE PER-FRAME PIXEL ERRORS

similar to object, the global appearance model will be
limited for its weak ability of object discovery in the videos
of Plane2.

Different from previous co-segmentation methods, our
algorithm emphasizes on the object discovery by incorporating
more discriminative visual cues like SIFT feature and deeply
exploring the correspondences between foreground objects
within and across videos. Based on this effective inference for
foreground, we build the consistent foreground appearance
models across the whole video sequence. This strategy
makes our method powerful enough for detecting the
frames without object. As shown in Fig. 13, our method
obviously obtains the better co-segmentation results with
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more spatio-temporally consistency than the results by
OS [32] and MC [25]. The intersection-over-union metric is
shown in Fig. 13 and the average per-frame pixel errors are
illustrated in Table 4. Both the quantitative and qualitative
experimental results demonstrate that our method achieves
much better co-segmentation results than the state-of-the-art
OS [32] and MC [25] approaches.

V. CONCLUSION

We presented a robust video co-segmentation method that
discovers the common object over an entire video dataset
and segments out the objects from the complex backgrounds.
Saliency, motion cues and SIFT flow are integrated into
our spatio-temporal SIFT flow to explore the relationships
between foreground objects. Furthermore, we formulate the
video co-segmentation problem as an object optimization
process, which progressively refine the estimation for object
in three steps: object discovery, object refinement and
object segmentation. Both the quantitative and qualitative
experimental results have shown that the proposed algorithm
creates more reliable and accurate video co-segmentation
performance than the state-of-the-art algorithms. Unlike
previous work, we emphasize that object discovery process
should be robust to foreground variations in appearance
or motion patterns, which extends the applicability of our
co-segmentation method.
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