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DeepTrack: Learning Discriminative Feature
Representations Online for Robust
Visual Tracking
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Abstract—Deep neural networks, albeit their great success on
feature learning in various computer vision tasks, are usually
considered as impractical for online visual tracking, because
they require very long training time and a large number of
training samples. In this paper, we present an efficient and very
robust tracking algorithm using a single convolutional neural
network (CNN) for learning effective feature representations of
the target object in a purely online manner. Our contributions
are multifold. First, we introduce a novel truncated structural
loss function that maintains as many training samples as possible
and reduces the risk of tracking error accumulation. Second, we
enhance the ordinary stochastic gradient descent approach in
CNN training with a robust sample selection mechanism. The
sampling mechanism randomly generates positive and negative
samples from different temporal distributions, which are gen-
erated by taking the temporal relations and label noise into
account. Finally, a lazy yet effective updating scheme is designed
for CNN training. Equipped with this novel updating algorithm,
the CNN model is robust to some long-existing difficulties in
visual tracking, such as occlusion or incorrect detections, without
loss of the effective adaption for significant appearance changes.
In the experiment, our CNN tracker outperforms all compared
state-of-the-art methods on two recently proposed benchmarks,
which in total involve over 60 video sequences. The remarkable
performance improvement over the existing trackers illustrates
the superiority of the feature representations, which are learned
purely online via the proposed deep learning framework.

Index Terms— Convolutional neural network, deep learning,
visual tracking.
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I. INTRODUCTION

MAGE features play a crucial role in many challenging

computer vision tasks such as object recognition and detec-
tion. Unfortunately, in many online visual trackers features
are manually defined and combined [1]-[7]. Even though
these methods report satisfactory results on individual datasets,
hand-crafted feature representations would limit the perfor-
mance of tracking. For instance, normalized cross correlation,
which would be discriminative when the lighting condition is
favourable, might become ineffective when the object moves
under shadow. This necessitates good representation learning
mechanisms for visual tracking that are capable of capturing
the appearance effectively changes over time.

Recently, deep neural networks have gained significant
attention thanks to their success on learning feature
representations. Different from the traditional hand-crafted
features [8]-[10], a multi-layer neural network architecture
can efficiently capture sophisticated hierarchies describing
the raw data [11]. In particular, the Convolutional Neural
Networks (CNN) has shown superior performance on standard
object recognition tasks [12]-[16], which effectively learn
complicated mappings while utilizing minimal domain
knowledge.

However, the immediate adoption of CNN for online visual
tracking is not straightforward. First of all, CNN requires a
large number of training samples, which is often not avail-
able in visual tracking as there exist only a few number of
reliable positive instances extracted from the initial frames.
Moreover, CNN tends to easily overfit to the most recent
observation, e.g., most recent instance dominating the model,
which may result in drift problem. Besides, CNN training
is computationally intensive for online visual tracking. Due
to these difficulties, CNN has been treated as an offline
feature extraction module on predefined datasets [17], [18]
for tracking applications so far.

In this work, we propose a novel tracking algorithm using
CNN to automatically learn the most useful feature representa-
tions of particular target objects while overcoming the above
challenges. We employ a tracking-by-detection strategy — a
four-layer CNN model to distinguish the target object from
its surrounding background. Our CNN generates scores for all
possible hypotheses of the object locations (motion states) in
a given frame. The hypothesis with the highest score is then
selected as the prediction of the motion state in the current
frame. We update this CNN model in an purely online manner.
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In other words, the proposed tracker is learned based only on
the samples obtained from the current video sequence; no extra
information or offline training is required.

Typically, tracking-by-detection approaches rely on prede-
fined heuristics to sample from the estimated object location
to construct a set of positive and negative samples. Often these
samples have binary labels, which leads to a few positive
samples and a large negative training set. However, it is
well-known that CNN training without any pre-learned model
usually requires a large number of training samples, both for
positive ones and negative ones. Furthermore, even with suffi-
cient samples, the learner usually needs hundreds of seconds to
achieve a CNN model with an acceptable accuracy. The slow
updating speed could prevent the CNN model from being a
practical visual tracker. To address these two issues, our CNN
model employs a special type of loss function that consists
of a structural term and a truncated norm. The structural
term makes it possible to obtain a large number of training
samples that have different significance levels considering
the uncertainty of the object location at the same time. The
truncated norm is applied on the CNN response to reduce
the number of samples in the back-propagation [12], [13] to
significantly accelerate the training process.

We employ the Stochastic Gradient Decent (SGD) method
to optimize the parameters in the CNN model. Since the
standard SGD algorithm is not tailored for online visual
tracking, we propose the following two modifications. First,
to prevent the CNN model from overfitting to occasionally
detected false positive instances, we introduce a temporal
sampling mechanism to the batch generation in the SGD algo-
rithm. This temporal sampling mechanism assumes that the
object patches shall stay longer than those of the background
in the memory. Therefore, we store all the observed image
patches into training sample pool, and we choose the positive
samples from a temporal range much longer than the negative
ones. In practice, we found this is a key factor in the robust
CNN-based tracker, because discriminative sampling strategy
successfully regularizes the training for effective appearance
model. Secondly, the object locations, except the one on the
first frame, is not always reliable as they are estimated by the
visual tracker and the uncertainty is unavoidable [19]. One
can treat this difficulty as the label noise problem [20]-[22].
We propose to sample the training data in the joint distribution
over three random variables, i.e. the frame index, the image
patch index and the label noise state. In the experiment, further
performance improvement is observed when the label noise is
taken into account.

For achieving a high generalization ability in various image
conditions, we use multiple image cues (low-level image fea-
tures, such as normalized gray-scale image and image
gradient) as independent channels as network input. We update
the CNN parameters by iteratively training each channel inde-
pendently followed by a joint training on a fusion layer which
replaces the last fully-connected layers from multiple channels.
The training processes of the independent channels and the
fusion layer are totally decoupled. Empirically, we observed
that this two-stage iterative procedure is more accurate than
jointly training for all cues.
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Finally, we propose to update the CNN model in a “lazy”
style. First, the CNN-model is only updated when a signif-
icant appearance change occurs on the object. The intuition
behind this lazy updating strategy is that we assume that the
object appearance is more consistent over the video, compared
with the background appearances. Second, the fusion layer
is updated in a coordinate-descent style and with a lower
learning rate. The underlying assumption is that the feature
representations can change fast while each image cue con-
tributes to the final classification task in a more stable manner
over all the frames. In practice, this lazy updating strategy not
only increases the tracking speed significantly but also yields
observable accuracy increase.

To summarize, our main contributions include:

o A visual tracker based on online adapting CNN is pro-
posed. As far as we are aware, this is the first time a
single CNN is introduced for learning the best features
for object tracking in an online manner.

o A structural and truncated loss function is exploited for
the online CNN tracker. This enables us to achieve very
reliable and robust tracking while achieving tracking
speeds up to 4fps.

o An iterative SGD method with an robust temporal sam-
pling mechanism is introduced for competently capturing
object appearance changes and meanwhile considering
the label noise.

The novel CNN-based tracker, termed DeepTrack in
this work, outperforms all the compared state-of-the-art
algorithms in the experiments on two recently proposed
benchmarks involving over 60 videos. In addition, it achieves
a practical tracking speed (from 1.5fps to 4fps depending
on the sequence and settings), which is comparable to many
other visual trackers.

II. CNN ARCHITECTURE
A. CNN With a Single Image Cue

Our CNN consists of two convolutional layers and two
fully-connected layers. The ReLU (Rectified Linear Unit) [13]
is adopted as the activation function and max-pooling opera-
tors are used for dimension-reduction. The gray and dashed
block in Fig. 1 shows the structure of our network, which can
be expressed as (32x32) — (10x10x12) > 2x2x18) —
(8) — (2) in conventional neural network notation.

The input is locally normalized 32 x 32 image patches,
which draws a balance between the representation power and
computational load. The first convolution layer contains 12
kernels each of size 13 x 13 (an empirical trade-off between
overfitting due to a very large number of kernels and discrim-
ination power), followed by a pooling operation that reduces
the obtained feature map (filter response) to a lower dimension.
The second layer contains 216 kernels with size 7 x 7.
This leads to a 72-dimensional feature vector in the second
convolutional layer, after the pooling operation in this layer.

The two fully connected layers firstly map the 72-D vector
into a 8-D vector and then generate a 2-D confidence vector
s = [sl,sz]T € RZ%, with s; and s» corresponding to the
positive score and negative score, respectively. In order to
increase the margin between the scores of the positive and
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Fig. 1.

The architecture of our CNN tracker with multiple image cues. The gray and dashed blocks are the independent CNN channels for different image

cues; the green dashed block is the fusion layer where a linear mapping R24 - R2 is learned.

negative samples, we calculate the CNN score as

S = Score(s) = s1 - exp(s1 — 52), )

B. CNN With Multiple Image Cues

Effective object tracking requires multiple cues, which
may include color, image gradients and different pixel-wise
filter responses. These cues are weakly correlated yet contain
complementary information. In this work, we conduct the
DeepTrack on three image cues. For gray-level images,
we employ two local contrast normalized images and one
gradient image as the cues. The local contrast normalization,
which is robust to illumination changes [13], is used to
generate two cues with different parameter configurations.
In specific, we use

{ru =0.1h,r; =0.1h} and {r, = 0.15h,r; = 0.15h},

where r, and r, are the two parameters determining the
local contrast normalization [13] while 4 is the height of the
current object. For color images, the two locally-normalized
cues are simply replaced with the H and V channels of the
HSV color representation. Offering multiple image cues, we
then let CNN to select the most informative ones in a data
driven fashion. By concatenating the final responses of these
3 cues, we build a fusion layer (the green dashed block in
Fig. 1) to generate a 2-D output vector, based on which the
final CNN score is calculated using Eq. 1.

The proposed DeepTrack algorithm is a patch-based
method, which is a common strategy adopted in object detec-
tion [23], [24] and visual tracking [4], [25]. However, some
recent work on CNN-based detection performs the convolution
on the whole image or the ROI (Region of Interest) once
and then extracts the score for each image patch in the later
stage. This modification stems from the pioneering work [26]
decades ago and usually leads to a much efficient detection
algorithm [27]-[29] without loss of accuracy. Theoretically,
a similar strategy could be used in the CNN-based tracking
methods for tracking acceleration while this is beyond the
scope of this paper which focus mainly on online feature
learning using CNN models.

C. Data Generation and Pre-Processing

In this work, we employ the particle-filter-based motion
model [30] which is similar to the one used in [31]. In specific,
for each new frame, we sample 1500 random patches in a
Gaussian Distribution which centers on the previous predicted
state. The new training data is then generated according to the
newly estimated motion state and the labeling criteria (Eq. 6)
which is explained below. In this work, the standard deviation
for the three dimensions are min(10, 0.5 - &), min(10, 0.5 - i)
and 0.01 - &, respectively.

Following the common setting in the seminar
works [13], [32], we perform the following data pre-
processing to achieve a more robust CNN model.

o To better curb the overfitting, all the positive training
samples are flipped as augmented data. By assuming
that object rarely rotates vertically, we only generate
horizontally mirrored samples.

o The pixel values of each the image cue are normalized
to the range [0, 10]. We found this normalization is
crucial for balancing the importances between different
image cues.

D. Structural and Truncated Loss Function

1) Structural Loss: Let x,, and 1,, € {[0, 117, [1, 0]T} denote
the cue of the input patch and its ground truth label (back-
ground or foreground) respectively, and s = f(x,; Q) be
the predicted 2-D vector of x, with network weights Q, the
objective function of N samples in the batch is

1 N
ﬁzﬁ E If (%3 ) — Ll @)
n=1

when the CNN is trained in the batch-mode. Eq. 2 is a
commonly used loss function and performs well in binary
classification problems. However, for object localization tasks,
usually higher performance can be obtained by ‘structurizing’
the binary classifier [33], [34]. The advantage of employing
the structural loss is the larger number of available training
samples, which is crucial to the CNN training. In the ordinary
binary-classification setting, one can only use the training
samples with high confidences to avoid class ambiguity. In
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Fig. 2. An illustration of the structural loss defined in Eq. 5 and Eq. 6.
The cropped frame (from sequence couple) is shown on the left with the
predicted region denoted as a yellow bounding box and 4-row of training
samples are shown on the right. The upper two rows contain the positive
samples (red) while the bottom two store the negative ones (blue). The width
of the color boundary indicates the importance A(yn,y*). We can see some
of the instances in row-2 and row-4 are similar. However, their training
weights are small so the similar pairs could not influence the training process
significantly.

contrast, the structural CNN is learned based upon all the
sampled patches.

We  modify the original CNN’s output to
f@({,y,); Q) € R?, where I' is the current frame,
y» € R? is the motion parameter vector of the target
object, which determines the object’s location in I' and
o is the freedom degree' of the transformation. The operation
¢(T, y,) suffices to crop the features from I" using the motion
state y,. The associated structural loss is defined as

N

1
£== 2 [AGny)  IF @3 Q) = hillo]. ©)

n=1
where y* is the (estimated) motion state of the target object in

the current frame. To define A(y,,y*) we first calculate the
overlapping score @(y,,y") defined in [35] as

area(r (yn) (1r(y"))

®(yn» y*) = . n 1) °
area(r (y,) U r(y*))

where r(y) is the region defined by y, () and |J denotes the

intersection and union operations respectively. Finally we have

2
1+exp(—(O(ys, y*) = 0.5))
and the sample label 1,, is set as

T ; *
_ [1,0]" if O(y,,y*) > 0.5 ©)

[0, 11T elsewise

“)

A(yn, ") = 1 €[0,11, (5

n

From Eq. 5 we can see that A(y,,y*) actually measures the
importance of the training patch n. For instance, patches that
are very close to object center and reasonably far from it may
play more significant roles in training the CNN, while the
patches in between are less important (see Fig. 2).

In visual tracking, when a new frame I'(;) comes, we predict
the object motion state yz"t) as

¥(;) = argmax Score (f(@(T@),¥n): Q) (7
yn€Y

where the score function is defined in Eq. 1 and ) contains
all the test patches in the current frame.

In this paper o = 3, i.e., the bounding box changes in its location and the
scale.
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Fig. 3. The truncated [, losses. The dashed green curve indicates the original
Iy loss, the red and blue curves are the truncated losses for positive and
negative samples.

2) Truncated Structural Loss: Ordinary CNN models
regress the input features into the target labels, via the /;-norm
loss. One can directly adopt this strategy in the CNN-based
tracking algorithm. However, to speed up the online train-
ing process, we employ a truncated />-norm in our model.
We empirically observe that patches with very small error do
not contribute much in the back propagation. Therefore, we
can approximate the loss by counting the patches with errors
that are larger than a threshold. Motived by this, in [36], we
define a truncated /> norm as

lelr = llell2 - (1 = [llell2 < A1), ®)

where [-] denotes the indicator function while e is the predic-
tion error, e.g., f(¢(L, y,); Q)—1, for patch-n. In our previous
work [36], this truncated loss did increase the training speed,
at the cost of slightly reducing the prediction accuracy.

In this work, we observed that the tracking performance is
more sensitive to the prediction error on positive samples than
the negative samples. Recall that in training stage, we label
each positive sample as [1,0]7 and each negative sample as
[0, 117. In the test stage, the visual tracker selects the best
particle among the ones with high scores. If the highest score
in the current frame is large enough, the negative samples with
small errors, which are ignored in training according to the
truncated loss, will not affect the prediction. In contrast, if one
ignores the positive samples with small errors in training,
the selection among the top-n particles in the test stage will
be consequently inaccurate, and thus drift problems could
happen. In other words, we need a more precise loss function
for positive samples in visual tracking. We thus improve the
original truncated loss function as:

llellT = llell2 - (1 —[lell2 < (1+iiln)ﬂ)’ 9)

where u > 0 and [, = 1,(1), ie., the scalar label of the
n-th sample. This truncated norm is visualized in Fig. 3 and
now Eq. 3 becomes:

N

1
L= D AG Y I1f (T ya): Q) — Luli7].

n=1

(10)
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It is easy to see that with the truncated norm || - ||, the
backpropagation [12] process only depends on the training
samples with large errors, ie., || f(¢(T,y,); Q) — L,|lT > O.
Accordingly, we can ignore the samples with small errors and
the backpropagation procedure is significantly accelerated. In
this work, we use f = 0.0025 and u = 3.

III. UPDATE CNN FOR TRACKING
A. Online Learning: Iterative SGD With Temporal Sampling

1) Temporal Sampling: Following other CNN-based
approaches [12], [13], we wused Stochastic Gradient
Decent (SGD) for the learning of the parameters €.
However, the SGD we employ is specifically tailored for
visual tracking.

Different from detection and recognition tasks, the training
sample pool grows gradually as new frames come in visual
tracking. Moreover, it is desired to learn a consistent object
model over all the previous frames and then use it to distin-
guish the object from the background in the current frame.
This implies that we can effectively learn a discriminative
model on a long-term positive set and a short-term negative
set.

Based on this intuition, we tailor the SGD method by
imposing a temporal sampling process. In particular, let a,
denote the patch feature cropped in frame I' according to yp,

ie,a = ¢([,y,). We generate the positive sample pool as
Afr, = {af(l),a;(l),.. ae+ 1(;)’ae+ (t)} and the negatlve

sample pool as A}, = {a] (1),32 (1y> - a, oL (z)}
where 6T is the number of posmve/negatlve samples added
into the pool, for each frame. When generating a mini-batch
for SGD, we sample the positive pool with the probability

1
N
while sample the negative samples with the probability

1 ,2]
t—1)*|,
TN exp[ o( )
where -

- is the normalization term and ¢ = 10,6+ =
0~ = 150. In this work, we set N*T = min(t6", 1000),
N~ = min(t6—, 500). When the pool size reaches the limit
N7 and N, the oldest ones will be removed.

The above temporal selection mechanism can be considered
to be similar to the “multiple-lifespan” data sampling [25].
However, [25] builds three different codebooks, each corre-
sponding to a different lifespan, while we learn one discrimi-
native model based on two different sampling distributions.

2) Robust Temporal Sampling With Label Noise: In most
tracking-by-detection strategy, the detected object y’(k,) is
treated as a true-positive in the following training stage.
However, among all the motion states y?‘t ,ve=1,2,...,T,
only the first one y(;, is reliable as it is manually defined. Other
motion states are estimated based on the previous observations.
Thus, the uncertainty of the prediction y(), V¢ > 1 is usually
unavoidable [19]. Recall that, the structural loss defined in
Eq. 4 could change significantly if a minor perturbation is
imposed on y(), one requires a accurate y( in every frame,
which is unfortunately not feasible.

Prob(a:(t/)) = (11)

Prob(a, (r’)) = (12)

1

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 4, APRIL 2016

In our previous work [36], we take the uncertainty into
account by imposing a robust term on the loss function Eq. 10.
The robust term is designed in the principle of Multiple-
Instance-Learning [37], [38] and it alleviates over-fittings in
some scenarios. However, the positive-sample-bag [36] could
also reduce the learning effectiveness as it will confuse the
learner when two distinct samples are involved in one bag.
Actually, other MIL-based trackers also suffer from this prob-
lem [19], [37].

In this work, we propose a much simpler scheme
for addressing the issue of prediction uncertainty. Specifi-
cally, the prediction uncertainty is treated as a label noise
problem [20]-[22]. We assume there exist some frames,
on which the detected “objects” are false-positive samples.
In other words, the some sample labels in Atz and A|., are
contaminated (flipped for the binary case). In the context of
temporal sampling, the assumption introduces an extra random
variable n which represent the event that the label is true
(n = 1) or not ( = 0). The sampling process is now
conduct in the joint probability space {n = 1,2, -+, N} X
{(t'=1,2,---,t} x {§ = 1,0} and the joint probability is

Prob(y, . 1 = 1), (13)

where y (1) stands for the selection of the n-th posi-
tlve/negatlve sample in the #'-th frame. According to the
Bayesian chain-rule, we have

Prob(y® ., = 1) = Prob(t',n,n = 1)
= Prob(;’, =1 | [/ }'l) Prob(t/ l’l)
= Prob(y =1 | t', n) - Prob(y; (,,))

(14)

n (t/) >

where Prob (yiE (t,)) is given in Eq. 11 and 12 while the con-
ditional probability Prob(n =11 ¢, n) reflects the likelihood
that the label of sample y R is not contaminated.

To estimate Prob(y = 1 | t', n) efficiently, we assume that
all the windows in the same frame share the same conditional
probabilities. Then we can calculate the probability as a
prediction quality Q, in frame-#’, i.e

Q, = Prob(y =11, n)
1 N
= 1 _— I:A Y >k/
P| P (Yn,(t) Y(,))
ne

Jf@r QL. ]

where the set P contains the sample in the frame ¢ with high
scores. Mathematically, it is defined as

> Yn, (1)) (15)

P= {Vn I Sn,(t/) >0 - SE}/)}, (16)

where S, () and S(t/) are the CNN scores (see Eq. 1) of the
n-th sample and the sample selected as object in frame ¢/,
respectively. The underlying assumption of Eq. 15 is that,
a detection heat-map with multiple widely-distributed peaks
usually implies low detection quality, as there is only ONE
target in the video sequence. This tracking quality is illus-
trated in Fig. 4. From the figure we can see that when
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Frame#20, Pred. Quality = 0.02

Frame#10, Pred. Quality = 1.00
= —

Fig. 4. A demonstration of the prediction quality on a video
sequence (tigerl). For each frame, the solid bounding-boxes are the detected
object yz, while the dashed boxes denote the ones with ambiguities, i.e., the
members in the set P. For each bounding-box, the importance in the tracking
quality evaluation is represented via its width (the wider the more important)
and the color (the brighter the more important). The frame index and tracking
qualities are shown on the top of the frame images. Note that the quality is
estimated without ground-truth information.

occlusion (top-right) or significant appearance change
(bottom-left) occurs, the tracking quality drops dramati-
cally and thus the samples in those “contaminated” frames
are rarely selected according to Eq. 14. In this work,
we set v = 0.75.

3) Iterative Stochastic Gradient Descent (IT-SGD): Recall
that we use multiple image cues as the input of the CNN
tracker. This leads to a CNN with higher complexity, which
implies a low training speed and a high possibility of over-
fitting. By noticing that each image cue may be weakly
independent, we train the network in a iterative manner.
In particular, we define the model parameters as Q =
{Wl K

1 K k
covs " s Weons Wres =+ s Wi, Wruse}, where W, denotes

the filter parameters in cue-k, w'}c corresponds to the fully-
connected layers and w s,s. parameterize the fusion layer.

In this work, we conduct the SGD process iteratively over
different image cues and the fusion layer. Specifically, after we
complete the training on w¥, and w’}c, we evaluate the filter
responses from that cue in the last fully-connected layer and
then update w ;5. on the dimensions corresponding to cue-k .
This can be regarded as a coordinate-descent variation of SGD.
In practice, we found out both the robust temporal sampling
mechanism and the IT-SGD significantly curb the overfitting
problem. The iterative SGD is illustrated in Algorithm 1.

B. Lazy Update and the Overall Work Flow

It is straightforward to update the CNN model using the
IT-SGD algorithm at each frame. However, this could be com-
putationally expensive as the complexity of training processes
would dominate the complexity of the whole algorithm.
On the other hand, in case the appearance of the object is
not always changing, a well-learned appearance model can
remain discriminant for a long time. Furthermore, when the
feature representations are updated for adapting the appearance
changes, different image cues contribute to the final classifi-
cation task in a more stable way.
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Algorithm 1 Iterative SGD With Robust Temporal Sampling

1: Inputs: Frame image I';); Two sample pools AT, AT,
2: Old CNN model (K cues) fo(¢(I (s, ); ).
3: Estimated/given y ;)
4: Learning rates r; 7; minimal loss ¢; training step budget M.
5: procedure IT-SGD(AT,, AT, f, ¥y, #, r, M)
6: Selected sample states {yl,(t), Yo, (b)) - - ,yNM)}.
7: Generate associated labels 1, (), - - - , 1x,(+) according to yz‘t).
8: Estimate the prediction quality Q,.
9: Save the current samples and labels into A}, and Aj,.
10: Sample training instances according to Prob(yf M= 1).
11:  form+ 0, M —1do '
N
12: Lo =% [Alyny) [ fn(@T ), yn): Q) = L ,):
13: If L, < g ﬁreak;
14: k =mod(m, K) + 1,
15: Update w¥,, and w'}c using SGD with learning rate r.
16: Update w .. partially for cue-k, with learning rate 7.
17: Save fi41 = fm;
18: end for

19: end procedure
20: Outputs: New CNN model f* = f,=,m* = argmin,, L.

Motivated by the above two intuitions, we propose to update
the CNN model in a lazy manner (see Algorithm 1). First,
when tracking the object, we only update the CNN model
when the training loss £ is above 2&. Once the training start,
the training goal is to reduce £ below &. As a result, usually
L1 < 2& holds in a number of the following frames, and
thus no training is required for those frames. This way, we
accelerate the tracking algorithm significantly (Fig. 5). Second,
we update the fusion layer in a lazy way, or more specifically,
in a coordinate-descent manner with a small learning rate
(see Algorithm 1). The whole learning process over all the
image cues is thus stabilized well. In this work, we set that
¢ = 5e-3, r = 5e-2 and 7 = 5e-3.

C. Modifications to the Previous Versions of the
DeepTrack Algorithm

In our previous work [36], [39], we proposed to use a
“CNN pool” (a set of CNNs) [39], or a single CNN [36]
for visual tracking. A number of modifications have been
made on the previous versions of DeepTrack to achieve a
more accurate and robust visual tracker. We summarize the
differences among the three variations of DeepTrack in Table I.
According to the table, the latest version of DeepTrack is more
sophisticatedly designed and can lead to better performances,
as shown in Sec. IV.

1V. EXPERIMENTS
A. Benchmarks and Experiment Setting

We evaluate our method on two recently proposed visual
tracking benchmarks, i.e., the CVPR2013 Visual Tracker
Benchmark [40] and the VOT2013 Challenge Benchmark [41].
These two benchmarks involve more than 60 sequences and
cover almost all the challenging scenarios such as scale
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Fig. 5. Work flow of proposed algorithm. The bottom row shows the three-stages operations on a frame: test, estimation and training. In the training frames,
the green bounding boxes are the negative samples while the red ones denote the positive samples. The dashed block covers the positive sample
pool AT (red) and negative sample pool A~ (green). In each pool, the edges of the sample patches indicate their sampling importances. The green ones
(negative) and red ones (positive) represent the prior probabilities of sample selection while the purple ones stands for the conditional probabilities (Q(z)).

The thicker the edge, the higher the probability.

TABLE I

THE IMPLEMENTATION DETAILS AND DIFFERENCES OF THREE VERSIONS OF DEEPTRACK. FOR THE ITEM “CNN STRUCUTURE”,
THE SYMBOL “C”, “P” AND “FC” DENOTE THE CONVOLUTIONAL LAYERS, POOLING LAYERS AND FULLY-CONNECTED
LAYERS RESPECTIVELY. “9C” MEANS THAT THERE ARE 9 FILTERS IN THIS CONVOLUTIONAL LAYER. “FC(18 x 2)”
INDICATES THAT THE MAPPING MATRIX W IN THIS FULLY-CONNECTED LAYER Is W € R18%2

DeepTrack (this work) DeepTrack_ACCV/[36] DeepTrack_BMVC[39]
Main Structure Single CNN Single CNN Multiple (50) CNNs
CNN Strucuture 12C—P— 18C—P—FC(72 x 8)—-FC(8 x 2) | 9C—P— 18C—P—FC(18 x 2) | 9C—P— 18C—P—FC(18 x 2)
Pooling method Max Average Average
Activation method ReLU Sigmoid Sigmoid
Image cue number 3 4 4
Data augmentation? Yes, flipped positive samples No No
Cue normalization? Yes No No
Multiple-lifespan sampling? Yes Yes No
Sample with label uncertainty? Yes No No
Truncated structural loss Improved Original Original

changes, illumination changes, occlusions, cluttered back-
grounds and motion blur. Furthermore, these two benchmarks
evaluate tracking algorithms with different measures and cri-
teria, which can be used to analyze the tracker from different
perspectives. Fig. 6 illustrates some sequence instances of the
CVPR2013 benchmark (top row) and the VOT2013 bench-
mark (bottom row), with the objects annotated in the first
frames.

In the experiments on two selected benchmarks, we use the
same parameter values for DeepTrack. Most parameters of the
CNN tracker are given in Sec. II and Sec. III. In addition, there
are some motion parameters for sampling the image patches.
In this work, we only consider the displacement Ay, Ay and
the relative scale s of the object, where s = h/32, h is
estimated object height. In a new frame, we sample 1500 ran-
dom patches in a Gaussian Distribution which centers on the
previous predicted state. The standard deviation for the three

dimensions are min(10, 0.5 - ), min(10, 0.5 - #) and 0.01 - A,
respectively. Note that, all parameters are fixed for all videos
in both two benchmarks; no parameter tuning is performed for
any specific video sequence. We run our algorithm in Matlab
with an unoptimized code mixed with CUDA-PTX kernels for
the CNN implementation. The hardware environment includes
one quad-core CPU and a NVIDIA GTX980 GPU.

B. Comparison Results on the CVPR2013 Benchmark

The CVPR2013 Visual Tracker Benchmark [40] contains
50 fully annotated sequences. These sequences include many
popular sequences used in the online tracking literature over
the past several years. For better evaluation and analysis of the
strength and weakness of tracking approaches, these sequences
are annotated with the 11 attributes including illumination
variation, scale variation, occlusion, deformation, motion blur,
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Fig. 6. The first frames of the video sequences from the CVPR2013 (first row) and the VOT2013 (second row) benchmarks. From top left to bottom right:
MotorRolling, Boy, Crossing, David3, Basketball, Shaking, Bicycle, Car, David, Diving, Gymnastics, Sunshade. The red blocks are the object locations given

in the first frame.

fast motion, in-plane rotation, out-of-plane rotation, out-of-
view, background clutters, and low resolution. The benchmark
contains the results of 29 tracking algorithms published before
the year 2013. Here, we compare our method with other
11 tracking methods. Among the competitors, CNT [42],
TPGR [43] and KCF [44] are the most recently state-of-the-art
visual trackers; TLD [45], VID [46], CXT [47], ASLA [48],
Struck [4], SCM [49] are the top-6 methods as reported
in the benchmark; IVT [31] and MIL [19] are classical
tracking methods which are used as comparison baselines.
In addition, to evaluate the performance improvement to the
previous versions of DeepTrack, we also rerun the Deep-
Track method proposed in [39] (DeepTrack_ BMVC) and [36]
(DeepTrack_ACCV) report the obtained results here.

The tracking results are evaluated via the following two
measurements: 1) Tracking Precision (TP), the percentage
of the frames whose estimated location is within the given
distance-threshold (z7) to the ground truth, and 2) Track-
ing Success Rate (TSR), the percentage of the frames in
which the overlapping score defined in Eq. 4 between the
estimated location and the ground truth is larger than a
given overlapping-threshold (z,). Following the setting in the
recently published work [43], [44], we conduct the experiment
using the OPE (one-pass evaluation) evaluation strategy for a
better comparison to the latest methods.

Firstly, we evaluate all algorithms using fixed thresholds,
ie, g = 20, 7, = 0.6, which is a common selection in
tracking evaluations [40]. Results of the top-12 trackers (all the
involved ones except IVT and MIL trackers) on all the video
sequences are given in Table II. According to the table, our
method achieves better average performance compared with
other trackers. The performance gap between our method
and the reported best result in the literature are 6% for the
TP measure: our method achieves 83% accuracy while the best
state-of-the-art is 77% (TGPR method). For the TSR measure,
our method is 8% better than the existing methods: our
method gives 63% accuracy while the best state-of-the-art
is 58% (CNT method). Furthermore, our CNN tracker have
ranked as the best method for 33 times. These numbers for
CNT, TGPR, KCF, SCM and Struck are 29, 21, 28, 19 and
21 respectively. Another observation from the Table II is
that, DeepTrack rarely performs inaccurately; there are only
36 occasions when the proposed tracker performs significantly

poorer than the best method (no less then 80% of the highest
score for one sequence).

The superiority of our method becomes more clear when
the tracking result are evaluated using different measurement
criteria (different 74, 7,). In specific, for TP, we evaluate
the trackers with the thresholds 7y = 1,2, ---, 50 while for
TSR, we use the thresholds 7, = 0 to 1 at the step of 0.05.
Accordingly we generate the precision curves and the success-
rate curves for each tracking method, which is shown in Fig. 7.

From the score plots we can see that, overall the CNN
tracker ranks the first (red curves) for both TP and TSR
evaluations. The proposed DeepTrack method outperform all
the other trackers when 7, < 0.68 and 7; > 10. When the
evaluation threshold is reasonably loose, (i.e., 7, < 0.45 and
74 > 20), our algorithm is very robust with both the accuracies
higher than 80%. Having mentioned that when the overlap
thresholds are tight (e.g. 7, > 0.75 or 74 < 5), our tracker has
similar response to rest of the trackers we tested.

As to the different variations of DeepTrack, one can
see that the previous versions, i.e., DeepTrack BMVC and
DeepTrack_ACCYV, can achieve relatively good accuracies
which are comparable to the top ranked trackers (e.g., Struck
and SCM) reported with the benchmark. On the other hand, the
current version of DeepTrack still enjoys a large performance
improvement over its prototypes.

Fig. 8 shows the performance plots for 11 types of
difficulties in visual tracking, i.e., fast-motion, background-
clutter, motion-blur, deformation, illumination-variation,
in-plane-rotation, low-resolution, occlusion, out-of-plane-
rotation, out-of-view and scale-variations. We can see that
the proposed DeepTrack outperforms other competitors for
all the difficulties except the “out-of-view” category.

C. Comparison Results on the VOT2013 Benchmark

The VOT2013 Challenge Benchmark [41] provides an eval-
uation kit and the dataset with 16 fully annotated sequences
for evaluating tracking algorithms in realistic scenes subject
to various common conditions. The tracking performance
in the VOT2013 Challenge Benchmark is primarily evalu-
ated with two evaluation criteria: accuracy and robustness.
The accuracy measure is the average of the overlap ratios
over the valid frames of each sequence while the tracking
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TABLE II

THE TRACKING SCORES OF DEEPTRACK AND OTHER VISUAL TRACKERS ON THE CVPR2013 BENCHMARK. THE REPORTED RESULTS ARE SHOWN IN
THE ORDER OF “TP/TSR”. THE TOP SCORES ARE SHOWN IN RED FOR EACH ROW. A SCORE IS SHOWN IN BLUE IF IT IS HIGHER THAN 80%
OF THE HIGHEST VALUE IN THAT ROwW. “NO. BEST” ROW SHOWS THE NUMBER OF BEST SCORES FOR EACH TRACKING ALGORITHM
WHILE “N0. BAD” ROW SHOWS THE NUMBER OF LOW SCORES, i.E., THE SCORES LOWER THAN 80% OF THE MAXIMUM ONE IN
THE CORRESPONDING ROW. ASIDE THE CURRENT VERSION OF DEEPTRACK, WE ALSO REPORT THE RESULTS OF ITS OLD
VERSIONS PROPOSED IN [39] (BMVC) AND [36] (ACCV)

[ Swck | VID [ CXI | SCM | TLD | ASLA | KCF__ | TGPR | CNT_ | BMVC | ACCV | Deeplrack
tiger] 0.17/0.13 | 0.12/0.09 | 0.37/0.17 | 0.13/0.11 | 0.46/0.36 | 0.23/0.15 | 0.07/0.94 | 0.28/0.22 | 0.15/0.12 | 0.21/0.06 | 0.10/0.05 | 0.56/0.36
carDark 1.00/1.00 | 0.74/0.66 | 0.73/0.67 | 1.00/0.98 | 0.64/0.50 | 1.00/0.99 | 1.00/0.44 | 1.00/0.95 | 1.00/0.99 | 1.00/0.78 | 1.00/0.94 | 1.00/0.97
girl 1.00/0.90 | 0.95/0.41 | 0.77/0.61 | 1.00/0.74 | 0.92/0.61 | 1.00/0.78 | 0.86/0.47 | 0.92/0.69 | 1.00/0.36 | 0.96/0.20 | 0.92/0.64 | 0.98/0.83
david 0.33/0.19 | 0.94/0.38 | 1.00/0.48 | 1.00/0.84 | 1.00/0.83 | 1.00/0.94 | 1.00/0.26 | 0.98/0.26 | 0.47/0.32 | 0.96/0.89 | 0.79/0.74 | 1.00/0.76
singer] 0.64/0.20 | 1.00/0.36 | 0.97/0.27 | 1.00/1.00 | 1.00/0.93 | 1.00/0.98 | 0.81/0.20 | 0.68/0.19 | 1.00/1.00 | 0.75/0.61 | 0.74/0.55 | 1.00/1.00
skating] 0.47/0.20 | 0.90/0.43 | 0.23/0.06 | 0.77/0.21 | 0.32/0.21 | 0.77/0.45 | 1.00/0.23 | 0.81/0.25 | 1.00/0.43 | 0.76/0.32 | 0.70/0.17 | 1.00/0.45
deer 1.00/0.94 | 0.04/0.03 | 1.00/0.87 | 0.03/0.03 | 0.73/0.73 | 0.03/0.03 | 0.82/0.76 | 0.86/0.79 | 1.00/0.89 | 0.83/0.82 | 0.73/0.71 | 1.00/0.99
singer2 0.04/0.03 | 0.45/0.43 | 0.06/0.04 | 0.11/0.13 | 0.07/0.05 | 0.04/0.03 | 0.95/0.89 | 0.97/0.91 | 0.95/0.97 | 0.91/0.83 | 0.92/0.86 | 0.57/0.34
card 0.99/0.26 | 0.36/0.32 | 0.38/0.27 | 0.97/0.93 | 0.87/0.63 | 1.00/0.95 | 0.95/0.24 | 1.00/0.28 | 1.00/1.00 | 1.00/0.84 | 1.00/0.99 | 1.00/1.00
tiger2 0.63/0.42 | 0.16/0.08 | 0.34/0.16 | 0.11/0.05 | 0.39/0.04 | 0.14/0.11 | 0.36/0.28 | 0.72/0.47 | 0.11/0.09 | 0.41/0.17 | 0.24/0.17 | 0.49/0.32
dudek 0.90/0.81 | 0.88/0.96 | 0.82/0.87 | 0.88/0.86 | 0.60/0.63 | 0.75/0.74 | 0.88/0.82 | 0.75/0.71 | 0.87/0.85 | 0.50/0.64 | 0.25/0.25 | 0.73/0.81
sylvester 0.99/0.85 | 0.82/0.74 | 0.85/0.56 | 0.95/0.77 | 0.95/0.80 | 0.82/0.65 | 0.84/0.73 | 0.96/0.93 | 0.89/0.55 | 0.97/0.71 | 0.97/0.31 | 1.00/0.92
Jumping 1.00/0.50 | 0.21/0.08 | 1.00/0.25 | 0.15/0.11 | 1.00/0.70 | 0.45/0.15 | 0.34/0.26 | 0.95/0.50 | 1.00/0.31 | 0.99/0.81 | 1.00/0.87 | 1.00/0.93
david? T.00/1.00 | 1.00/0.88 | 1.00/1.00 | 1.00/0.80 | 1.00/0.70 | 1.00/0.95 | 1.00/1.00 | 1.00/0.97 | 1.00/1.00 | 1.00/0.79 | 1.00/0.98 | 1.00/0.87
shaking 0.19/0.04 | 0.93/0.83 | 0.13/0.04 | 0.81/0.69 | 0.41/0.31 | 0.48/0.17 | 0.02/0.01 | 0.97/0.70 | 0.01/0.01 | 0.32/0.23 | 0.58/0.45 | 0.95/0.68
trellis 0.88/0.72 | 0.50/0.44 | 0.97/0.69 | 0.87/0.84 | 0.53/0.45 | 0.86/0.85 | 1.00/0.74 | 0.98/0.68 | 1.00/0.95 | 1.00/0.80 | 0.99/0.88 | 1.00/0.96
woman 1.00/0.89 | 0.20/0.16 | 0.37/0.15 | 0.94/0.69 | 0.19/0.156 | 0.20/0.17 | 0.94/0.00 | 0.97/0.87 | 0.94/0.87 | 0.20/0.07 | 0.16/0.05 | 0.98/0.24
Jish 1.00/1.00 | 0.65/0.57 | 1.00/1.00 | 0.86/0.85 | 1.00/0.96 | 1.00/1.00 | 1.00/1.00 | 0.97/0.97 | 1.00/1.00 | 1.00/0.98 | 1.00/0.99 | 1.00/1.00
matrix 0.12/0.12 | 0.22/0.03 | 0.06/0.01 | 0.35/0.24 | 0.16/0.03 | 0.05/0.01 | 0.17/0.11 | 0.39/0.26 | 0.16/0.14 | 0.26/0.15 | 0.37/0.15 | 0.72/0.43
ironman 0.11/0.02 | 0.17/0.12 | 0.04/0.03 | 0.16/0.09 | 0.12/0.04 | 0.13/0.08 | 0.22/0.10 | 0.22/0.13 | 0.19/0.08 | 0.13/0.09 | 0.15/0.11 | 0.08/0.05
mhyang 1.00/0.97 | 1.00/0.77 | 1.00/1.00 | 1.00/0.96 | 0.98/0.52 | 1.00/1.00 | 1.00/0.93 | 0.95/0.88 | 1.00/1.00 | 0.94/0.66 | 1.00/0.98 | 1.00/0.96
Tiquor 0.39/0.40 | 0.52/0.52 | 0.21/0.21 | 0.28/0.29 | 0.59/0.54 | 0.23/0.23 | 0.98/0.07 | 0.27/0.27 | 0.48/0.48 | 0.26/0.20 | 0.47/0.42 | 0.91/0.89
motorRolling | 0.09/0.09 | 0.05/0.05 | 0.04/0.02 | 0.04/0.05 | 0.12/0.10 | 0.06/0.07 | 0.05/0.05 | 0.09/0.10 | 0.04/0.05 | 0.04/0.06 | 0.07/0.10 | 0.80/0.43
coke 0.95/0.87 | 0.15/0.11 | 0.65/0.15 | 0.43/0.24 | 0.68/0.09 | 0.16/0.10 | 0.84/0.41 | 0.95/0.63 | 0.52/0.18 | 0.22/0.10 | 0.21/0.06 | 0.91/0.18
soccer 0.25/0.15 | 0.45/0.18 | 0.23/0.12 | 0.27/0.16 | 0.11/0.11 | 0.12/0.11 | 0.79 0.16/0.13 | 0.12/0.09 | 0.17/0.15 | 0.17/0.14 | 0.30/0.16
Boy 1.00/0.93 | 0.97/0.61 | 0.94/0.42 | 0.44/0.44 | 1.00/0.74 | 0.44/0.44 | 1.00/0.96 | 0.99/0.01 | 1.00/0.99 | 1.00/0.86 | 1.00/0.95 | 1.00/0.93
basketball 0.12/0.09 | 1.00/0.85 | 0.04/0.02 | 0.66/0.53 | 0.03/0.02 | 0.60/0.26 | 0.92/0.71 | 0.99/0.69 | 0.07/0.05 | 0.40/0.03 | 0.47/0.12 | 0.82/0.39
Temming 0.63/0.49 | 0.51/0.42 | 0.73/0.38 | 0.17/0.16 | 0.86/0.43 | 0.17/0.17 | 0.49/0.30 | 0.35/0.26 | 0.38/0.37 | 0.60/0.37 | 0.80/0.71 | 0.28/0.26
boli 0.02/0.01 | 0.31/0.14 | 0.03/0.01 | 0.03/0.01 | 0.31/0.08 | 0.02/0.01 | 0.99/0.75 | 0.02/0.01 | 0.98/0.45 | 0.03/0.01 | 0.03/0.01 | 0.99/0.78
crossing 1.00/0.72 | 0.44/0.36 | 0.62/0.32 | 1.00/0.99 | 0.62/0.41 | 1.00/0.99 | 1.00/0.78 | 1.00/0.81 | 1.00/0.96 | 0.78/0.19 | 1.00/0.80 | 0.94/0.56
couple 0.74/0.51 | 0.11/0.06 | 0.64/0.52 | 0.11/0.11 | 1.00/0.98 | 0.09/0.09 | 0.26/0.24 | 0.60/0.35 | 0.23/0.21 | 0.62/0.22 | 0.51/0.16 | 0.99/0.63
david3 0.34/0.34 | 0.56/0.44 | 0.15/0.10 | 0.50/0.47 | 0.11/0.10 | 0.55/0.49 | 1.00/0.96 | 1.00/0.69 | 0.65/0.39 | 0.29/0.09 | 0.42/0.12 | 1.00/0.93
carScale 0.65/0.37 | 0.55/0.42 | 0.74/0.74 | 0.65/0.64 | 0.85/0.29 | 0.74/0.65 | 0.81/0.35 | 0.79/0.37 | 0.72/0.63 | 0.75/0.27 | 0.63/0.34 | 0.67/0.56
doll 0.92/0.34 | 0.97/0.73 | 0.99/0.87 | 0.98/0.97 | 0.98/0.39 | 0.92/0.91 | 0.97/0.33 | 0.94/0.40 | 0.95/0.92 | 0.98/0.91 | 0.99/0.94 | 0.96/0.86
skiing 0.04/0.04 | 0.14/0.01 | 0.15/0.06 | 0.14/0.06 | 0.12/0.05 | 0.14/0.11 | 0.07/0.05 | 0.12/0.10 | 0.07/0.06 | 0.07/0.06 | 0.05/0.05 | 0.09/0.06
Football 0.75/0.57 | 0.80/0.65 | 0.80/0.57 | 0.77/0.42 | 0.80/0.28 | 0.73/0.62 | 0.80/0.57 | 1.00/0.75 | 0.80/0.57 | 0.85/0.32 | 0.86/0.45 | 0.79/0.52
“Footballl 1.00/0.72 | 0.99/0.51 | 1.00/0.96 | 0.57/0.34 | 0.55/0.34 | 0.80/0.39 | 0.96/0.80 | 0.99/0.41 | 0.99/0.34 | 0.94/0.34 | 0.86/0.36 | 1.00/0.38
freemanT 0.80/0.16 | 0.95/0.13 | 0.73/0.18 | 0.98/0.54 | 0.54/0.18 | 0.39/0.20 | 0.39/0.13 | 0.93/0.21 | 0.96/0.26 | 0.98/0.17 | 0.99/0.30 | 1.00/0.35
freeman3 0.79/0.12 | 0.72/0.22 | 1.00/0.89 | 1.00/0.88 | 0.77/0.42 | 1.00/0.00 | 0.91/0.21 | 0.77/0.15 | 1.00/0.68 | 0.71/0.21 | 0.25/0.11 | 0.97/0.67
freemand 0.37/0.15 | 0.37/0.08 | 0.43/0.17 | 0.51/0.18 | 0.41/0.24 | 0.22/0.16 | 0.53/0.12 | 0.58/0.21 | 0.39/0.15 | 0.66/0.16 | 0.23/0.11 | 0.71/0.22
subway 0.98/0.63 | 0.23/0.18 | 0.26/0.20 | 1.00/0.90 | 0.25/0.22 | 0.23/0.21 | 1.00/0.94 | 1.00/0.99 | 1.00/0.62 | 0.93/0.22 | 0.80/0.69 | 1.00/0.79
suv 0.57/0.57 | 0.52/0.47 | 0.91/0.90 | 0.98/0.80 | 0.91/0.70 | 0.57/0.55 | 0.98/0.98 | 0.66/0.66 | 0.98/0.97 | 0.53/0.52 | 0.53/0.53 | 0.52/0.52
walking 1.00/0.42 | 1.00/0.55 | 0.24/0.22 | 1.00/0.86 | 0.96/0.30 | 1.00/0.99 | 1.00/0.34 | 1.00/0.41 | 1.00/1.00 | 1.00/0.04 | 1.00/0.36 | 1.00/0.94
walking? 0.98/0.32 | 0.41/0.39 | 0.41/0.39 | 1.00/0.99 | 0.43/0.29 | 0.40/0.40 | 0.44/0.30 | 0.99/0.31 | 1.00/1.00 | 0.96/0.81 | 0.57/0.53 | 0.61/0.38
mouniainBike | 0.92/0.67 | 1.00/0.81 | 0.28/0.28 | 0.97/0.72 | 0.26/0.21 | 0.90/0.82 | 1.00/0.88 | 1.00/0.87 | 1.00/0.86 | 0.92/0.27 | 0.92/0.33 | 1.00/0.91
Jaceoccl 0.58/0.95 | 0.53/0.72 | 0.34/0.57 | 0.93/1.00 | 0.20/0.65 | 0.18/0.25 | 0.73/0.99 | 0.66/0.80 | 0.65/0.86 | 0.70/0.75 | 0.68/0.75 | 0.33/0.42
Jogging-1 0.24/0.22 | 0.23/0.18 | 0.96/0.95 | 0.23/0.21 | 0.97/0.95 | 0.23/0.22 | 0.23/0.22 | 0.99/0.96 | 0.97/0.49 | 0.69/0.13 | 0.83/0.24 | 0.97/0.94
jogging2 0.25/0.22 | 0.19/0.16 | 0.16/0.15 | 1.00/0.98 | 0.86/0.83 | 0.18/0.17 | 0.16/0.15 | 1.00/0.95 | 1.00/1.00 | 0.18/0.15 | 0.17/0.16 | 0.99/0.30
dogl 1.00/0.51 | 0.83/0.61 | 1.00/0.95 | 0.98/0.76 | 1.00/0.61 | 1.00/0.87 | 1.00/0.51 | 1.00/0.52 | 0.94/0.82 | 0.96/0.59 | 0.99/0.63 | 1.00/0.95
Fleetface 0.64/051 | 0.66/0.68 | 0.57/0.60 | 0.53/0.58 | 0.51/0.41 | 0.30/0.32 | 0.46/0.47 | 0.45/0.47 | 0.59/0.62 | 0.21/0.22 | 0.30/0.25 | 0.51/0.60
faceocc2 1.00/0.97 | 0.98/0.84 | 1.00/0.90 | 0.86/0.74 | 0.86/0.51 | 0.79/0.61 | 0.97/0.79 | 0.47/0.45 | 0.65/0.50 | 0.97/0.78 | 0.98/0.83 | 1.00/0.71
Overall 0.66/0.48 | 0.58/0.41 | 0.58/0.43 | 0.65/0.55 | 0.61/0.42 | 0.53/0.46 | 0.74/0.53 | 0.77/0.54 | 0.72/0.58 | 0.66/0.41 | 0.64/0.46 | 0.83/0.63
No. Best 21 10 15 18 12 17 27 20 29 1 7 33
No. Bad 62 71 66 51 72 64 48 15 a4 67 65 36
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Fig. 7. The Precision Plot (left) and the Success Plot (right) of the tracking results on the CVPR2013 benchmark. Note that the color of one curve is
determined by the rank of the corresponding trackers, not their names.

robustness is the average number of failures over 15 runs. failure frame is conducted so it can continue. According to the
A tracking failure happens once the overlap ratio measure evaluation protocol, three types of experiments are conducted.
drops to zero and an re-initialization of the tracker in the In Experiment-1, the tracker is run on each sequence in
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Fig. 8. The Precision Plot (left) and the Success Plot (right) of the tracking results on the CVPR2013 benchmark, for 11 types of tracking difficulties.

the dataset 15 times by initializing it on the ground truth perturbed in the order of ten percent of the object size.
bounding box. The setting of Experiment-2 is the same to In Experiment-3, the colorful frames are converted into
Experiment- 1, except that the initial bounding box is randomly  grayscale images.
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TABLE III

THE PERFORMANCE COMPARISON BETWEEN CNN TRACKER AND OTHER
27 TRACKERS ON THE VOT2013 BENCHMARK. FOR EACH COLUMN,
THE BEST SCORE IS SHOWN IN BOLD AND RED WHILE THE
SECOND BEST SCORE IS SHOWN IN BLUE

Experiment-1 Experiment-2 Experiment-3 Averaged

Accu. Rob. Accu. Rob. Accu. Rob. Accu. Rob.
DeepTrack 9.60 7.06 | 10.14 | 6.09 8.17 6.04 9.30 6.40
AIF 10.29 | 14.27 | 11.39 | 14.43 | 9.90 | 17.50 | 10.52 | 15.40
ASAM 12.86 | 14.17 | NaN NaN NaN NaN NaN NaN
CACTuS-FL | 22.27 | 19.03 | 20.92 | 15.24 | 21.54 | 17.69 | 21.58 | 17.32
CCMS 9.87 | 11.76 | 8.97 | 10.66 | 12.36 | 16.35 | 10.40 | 12.92
CT 18.92 | 15.51 | 19.10 | 15.30 | 18.62 | 14.03 | 18.88 | 14.95
DFT 11.23 | 15.12 | 12.64 | 15.47 | 12.78 | 11.79 | 12.21 | 14.13
EDFT 11.45 | 12.00 | 12.18 | 12.72 | 9.91 10.44 | 11.18 | 11.72
FoT 9.63 13.69 | 11.23 | 13.87 | 7.44 | 11.04 | 9.44 | 12.87
HT 17.90 | 14.88 | 16.29 | 14.17 | 17.81 | 14.61 | 17.33 | 14.55
VT 10.51 | 15.00 | 12.66 | 14.68 | 10.48 | 13.19 | 11.21 | 14.29
LGTpp 11.89 | 7.84 | 11.98 | 7.08 | 13.82 | 8.44 | 12.56 | 7.79
LGT 13.27 | 9.44 | 12.37 | 8.08 | 16.43 | 9.07 | 14.02 | 8.86
LT-FLO 11.09 | 16.22 | 11.25 | 14.77 | 10.40 | 14.41 | 10.91 | 15.14
GSDT 16.51 | 12.73 | 16.36 | 11.98 | 14.82 | 10.73 | 15.90 | 11.81
Matrioska 13.77 | 13.78 | 13.94 | 14.43 | 12.60 | 12.13 | 13.44 | 13.45
Meanshift 15.69 | 14.91 | 14.82 | 16.90 | 17.64 | 17.57 | 16.05 | 16.46
MIL 16.38 | 14.25 | 16.28 | 13.58 | 13.84 | 12.54 | 15.50 | 13.46
MORP 20.64 | 28.00 | 19.65 | 27.00 | NaN NaN NaN NaN
ORIA 13.13 | 16.69 | 13.86 | 16.15 | 11.97 | 13.85 | 12.99 | 15.56
PJS-S 12.50 | 15.75 | 12.31 | 15.43 | 11.87 | 14.89 | 12.22 | 15.36
PLT 10.88 | 7.06 | 10.58 | 6.60 8.54 6.73 | 10.00 | 6.79
RDET 18.42 | 14.84 | 16.14 | 13.35 | 15.97 | 12.00 | 16.84 | 13.40
SCTT 9.36 | 16.16 | 11.37 | 16.43 | 8.53 15.68 | 9.75 16.09
STMT 17.16 | 16.81 | 17.17 | 16.12 | 17.12 | 13.73 | 17.15 | 15.55
Struck 13.92 | 13.69 | 15.21 | 14.02 | 12.33 | 11.85 | 13.82 | 13.19
SwATrack 13.98 | 15.53 | 13.93 | 14.48 | NaN NaN NaN NaN
TLD 13.12 | 20.44 | 13.37 | 20.12 | 12.37 | 19.00 | 12.95 | 19.85

Firstly, we follow the evaluation protocol to test our method,
compared with other 27 tracking algorithms provided in the
benchmark website. The main comparison results can be found
in Table III and Fig. 9. We can see that, in average, the
proposed method ranks the first for both accuracy and robust-
ness comparison. In specific, DeepTrack achieves the best
robustness scores for all the scenarios while ranks the second
in accuracy for all the experimental settings. In the Fig. 9,
one can observe that the red circles (which stands for Deep-
Track) always locate in the top-right corner of the plot. This
observation is consistent to the scores reported in Table III.
From the result we can see that our DeepTrack achieves
close while consistently better performances than the PLT
method [41]. Other tracking methods that can achieve similar

performances on this benchmarks are FoT [50], EDFT [51]
and LGT++ [52].

Note that the scores listed in Table IIT and the plots in Fig. 9
are rank-based, which is different from the measuring criterion
used in the CVPR2013 benchmark. It is well-known that the
evaluation method for visual tracker is not unique and could
be sophisticated for a specific objective [53]. Usually different
tracker measures offer different points of view for accessing
the tracking method. The best performance on the VOT2013
benchmark justifies the superiority of DeepTrack, from another
perspective.

In [43], the authors run their TGPR tracker on the VOT2013
benchmark, without comparing with other trackers. We here
compare our DeepTrack with the TGPR algorithm, which
is recently proposed and achieves state-of-the-art perfor-
mance in the CVPR2013 benchmark. Following the settings
in [43], we perform the proposed tracker in Experiment-1
and Experiment-2. The performance comparison is shown in
Table IV.

We can see that the proposed DeepTrack outperforms the
TPGR tracker in the robustness evaluation, with a clear
performance gap. For Experiment-1, one needs to reinitialize
the TPGR tracker for 0.71 times per sequence while that
number for our method is 0.22. Similarly, with the bounding
box perturbation (Experiment-2), TPGR needs 0.73 times
re-initialization while DeepTrack still requires 0.22 times.
Note that in Table IV the accuracies from different trackers
are not directly comparable, as they are calculated based on
different re-initialization conditions. However, by observing
the overall scores, we can still draw the conclusion that the
DeepTrack is more robust than TPGR as it achieves similar
accuracies to TPGR (0.62 v.s. 0.64 for Experiment-1 and
0.59 v.s. 0.58 for Experiment-2) while only requires around
one third of re-initializations.

D. The Verification for the Proposed Modifications

Here we verify the three proposed modifications to the
CNN model. We rerun the experiment on the CVPR2013
benchmark using the DeepTrack with each modification inac-
tivated. In specific, the temporal sampling mechanism, the
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TABLE IV

THE PERFORMANCE COMPARISON BETWEEN DEEPTRACK TRACKER AND THE TPGR TRACKER ON THE VOT2013 BENCHMARK.
THE BETTER ROBUSTNESS SCORE IS SHOWN IN BOLD. NOTE THAT FOR ACCURACY (ACCU.), THE COMPARISON IS NOT FAIR
IF THE ROBUSTNESS SCORE IS DIFFERENT AND THUS NO BOLD ACCURACY SCORE IS SHOWN
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[ bicycle | bolt | car | cup [ david | diving | face | gym | hand | iceskater | juice | jump | singer | sunshade | torus | woman | overall
Expl-TPGR-Rob. 0 1.27 | 0.40 0 0.27 2.87 0 2.87 1.67 0 0 0 0.60 0.20 0.13 1.00 0.71
Expl-DeepTrack-Rob. 0.47 0.07 0.47 0 0.20 0.80 0 0.73 | 0.20 0 0 0 0 0 0.07 0.47 0.22
Expl-TPGR-Accu. 0.60 0.57 0.45 0.83 0.58 0.33 0.85 0.57 0.56 0.60 0.76 0.59 0.65 0.73 0.78 0.74 0.64
Expl-DeepTrack-Accu. 0.58 0.61 0.51 0.86 0.54 0.35 0.73 | 0.49 0.54 0.61 0.81 | 0.66 0.51 0.72 0.76 0.60 0.62
Exp2-TPGR-Rob. 0 1.27 | 0.20 0 0.27 2.87 0.07 | 3.00 2.07 0 0 0 0.33 0.07 0.60 1.00 0.73
Exp2-DeepTrack-Rob. 0.27 0 0.33 0 0.20 0.80 0 0.27 | 0.60 0 0 0 0 0.07 0.27 0.67 0.22
Exp2-TPGR-Accu. 0.57 0.57 0.41 0.75 0.58 0.32 0.77 0.53 0.53 0.57 0.73 0.57 0.45 0.64 0.65 0.67 0.58
Exp2-DeepTrack-Accu. 0.54 0.62 0.49 | 0.77 | 0.50 0.36 0.70 | 0.47 0.53 0.59 0.75 | 0.62 0.60 0.69 0.69 0.56 0.59
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Fig. 10. The Precision Plot (left) and the Success Plot (right) of the results obtained by using different versions of DeepTrack. Note that the color of one

curve is determined by the rank of the corresponding trackers, not their names.

label uncertainty and the structural loss is disabled and the
yielded tracking results are shown in Fig. 10, compared
with the full-version of the proposed method. In addition,
the old versions of DeepTrack, i.e., DeepTrack_BMVC [39]
and DeepTrack_ACCV [36] is also compared in the Figure.
Finally, the results of four well-known tracking methods, i.e.,
MIL [19], Struck [4], TPGR [43] and CNT [42] are also shown
as references.

From the figure we can see that, the structural loss, the
temporal sampling mechanism and the label uncertainty all
contribute the success of our CNN tracker. In particular, the
temporal sampling plays a more important role. The structural
loss can increase the TP accuracy by 10% and one can lifts
the TP accuracy by 4% when the label noise is taken into
consideration. Generally speaking, the curve consistently goes
down when one component are removed from the original
DeepTrack model. That indicates the validity of the proposed
modifications.

E. Tracking Speed Analysis

We report the average speed (in fps) of the proposed
DeepTrack method in Table V, compared with the DeepTrack
without the truncated loss. Note that there are two kinds of
average speed scores: the average fps over all the sequences
and the average fps over all the frames. The latter one
reduces the influence of short sequences where the initializa-
tion process usually dominates the computational burden.

TABLE V

THE TRACKING SPEED OF DEEPTRACK WITH OR WITHOUT THE
TRUNCATED L0OSS. NOTE THAT THERE ARE TWO KINDS OF
AVERAGE SPEED SCORES: THE AVERAGE fps OVER ALL
THE SEQUENCES (SEQUENCE AVERAGE) AND THE
AVERAGE fps OVER ALL THE FRAMES
(FRAME AVERAGE)

Sequence Average

Frame Average

With TruncLoss

1.96fps

2.52fps

No TruncLoss

1.49fps

1.86fps

According to the table, the truncated loss boosts the tracking
efficiency by around 37%. Furthermore, our method tracks the
object at an average speed around 2.5fps. Considering that
the speed of TPGR is around 3fps [43] and for the Sparse
Representation based methods the speeds are usually lower
than 2.5fps [25]. We thus can draw the conclusion that the
DeepTrack can achieve comparable speed to the state-of-the-
art methods.

F. Some Tracking Examples

In Fig. 11 we show the tracking results of our DeepTrack
(magenta) comparing with other 5 state-of-the-art trackers,
i.e., TPGR (yellow), KCF (cyan), SCM (blue), Struck (red)
and ASLA (black), on 12 challenging video sequences in the
CVPR2013 benchmark. From row-1 to row-8 we show some
good results obtained by using our algorithm. In row-9 and
row-10 are the illustration that how the DeepTrack firstly lost
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Fig. 11. Tracking results of the CNN tracker compared with other 6 visual trackers. The tracker are shown in different colors: green—ground-truth; red—Struck;

blue-SCM; black—ASLA; yellow-TGPR; cyan—-KCF; magenta—DeepTrack; In each row, the 5 frames roughly span uniformly over the corresponding sequence.
the target and then find it back after several frames, thanks to
the robust temporal sampling scheme. The last two rows show
the results on two difficult sequences (matrix and ironman),

where DeepTrack achieves similar performance compared with
other competitors. Note that on all the frames, the ground-truth
bounding boxes are also plot in green.
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V. CONCLUSION

We introduced a CNN based online object tracker.

We

employed a novel CNN architecture and a structural

loss function to handle multiple input cues. We also pro-
posed to modify the ordinary Stochastic Gradient Descent
for visual tracking by iteratively update the parameters and
add a robust temporal sampling mechanism in the mini-batch
generation. This tracking- ed SGD algorithm increase the
speed and the robustness of the training process significantly.
Our experiments demonstrated that the CNN-based DeepTrack
outperforms state-of-the-art methods on two recently proposed
benchmarks which contain over 60 video sequences and
achieves the comparable tracking speed.
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