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Fast Detection of Multiple Objects in Traffic Scenes
With a Common Detection Framework

Qichang Hu, Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel, and Fatih Porikli

Abstract—Traffic scene perception (TSP) aims to extract accu-
rate real-time on-road environment information, which involves
three phases: detection of objects of interest, recognition of de-
tected objects, and tracking of objects in motion. Since recognition
and tracking often rely on the results from detection, the ability to
detect objects of interest effectively plays a crucial role in TSP.
In this paper, we focus on three important classes of objects:
traffic signs, cars, and cyclists. We propose to detect all the three
important objects in a single learning-based detection framework.
The proposed framework consists of a dense feature extractor and
detectors of three important classes. Once the dense features have
been extracted, these features are shared with all detectors. The
advantage of using one common framework is that the detection
speed is much faster, since all dense features need only to be
evaluated once in the testing phase. In contrast, most previous
works have designed specific detectors using different features
for each of these three classes. To enhance the feature robustness
to noises and image deformations, we introduce spatially pooled
features as a part of aggregated channel features. In order to
further improve the generalization performance, we propose an
object subcategorization method as a means of capturing the
intraclass variation of objects. We experimentally demonstrate
the effectiveness and efficiency of the proposed framework in
three detection applications: traffic sign detection, car detection,
and cyclist detection. The proposed framework achieves the com-
petitive performance with state-of-the-art approaches on several
benchmark data sets.

Index Terms—Traffic scene perception, traffic sign detection,
car detection, cyclist detection, object subcategorization.

I INTRODUCTION

V ISION-BASED traffic scene perception (TSP) is one of
many fast-emerging areas in the intelligent transportation

system. This field of research has been actively studied over
the past decade [57]. TSP involves three phases: detection,
recognition and tracking of various objects of interest. Since

Manuscript received March 10, 2015; revised June 27, 2015 and
September 16, 2015; accepted October 9, 2015. Date of publication
December 3, 2015; date of current version March 25, 2016. The Associate
Editor for this paper was J. M. Alvarez.

Q. Hu is with the University of Adelaide, Adelaide, S.A. 5005, Australia,
and also with NICTA, Alexandria, N.S.W. 1435, Australia (e-mail: qichang.
hu@adelaide.edu.au).

S. Paisitkriangkrai is with the University of Adelaide, Adelaide, S.A. 5005,
Australia.

C. Shen and A. van den Hengel are with the University of Adelaide,
Adelaide, S.A. 5005, Australia, and also with the Australian Centre for Robotic
Vision, Brisbane, Qld. 4001, Australia.

F. Porikli is with NICTA, Alexandria, N.S.W. 1435, Australia, and also with
the Australian Centre for Robotic Vision, Brisbane, Qld. 4001, Australia.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2015.2496795

Fig. 1. Top image: A typical on-road traffic scene with the detected objects of
interest. Bottom images: Each block represents one class of objects of interest.
From left to right, the first block contains traffic sign examples, the second
contains car examples, and the third contains cyclist examples.

recognition and tracking often rely on the results from detec-
tion, the ability to detect objects of interest effectively plays a
crucial role in TSP. In this paper, we focus on three important
classes of objects: traffic signs, cars, and cyclists. Fig. 1 shows
a typical on-road traffic scene with the detected objects of
interest and illustrates some positive examples from the three
mentioned classes.

The aim of traffic sign detection is to alert the driver of the
changed traffic conditions. The task is to accurately localize
and recognize road signs in various traffic environments. Prior
approaches [8], [9], [32] use color and shape information. How-
ever, these approaches are not adaptive under severe weather
and lighting conditions. Additionally, appearance of traffic
signs can physically change over time, due to the weather and
damage caused by accidents. Instead of using color and shape
features, most recent approaches [42], [63] employ texture or
gradient features, such as local binary patterns (LBP) [2] and
histogram of oriented gradients (HOG) [7]. These features are
partially invariant to image distortion and illumination change,
but they are still unable to handle severe deformations.

Car detection is a more challenging problem compared to traf-
fic sign detection due to its large intra-class variation caused by
different viewpoints and occlusion patterns. Although sliding-
window based methods have shown promising results in face
and human detection [7], [62], they often fail to detect cars
due to a large variation of viewpoints. Recently the deformable
parts model (DPM) [16], which has gained a lot of attention in
generic object detection, has been adapted successfully for car
detection [20], [26], [49]. In addition to the DPM, visual subcat-
egorization based approaches [10], [31], [45] have been applied
to improve the generalization performance of detection model.
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Cyclist detection is a new attractive application in the domain
of TSP. At present, only few methods are designed purposely
for cyclist detection. Many existing pedestrian detection ap-
proaches [7], [11], [20] can be adapted for cyclist detection
because appearances of pedestrians are very similar to ap-
pearances of cyclists along the road. Compared to pedestrian
detection, the new problem is more difficult because the various
appearances and viewpoints increase the diversity of cyclists.
Therefore, existing pedestrian detectors hardly achieve the ac-
ceptable performance for cyclist detection.

Most previous methods have designed specific detectors
using different features for each of these three classes. The
approach we claim here differs from these existing approaches
in that we propose a single learning based detection framework
to detect all the three important classes of objects. The proposed
framework consists of a dense feature extractor and detectors
of these three classes. Once the dense features have been ex-
tracted, these features are shared with all detectors. The advan-
tage of using one common framework is that the detection speed
is much faster, since all dense features need only to be evaluated
once in the testing phase. The proposed framework introduces
spatially pooled features [48] as a part of aggregated channel
features [13] to enhance the feature robustness to noises and im-
age deformations. In order to further improve the generalization
performance, we propose an object subcategorization method
as a means of capturing the intra-class variation of objects.

A. Related Works

1) Generic Object Detection: Object detection is a challeng-
ing but important application in the computer vision commu-
nity. It has achieved successful outcomes in many practical
applications such as face detection and pedestrian detection
[2], [7], [62], [66]. Complete survey of object detection can be
found in [7], [16], [22], [62], [67]. This section briefly reviews
several generic object detection methods.

One classical object detector is the detection framework of
Viola and Jones which uses a sliding-window search with a
cascade classifier to achieve accurate location and efficient
classification [62]. The other commonly used framework is
using a linear support vector machine (SVM) classifier with
histogram of oriented gradients (HOG) features, which has
been applied successfully in pedestrian detection [7]. These
frameworks achieve excellent detection results on rigid object
classes. However, for object classes with a large intra-class vari-
ation, their detection performance falls down dramatically [48].

In order to deal with appearance variations in object de-
tection, a deformable parts model (DPM) based method has
been proposed in [16]. This method relies on a variant of HOG
features and window template matching, but explicitly models
deformations using a latent SVM classifier. It has been applied
successfully in many object detection applications [20], [59],
[69]. In addition to the DPM, visual subcategorization [10]
is another common approach to improve the generalization
performance of detection model. It divides the entire object
class into multiple subclasses such that objects with simi-
lar visual appearance are grouped together. A sub-detector is
trained for each subclass and detection results from all sub-

detectors are merged to generate the final results. Recently,
a new detection framework which uses aggregated channel
features (ACF) and an AdaBoost classifier has been proposed in
[11]. This framework uses exhaustive sliding-window search to
detect objects at multi-scales. It has been adapted successfully
for many practical applications [42], [45], [48].

2) Traffic Sign Detection: Many traffic sign detectors have
been proposed over the last decade with newly created chal-
lenging benchmarks. Interested reader should see [43] which
provides a detailed analysis on the recent progress in the field
of traffic sign detection. Most existing traffic sign detectors
are appearance-based detectors. These detectors generally fall
into one of four categories, namely, color-based approaches,
shape-based approaches, texture-based approaches, and hybrid
approaches.

Color-based approaches [8], [9], [32] usually employ a two-
stage strategy. First, segmentation is done by a thresholding
operation in one specific color space. Subsequently, shape
detection is implemented and is applied only to the segmented
regions. Since RGB color space is very sensitive to illumination
change, some approaches [15], [32], [39] convert the RGB
space to the HSI space which is partially invariant to light
change. Other approaches [9], [30] implement segmentation in
the normalized RGB space which is shown to outperform the
HSI space [23]. Both the HSI and the normalized RGB space
can alleviate the negative effect of illumination change, but still
fail on some severe situations.

Shape-based approaches [27], [38], [58] detect edges or
corners from raw images using canny edge detector or its
variants. Then, edges and corners will be connected to regular
polygons or circles by using Hough-like voting scheme. These
detectors are invariant to illumination change, but the memory
and computational requirement is quite high for large images.
In [8], a genetic algorithm is adopted to detect circles and is
invariant to projective deformation, but the expensive computa-
tional requirement limits its application.

Texture-based approaches firstly extract hand-crafted fea-
tures computed from texture of images, and then use these
extracted features to train a classifier. Popular hand-crafted
features include HOG, LBP, ACF, etc [2], [7], [11]. Some
approaches [35], [51], [63] use the HOG features with a SVM,
others [42] use the ACF features with an AdaBoost classifier.
Besides the above approaches, a convolutional neural network
(CNN) is adopted for traffic sign detection and achieves excel-
lent results in [56].

Hybrid approaches [18], [53] are a combination of the afore-
mentioned approaches. Usually, the initial step is the segmenta-
tion to narrow the search space, which is same as the color-based
approaches. Instead of only using edges features or texture-
based features, these methods use them together to improve the
detection performance.

One standard benchmark for traffic sign detection is the
German traffic sign detection benchmark (GTSDB) [28] which
collects three important categories of road signs (prohibitory,
danger, and mandatory) from various traffic scenes. All traffic
signs have been fully annotated with the rectangular regions
of interest (ROIs). Researchers can conveniently compare their
work based on this benchmark.
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Fig. 2. Overview of the proposed detection framework. Left diagram is the training section and right diagram is the testing section.

3) Car Detection: Many existing car detectors are vision-
based detectors. Interested reader should see [57] which dis-
cusses different approaches for vehicle detection using mono,
stereo, and other vision-sensors. We focus on vision-based car
detectors using monocular information in this paper. These
detectors can be divided into three categories: DPM-based
approaches, subcategorization-based approaches and motion-
based approaches.

DPM-based approaches are built on the deformable parts
model (DPM) [16] which has been successfully applied in
car detection [59]. In [20], a variant of DPM discretizes the
number of car orientations and each component of the mixture
model corresponds to one orientation. The authors of [26] train
a variant of DPM to detect cars under severe occlusions and
clutters. In [49], occlusion patterns are used as training data to
train a DPM which can reason the relationships between cars
and obstacles for detection.

Visual subcategorization which learns subcategories within
an object class is a common approach to improve the model
generalization in car detection [10]. It usually consists of two
phases: feature extraction and clustering. Samples with similar
visual features are grouped together by applying clustering
algorithm on extracted feature space. Subcategorization-based
methods are commonly used with DPM to detect cars from mul-
tiple viewpoints. In [31], subcategories of cars corresponding to
car orientation are learned by using locally linear embedding
method with HOG features. In [45], cars with similar view-
points, occlusions, and truncation scenarios are grouped into the
same subcategory using a semi-supervised clustering method
with ACF features.

Motion-based approaches often use appearance cues in
monocular vision since monocular images do not provide any
3D and depth information. In [4], adaptive background model
is used to detect cars based on motion that differentiated them
from the background. The authors of [65] propose an adaptive
background model to model the area where overtaking cars
tend to appear in the camera’s field of view. Optical flow
[40], which is a popular tool in machine vision, has been
used for monocular car detection. In [33], a combination of
optical flow and symmetry tracking is used for car detection.
Optical flow is also used in conjunction with appearance-based
techniques in [6].

The KITTI vision benchmark (KITTI) [19] is a novel chal-
lenging benchmark for the tasks of monocular, stereo, optical
flow, visual odometry, and 3D object detection. The KITTI
dataset provides a wide range of images from various traffic
scenes with fully annotated objects. Objects in the KITTI
dataset includes pedestrians, cyclists, and vehicles.

4) Cyclist Detection: Many existing cyclist detectors use
pedestrian detection techniques since appearances of pedestri-
ans are very similar to appearances of cyclists along the road.
These detectors are mainly derived from the fixed camera-based
approaches.

Fixed camera-based approaches are designed for traffic mon-
itoring using fixed cameras [54], [55], [64]. In [54], corner fea-
ture extraction, motion matching, and object classification are
combined to detect pedestrians and cyclists simultaneously. In
[64], a stereo vision based approach is proposed for pedestrian
and cyclist detection. It uses the shape features and matching
criterion of partial Hausdorff distance to detect targets. The
authors of [55] propose a cyclist detector to detect two wheels
of bicycles on road, but this approach is limited to detect
crossing cyclists.

II. OUR APPROACH

Despite several important techniques have been proposed
on object detection, the conventional sliding-window based
method of Viola and Jones [62] is still the most successful
and practical object detector. The VJ framework consists of
two main components: a dense feature extractor and a cascade
classifier. In this paper, we build a common object detection
framework for traffic scene perception based on the VJ frame-
work, but our framework can employ a number of different
classifiers to detect target objects of different classes. Apart
from basic components of the VJ framework, we propose an
object subcategorization method to improve the generalization
performance and employ spatially pooled features [48] to en-
hance the robustness and effectiveness.

Fig. 2 shows an overview of our framework. In the training
phase, we firstly check the intra-class variation of the input ob-
ject class with respect to object properties, e.g. size, orientation,
aspect ratio, and occlusion. If the variation is considerable large,
we apply the object subcategorization method to categorize
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the object class into multiple subcategories and train one sub-
detector for each subcategory. Otherwise, we train a single
detector for the entire object class. In the testing phase, raw
detection results from all sub-detectors need to be calibrated
before merging them together. Non-maximum suppression is
used to eliminate redundant bounding boxes. If the framework
employs detectors of different classes, detection results need to
be carefully merged together.

A. Object Subcategorization

For object classes with a large intra-class variation like
cars, the appearances and shapes of cars change significantly
as viewpoints change. In order to deal with these variations
that cannot be tackled by the conventional VJ framework,
we present an object subcategorization method which aims
to cluster the object class into visually homogeneous subcat-
egories. The proposed subcategorization method applies an
unsupervised clustering method to one specific feature space
of the training samples to generate multiple subcategories. This
method simplifies the original learning problem by dividing it
into multiple sub-problems and improves model generalization
performance.

1) Visual Features: A variety of hand-designed features can
be used to perform the clustering algorithm, such as HOG
and ACF [7], [11]. HOG is successful at capturing the shapes
of objects while does not consider color information. ACF
combines both color information and gradient information,
which is shown to outperform HOG [13]. In our experiments, a
total of 10 feature channels are used for clustering: LUV color
channels (3 channels), histogram of oriented gradients at 6 bins
(6 channels), and normalized gradient magnitude (1 channel).
To extract features from the training samples, all samples are
resized to the median object size.

2) Geometrical Features: Besides the visual features, geo-
metrical information of objects can be extracted from traf-
fic scenes using a variety of sensors and methods. In the
KITTI dataset, objects in images from a velodyne laser scanner
were annotated with 3D bounding boxes and 3D orientations.
Ohn-Bar et al. [46] propose an analysis of different types of
geometrical features, which shows that the geometrical features
outperform the visual features for clustering, even for the CNN
features. We use the following set of geometrical features to
represent the object instances in our experiments.

3D Orientation: The appearances and shapes of objects
change significantly as viewpoints change. We include the 3D
orientation (relative orientation between the object and the
camera) in clustering, aiming at grouping objects with similar
visual appearance together.

Aspect-Ratio: The aspect-ratio (width/height) of objects is
strongly correlated with the geometry of objects being detected.
We use this feature because learning models at different aspect-
ratios significantly improve the generalization performance.

Truncation Level: The truncation level refers to the percent-
age of the object outside of the image boundaries. This feature
strongly affects appearances of objects.

Occlusion Index: Instead of using subtle occlusion patterns
defined in [46], we use an occlusion index to indicate whether

an object is not occluded, partially occluded, largely occluded
or an unknown situation. We simplify the occlusion patterns
because some occlusion features cannot be defined for each
occluded object, such as occlusion level, relative orientation
and relative 3D point between occluded objects and occluders.
The above features are only available when the object is oc-
cluded by other labeled occluders. However, many occluders
are unlabelled in the KITTI dataset.

3) Clustering: A clustering method is used to generate a
predefined number of clusters on a specific feature space. Tra-
ditional clustering schemes, such as k-means or single linkage,
suffer from the cluster degeneration which means that a few
clusters claim most data samples [29]. The cluster degener-
ation problem can be alleviated by using spectral clustering.
Spectral clustering followed by k-means often outperforms the
traditional schemes. We implement the normalized spectral
clustering using the algorithm proposed in [44]. The quality of
clustering results is very sensitive to the predefined number of
clusters. Unfortunately, how to determine the appropriate num-
ber of centroids is still an open question. We experimentally
determine the number of clusters for each application.

B. Feature Extraction

The proposed framework introduces spatially pooled features
[48] as a part of the aggregated channel features [13] and
employs them as dense features in the training phase. All
feature channels are aggregated in 4 × 4 blocks in order to
produce fast pixel lookup features.

1) Aggregated Channel Features (ACF): Given an input im-
age I , a channelC of I is a feature map, where the output pixels
are computed from corresponding pixels of the input image.
Aggregated channel features are extracted from multiple image
channels using pixel lookup method. Many image channels are
available for extracting features. For example, a trivial channel
of a grayscale image is the image itself. For a color image,
each color channel can be used as a channel. Other channels
can be computed using various transformations of I . In order
to accelerate the speed of feature extraction, all transformations
are required to be translational invariant. It means that the trans-
formation needs only to be evaluated once on the entire image
rather than separately for each overlapping detection window.

ACF uses the same channel features as ChnFtrs [13]: LUV
color channels (3 channels), histogram of oriented gradients
(6 channels), and normalized gradient magnitude (1 channel).
ACF combines the richness and diversity of statistics from these
channels, which is shown to outperform HOG [11], [13]. Prior
to computing these 10 channels, we smooth the input image I
to suppress fine scale structures as well as noises.

LUV Color Channels: LUV color space contains 3 channels,
L channel describes the lightness of the object, U channel and
V channel represent the chromaticity of the object. Compared
to RGB space, LUV space is able to partially invariant to
illumination change. So the proposed detector can work under
different light conditions. Images can be converted to LUV
space by using a specific transformation.

Gradient Magnitude Channel: A normalized gradient mag-
nitude is used to measure the edge strength. Gradient magnitude
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M(x, y) at location (x, y) is computed by
√
I2x + I2y , where

Ix and Iy are first intensity derivatives along the x-axis and
y-axis, respectively. Since the gradient magnitude is computed
on 3 LUV channels independently, only the maximum response
is used as the gradient magnitude channel.

Gradient Histogram Channels: A histogram of oriented gra-
dients is a weighted histogram where bin index is determined by
gradient orientation and weighted by gradient magnitude [13].
The histogram of oriented gradients at location (x, y) is com-
puted by M(x, y) · 1[Θ(x, y) = θ], where 1 is the indicator
function, M(x, y) and Θ(x, y) are the gradient magnitude and
discrete gradient orientation, respectively. ACF quantizes the
orientation space to 6 orientations and computes one gradient
histogram channel for each orientation.

2) Spatially Pooled Features: Spatial pooling is used to
combine multiple visual descriptors obtained at nearby loca-
tions into a lower dimensional descriptor over the pooling
region. We follow the work of [48] which is shown that pool-
ing can enhance the robustness of two hand-crafted low-level
features, covariance features [60] and LBP [2].

Covariance Matrix: A covariance matrix is a positive semi-
definite matrix which provides a measure of the relationship
between multiple sets of variates. The diagonal elements of
a covariance matrix represent the variance of each feature
and non-diagonal elements represent the correlation between
different features. In order to compute the covariance matrix,
we use the following variates proposed in [48]:

[x, y, |Ix|, |Iy|, |Ixx|, |Iyy|,M,O1, O2]

where x and y indicate the pixel location. Ix and Iy are first
intensity derivatives along the horizontal-axis and vertical-axis
respectively. Similarly, Ixx and Iyy are second intensity deriva-

tives, respectively. M is the gradient magnitude
√
I2x + I2y . O1

is the edge orientation arctan(|Ix|/|Iy|) andO2 is an additional
edge orientation in which,

O2 =

{
atan2(Iy , Ix) if atan2(Iy , Ix) > 0

atan2(Iy , Ix) + π otherwise

where the atan2 function is defined in terms of the arctan in the
following:

atan2(y, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan y
x x > 0

arctan y
x + π y ≥ 0, x < 0

arctan y
x − π y < 0, x < 0

+π
2 y > 0, x = 0

−π
2 y < 0, x = 0

undefined y = 0, x = 0

The covariance descriptor of a region is a 9 × 9 covariance
matrix which can be computed efficiently because the compu-
tational cost is independent of the size of the region. We also
exclude the variance of pixel locations (x and y coordinates)
and the correlation coefficient between pixel locations (x and y
coordinates), since these features do not capture discriminative
information. Due to the symmetry, each covariance descriptor
finally contains 42 different values.

Fig. 3. Architecture of the spatially pooled covariance features.

Spatially Pooled Covariance: The spatial invariance and
robustness of the covariance descriptors can be improved by
applying pooling method. There are two common pooling
methods in this context: average pooling and max pooling.
Max pooling is used in our framework as it has been shown
to outperform average pooling in image classification [5].
Max pooling uses the maximum value of a pooling region to
represent the pooled features in the region. It aims to retain
the most salient information and discard irrelevant details and
noises over the pooling region. The image window is divided
into multiple dense patches (refer to Fig. 3). Covariance fea-
tures are computed over pixels within each patch. Then, we
perform max pooling over a fixed-size pooling region and use
the pooled features to represent the covariance features in the
pooling region. In fact, multiple covariance matrices within
each pooling region are summarized into a single matrix which
has better invariance to image deformation and translation. The
pooled features extracted from each pooling region is called the
spatially pooled covariance (sp-Cov) features in [48].

Implementation: To expand the richness of our feature repre-
sentation, we extract sp-Cov features using multi-scale patches
with the following sizes: 4 × 4, 8 × 8 and 16 × 16 pixels. Each
scale will generate an independent set of visual descriptors. In
our experiments, the patch step-size is set to be 1 pixel, the
pooling region is set to be 4 × 4 pixels, and the pooling spacing
stride is set to be 4 pixels.

Local Binary Pattern (LBP): LBP is a texture descriptor
which uses a histogram to represent the binary code of each
image patch [2]. The original LBP is generated by thresholding
the 3 × 3-neighbourhood of each pixel with the value of centre
pixel. All binary results are concatenated to form an 8-bit length
binary sequence with 28 different labels. The histogram of
these 256 different labels can represent a texture descriptor. By
following the work of [48], we convert the input image from
the RGB space to LUV space, and extract the uniform LBP
[66] from the luminance (L) channel. The uniform LBP, which
is an extension of the original LBP, can better filter out noises.

Spatially Pooled LBP: Similar to the sp-Cov features, the
image window is divided into multiple dense patches and LBP
histogram is computed over pixels within each patch. In order
to enhance the invariance to image deformation and translation,
we perform max pooling over a fixed-size pooling region and
use the pooled features to represent the LBP histogram in
the pooling region. The pooled features extracted from each
pooling region is called the spatially pooled LBP (sp-LBP)
features in [48].
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Implementation: To extract LBP, we apply the LBP oper-
ator on the 33-neighbourhood at each pixel. The LBP histo-
gram is extracted from a 4 × 4 pixels patch. We extract the
58-dimension LBP histogram using a C-MEX implementation
of [61]. In our experiments, the patch step-size, the pooling
region, and the pooling spacing stride are set to 1 pixel, 8 ×
8 pixels, and 4 pixels, respectively. Instead of extracting LBP
histograms from multi-scale patches, the sp-LBP and LBP are
combined as channel features.

C. Supervised Learning

Once dense features have been extracted, we are in a position
to train a classifier. Instead of training a standard AdaBoost
classifier, we use a shrinkage version of AdaBoost as the strong
classifier and use decision trees as weak learners. To train
the classifier, the procedure known as bootstrapping is applied,
which collects hard negative samples and re-trains the classifier.
If the object subcategorization is applied to the object class, we
train one classifier for each subcategory. The pseudo code of
the learning algorithm is presented in Algorithm 1.

Shrinkage: The accuracy of AdaBoost can be further im-
proved by applying a weighting coefficient known as shrinkage
[25]. The shrinkage version of AdaBoost can be viewed as
a form of regularization for boosting. At each iteration, the
coefficient of weak learner is updated by

Ht(�x) = Ht−1(�x) + ν · wtht(�x). (1)

Here ht(·) is a weak learner of AdaBoost at the t-th round and
wt is the coefficient of the weak learner. ν ∈ (0, 1] is a learning

rate which controls the trade-off between overall accuracy and
training time. The smaller the value of ν, the higher the overall
accuracy as long as the number of weak learners is sufficiently
large. Compared to the standard AdaBoost, shrinkage often
produces better generalization performance [17].

Bootstrapping: To improve the performance of the learned
classifier, we perform three bootstrapping iterations in addition
to the original training phase. The initial training phase ran-
domly sample negative samples from training images with pos-
itive regions cropped out, and further bootstrapping iterations
add more hard negatives to the training set. The learning process
consists of 4 training iterations with increasing number of weak
learners and the final model consists of 2048 weak learners.

D. Post-Processing

Raw detection results are generated by applying trained
detectors to test images, but these results often contain some
noises and redundant information. To improve detection perfor-
mance, some techniques are used to post-process raw detection
results.

1) Calibration of Confidence Scores: If we have multiple
sub-detectors and apply them to test data, detection results of
each sub-detector are required to merge together to generate the
integrated results. However, the classifier of each sub-detector
is learned with different training data, confidence scores of
raw detection results output by individual classifiers need to be
calibrated appropriately to suppress noises before merging them
together. We address this problem by transforming the output of
each classifier by a sigmoid regression to generate comparable
score distributions [36], [52]. For sample i in subcategory k, its
confidence score is the output of the ensemble classifier which
is defined as

ski =

T∑
t=1

atht

(
�xk
i

)
(2)

its calibrated score is defined as

gki =
1

1 + exp
(
Ak · ski +Bk

) (3)

where Ak, Bk are the learned parameters for the k-th subcate-
gory of the following regularized maximum likelihood problem:

argmin
Ak,Bk

−
Nk∑
i=1

[
ti log g

k
i + (1 − ti) log

(
1 − gki

)]
(4)

ti =

{
N++1
N++2 if yi = +1

1
N−+2 if yi = −1

, i = 1, . . . , Nk. (5)

The gki in equation (4) can be cancelled by reformulation:

argmin
Ak,Bk

Nk∑
i=1

[
(ti−1)

(
Ak ·ski +Bk

)
+log

(
1+exp

(
Ak · ski +Bk

))]
.

(6)

Nk is the total number of training examples for the k-th
subcategory-specific classifier, N+ is the number of positive
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examples, and N− is the number of negative examples in the
k-th subcategory.

2) Non-Maximum Suppression (NMS): NMS aims to sup-
press redundant bounding boxes among the raw detection
results. When multiple bounding boxes overlap, NMS will
eliminate the lower-scored detections and retain the highest-
scored detection. Pascal overlap score [14] is used to determine
the overlap ratio a0 between two bounding boxes. The overlap
ratio a0 is defined as

a0 =
area(B1 ∩B2)

area(B1 ∪B2)
(7)

where B1 and B2 are two different bounding boxes. If the
overlap ratio a0 exceeds a predefined threshold, bounding box
with the lower confidence score is discarded.

3) Fusion of Detection Results: The proposed framework
can detect multiple objects simultaneously using detectors or
sub-detectors of different classes. We need to consider how to
merge detection results from different detectors. Since an object
may be detected redundantly using multiple sub-detectors or
a single detector at multiple scales, NMS is usually used to
eliminate these redundant detections in the merging process.
However, NMS is not suitable for merging detections from dif-
ferent classes. Assume that a car is occluded by a cyclist. If their
overlap ratio exceeds the threshold, NMS will simply delete the
lower-scored detection, and retain the higher-scored detection.
It means that one true positive will be removed in this case.

To remedy the above problem, we propose a fusion method
to merge all detection results in two steps. Instead of applying
NMS to detection results from all detectors, we apply NMS to
detections of each single class (traffic sign, car, cyclist) sepa-
rately to filter out redundant bounding boxes generated by either
a single detector or multiple sub-detectors of the class. Next, we
directly combine filtered bounding boxes from different classes
without using NMS to generate the final detection results. This
fusion method can eliminate the overlapped false positives of
each single class while it keeps the true positives from different
classes as much as possible.

III. EXPERIMENTS

A. Traffic Sign Detection on GTSDB Dataset

In this section, we conduct an experiment on traffic sign
detection and evaluate our detector on the German Traffic Sign
Detection Benchmark (GTSDB) [28].

1) Dataset: The GTSDB dataset contains 600 images for
training and 300 images for testing. Images are captured from
various scenes (highway, urban, rural) and various time slots
(morning, afternoon, dusk, etc). The dataset contains more
than 1000 traffic signs from different categories. Three main
categories of traffic signs (prohibitory, danger, mandatory) are
selected as the target classes in the IJCNN 2013 [28] compe-
tition and in our experiments. The resolutions of traffic signs
vary from 16 × 16 pixels to 128 × 128 pixels.

2) Evaluation Criteria: Pascal overlap score [14] is used
to find the best match between each predicted bounding box
and each ground truth. The minimum overlap ratio a0 is set

TABLE I
PERFORMANCE (AUC) DIFFERENCE BETWEEN TRAINING ON

ORIGINAL TRAINING SET AND JETTERED TRAINING SET

TABLE II
PERFORMANCE (AUC) OF DETECTORS WITH DIFFERENT SHRINKAGE

VALUES. ∗ THE MODEL CONSISTS OF 4096 WEAK LEARNERS

WHILE OTHERS CONSIST OF 2048 WEAK LEARNERS

to be 60% on the GTSDB. Only the bounding box with the
highest confidence score is counted as true positive if multiple
bounding boxes satisfy the overlap criterion, the others are
ignored. To compare the performance of different detectors, we
follow the evaluation metric of the GTSDB which uses the area
under the precision-recall curve (AUC) as a final score.

3) Parameter Selection: To alleviate the effect of the
illumination change, we apply the automatic color equalization
algorithm (ACE) [21] to globally normalize all images. The res-
olution of the traffic sign model is set to 20 × 20 pixels and the
dimension of model padding is set to 30 × 30 pixels. This bor-
der provides an additional amount of context that helps improve
the detection performance [7], [12]. Additionally, we increase
the number of positive samples by adding jittered versions
of the original samples, which significantly improves the de-
tection performance. For prohibitory and danger signs, flipped
versions are added to the training set. For mandatory signs,
samples are randomly perturbed in translation ([−2, 2] pixels),
in scale ([0.8, 1] ratio), in rotation ([−5, 5] degrees), and
flipping. We demonstrate the performance gain on the test set in
Table I. Negative samples are collected from the GTSDB training
images with the corresponding traffic sign regions cropped out.

4) Experimental Design: We investigate the experimental
design of the proposed detector on traffic sign detection. Since
traffic signs are divided into three subcategories, we train one
sub-detector for each subcategory. We train all detectors on
the GTSDB training set and evaluate them on the GTSDB test
set. All experiments are carried out using combined features
(ACF + sp−Cov + sp−LBP) as dense features, AdaBoost
with shrinkage value of 0.1 as the strong classifier, and depth3-
decision trees as weak learners (if not specified otherwise).

Shrinkage: We evaluate the performance of AdaBoost with
4 different shrinkage values from {0.05, 0.1, 0.2, 0.5}. We
decrease the reject threshold of soft cascade by a factor of ν as
coefficients of weak learners have been diminished by a factor
of ν. The area under precision-recall curve of different detec-
tors are shown in Table II. We observe that applying a small
shrinkage value often improves the detection performance and
the best performance is achieved by setting ν = 0.1. However,
without increasing the number of weak learners, setting the
shrinkage value to be too small (ν = 0.05) can degrade the
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TABLE III
PERFORMANCE (AUC) OF DETECTORS WITH

DIFFERENT DEPTHS OF DECISION TREES

TABLE IV
PERFORMANCE (AUC) OF DETECTORS WITH

VARIOUS FEATURE COMBINATIONS

TABLE V
DETECTION PERFORMANCE (AUC) OF VARIOUS DETECTORS

ON GTSDB TEST SET WITH 60% OVERLAP RATIO

performance as the boosting cannot converge within a limited
number of boosting iterations.

Depth of Decision Trees: We trained 4 different traffic sign
detectors with decision trees of depth 1 to depth 4. Table III
shows the detection performance of different detectors. We ob-
serve that increase the depth of decision trees provides a perfor-
mance gain, especially for the mandatory category. However,
the depth-3 decision trees achieve better generalization perfor-
mance and are faster to train than depth-4 decision trees.

Combination of Features: To compare the discriminative
power of different feature representations, we evaluate the
performance of various feature combinations. The results are
shown in Table IV. We observe that a combination of the
sp-Cov features and LUV outperforms the ACF features and
combining more features can further improve the detection
performance. The best result is achieved using a combination
of all features (sp−Cov + sp−LBP + ACF).

5) Comparison With State-of-the-Art Detectors: Detection
performance of various detectors on the GTSDB test set are
shown in Table V. The proposed detector achieves the compara-
ble results with state-of-the-art detectors despite its simplicity.
These detectors [42], [63] that offer better performance employ
multi-scale models in detection. The authors of [63] train multi-
ple subcategory-specific classifiers for each type of mandatory
signs to achieve the best performance.

B. Car Detection on UIUC Dataset

Next, we conduct an experiment on car detection and com-
pare detection performance of different detectors on the UIUC
dataset [1]. The UIUC dataset captures images of side views of
cars with a resolution 40 × 100 pixels. The training set contains

TABLE VI
DETECTION PERFORMANCE OF VARIOUS DETECTORS

ON UIUC MULTI-SCALE TEST SET

TABLE VII
COMPARISON OF CAR DATASETS. THE FIRST FOUR COLUMNS INDICATE

THE AMOUNT OF TRAINING/TESTING DATA IN EACH DATASET. NOTE

THAT KITTI DATASET IS TWO ORDERS OF MAGNITUDE LARGER
THAN OTHER EXISTING DATASETS. THE NEXT FIVE COLUMNS

PROVIDE ADDITIONAL PROPERTIES OF EACH DATASET

550 positive samples and 500 negative samples. The test set is
divided into two subsets: 170 single-scale test images, contain-
ing 200 cars at roughly the same scale as in the training set,
and 108 multi-scale test images, containing 139 cars at various
scales.

We follow the evaluation protocol provided along with the
UIUC dataset. A bounding box is counted as true positive if it
lies within 25% of the ground truth dimension in each direction.
Only the bounding box with the highest confidence score is
counted as true positive if multiple bounding boxes satisfy the
criterion, the others are counted as false positives. In the dataset,
three criteria are used to evaluate the performance: F1-score,
detection rate, and the number of false positives. F1-score is
the weighted harmonic mean of precision and recall.

The dimension of UIUC car model is set to 40 × 100 pixels
without marginal padding as the car images are clipped to the
same size. We expand the positive samples by flipping car
images along the vertical axis. Since viewpoints of cars in the
UIUC dataset are limited to side-views, we train a single detec-
tor without applying subcategorization method. Table VI shows
the results of different detectors on the multi-scale test images.
We observe that our detector achieves the best detection rate
with slight more false positives on this dataset.

C. Car Detection on KITTI Dataset

To further demonstrate the effectiveness and robustness of
the proposed detector on car detection, we evaluate our detector
on a more challenging object detection benchmark, KITTI
dataset [19].

1) Dataset: The KITTI dataset is a recently proposed chal-
lenging dataset which consists of 7481 training images and
7518 test images, comprising more than 80 thousands of anno-
tated objects in traffic scenes. Table VII provides a summary
of existing car datasets. We observe that the KITTI dataset
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Fig. 4. Detection performance (AP) of various detectors with different number of subcategories on the KITTI validation set. (a) Car detector (spectral clustering +
geometrical features). (b) Car detector (spectral clustering + visual features). (c) Cyclist detector (spectral clustering + aspect-ratios).

provides a large number of cars with different sizes, view-
points, occlusion patterns, and truncation scenarios. Due to the
diversity of these objects, the dataset has three subsets (Easy,
Moderate, Hard) with respect to the difficulty of object size,
occlusion and truncation. Since the detection performance are
ranked based on the moderately difficult results, we use the
moderate subset as the training data in our experiments.
The moderate subset contains 15710 cars, with the heights of
the cars vary from 25 pixels to 270 pixels and the aspect ratios
vary between 0.9 and 4.0. Since annotations of test data are not
provided by the KITTI benchmark, we split the KITTI training
images into training set (first 4000 images) and validation set
(remaining 3481 images).

2) Evaluation Criteria: We follow the provided protocol
for evaluation. Pascal overlap score is used to find the best
match and the minimum overlap ratio a0 is set to be 70%.
Only the bounding box with the highest confidence score is
kept if multiple bounding boxes satisfy the overlap criterion,
the others are counted as false positives. Instead of using AUC,
average precision (AP) [14] is used to evaluate the detection
performance. The AP summaries the shape of the precision-
recall curve, and is defined as the mean precision at a set of
evenly spaced recall levels.

3) Parameter Selection: We apply the proposed subcatego-
rization method to categorize the training data into multiple
subcategories. To find the model dimensions of each subcate-
gory, we set the base height of each model to 52 pixels. From
the base height, the width of each model can be obtained by
taking the median aspect ratios of cars in the corresponding
subcategory. Each model includes additional 4 pixels of mar-
ginal padding on all sides. Using a model with suitable aspect
ratio can significantly improves the detection performance due
to better localization. We expand the positive training samples
by randomly perturbing original car samples in translation
([−2, 2] pixels), and in rotation ([−2, 2] degrees). Negative
samples are collected from the KITTI training images with
vehicle regions cropped out.

4) Experimental Design: We investigate the experimental
design of the proposed detector on car detection. We train car
detectors on the training set and evaluate them on the valida-
tion set. All experiments are carried out using ACF as dense
features, AdaBoost with shrinkage value of 0.1 as the strong

TABLE VIII
PERFORMANCE (AP) OF DETECTORS WITH
DIFFERENT DEPTHS OF DECISION TREES

TABLE IX
PERFORMANCE (AP) OF DETECTORS WITH

VARIOUS FEATURE COMBINATIONS

classifier, depth-4 decision trees as weak learners, and K = 25
in the subcategorization method (if not specified otherwise).

Number of Subcategories: To investigate the effect of dif-
ferent number of clusters in our subcategorization method, we
set the number from {1, 4, 16, 25, 50, 100}. Fig. 4(a) and (b)
shows the effect of increasing the number of subcategories
on geometrical features and visual features, respectively. We
observe that geometrical features outperform visual features in
spectral clustering. We also observe that the detection perfor-
mance improves as we increase the number of subcategories
up to 50. However, setting the number of subcategories to be
too large (K = 100) can hurt the performance as the average
number of samples in each subcategory is not enough to train
an effective model. For the rest of our experiments, we set the
number of subcategories to be 25 as it gives a better trade-off
between the performance and the complexity.

Depth of Decision Trees: We evaluate the performance for
different decision tree depths. As can be observed in Table VIII,
the depth-4 decision trees perform the best as they can provide
the best generalization performance.

Combination of Features: We evaluate the performance of
various feature combinations on car detection. The results are
shown in Table IX. We observe that the detection performance
improves as we add more features and the best performance
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TABLE X
DETECTION PERFORMANCE (AP) OF VARIOUS DETECTORS

ON KITTI CAR TEST SET WITH 70% OVERLAP RATIO

is achieved using a combination of all features (sp−Cov +
sp−LBP + ACF). A combination of sp-LBP features and ACF
features also achieves the similar performance and is five times
faster than the combination of all features. We use the combi-
nation of sp-LBP features and ACF features as dense features
in the testing phase since it gives a better trade-off between
detection performance and runtime.

5) Comparison With State-of-the-Art Detectors: Table X
shows the performance comparison of state-of-the-art detec-
tors on the KITTI test set. Experimental results show that the
proposed detector is of not only better performance than all
DPM-based methods [16], [49], [59] but also less runtime.
More significantly, our detector outperforms the SubCat [45]
which employs a similar object subcategorization method and
the Regionlets [37], [67] which employs a similar pooling
strategy. We conjecture that the additional performance gain is
provided by the spatially pooled features.

D. Cyclist Detection on KITTI Dataset

In this section, we conduct an experiment on cyclist detection
and evaluate our detector on the KITTI dataset.

1) Dataset: The KITTI dataset contains annotated cyclist
objects which are captured from various traffic scenes. Similar
to cars, cyclists are divided into three subsets (Easy, Moderate,
Hard) and the moderate subset is used as the training data in our
experiments. The moderate subset contains 1098 cyclists, with
the heights of the cyclists vary from 25 pixels to 275 pixels and
the aspect ratios vary between 0.3 and 1.5.

2) Evaluation Criteria: The KITTI cyclist detection uses the
same evaluation protocol with the car detection except that the
minimum overlap ratio is relaxed to 50%.

3) Parameter Selection: The proposed subcategorization
method is applied to cyclist detection. We define the dimensions
of cyclist models using the similar method in car detection.
We set the base height of each model to 56 pixels, and the
width of each model is derived from the median aspect ratios
of cyclists in the corresponding subcategory. Each model in-
cludes additional 4 pixels of marginal padding on all sides. We
expand the positive training samples by randomly perturbing
the original cyclists in translation ([−2, 2] pixels), in rotation
([−2, 2] degrees). Negative samples are collected from the
KITTI training images with cyclist regions cropped out.

4) Experimental Design: We investigate the experimental
design of our detector on cyclist detection. We train cyclist
detectors on the training set and evaluate them on the valida-

TABLE XI
PERFORMANCE (AP) OF DETECTORS WITH
DIFFERENT DEPTHS OF DECISION TREES

TABLE XII
PERFORMANCE (AP) OF DETECTORS WITH

VARIOUS FEATURE COMBINATIONS

tion set. All experiments are carried out using ACF as dense
features, AdaBoost with shrinkage value of 0.1 as the strong
classifier, depth-4 decision trees as weak learners, and K = 4
in the subcategorization method (if not specified otherwise).

Number of Subcategories: We set the number of clusters
from {1, 2, 3, 4, 6, 8} in our subcategorization method. Since
only the minority of cyclists are occluded and truncated, clus-
tering on all geometrical features leads to a cluster degeneration
problem. We carefully select the aspect-ratios of cyclists as the
feature space to avoid the above problem. Fig. 4(c) shows the
effect of increasing the number of subcategories. We observe
that the detection performance improves as we increase the
number of subcategories up to 4. Since the number of cyclists is
much less than cars, the average number of cyclists in each sub-
category becomes very small when we have a large number of
subcategories, which results in an imbalanced learning problem
and degrades the detection performance.

Depth of Decision Trees: We trained 4 cyclist detectors with
decision trees of depth-2 to depth-5. Average precisions of dif-
ferent detectors are shown in Table XI. We observe that depth-4
decision trees offer the best generalization performance, as
similar in the car detection.

Combination of Features: We evaluate the performance of
various feature combinations on cyclist detection. The results
are shown in Table XII. We observe that the best performance
is achieved using a combination of sp-LBP features and ACF
features. The performance declines when we add the sp-Cov
features as a part of aggregated channel features. The reason
may be due to the lack of enough cyclist training samples. We
use the combination of sp-LBP features and ACF features as
the dense features in the testing phase.

5) Comparison With State-of-the-Art Detectors: Table XIII
shows the performance comparison with state-of-the-art ap-
proaches. As shown in Table XIII, our detector outperforms
all other methods on the test set. Specifically, our detector out-
performs the best DPM-based method DPM − VOC + VP [50]
on all the three subsets by 16.29%, 14.95%, and 12.35%, re-
spectively. Our detector also performs slightly better than the
Regionlets [37], [67].
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TABLE XIII
DETECTION PERFORMANCE (AP) OF VARIOUS DETECTORS ON

KITTI CYCLIST TEST SET WITH 50% OVERLAP RATIO

TABLE XIV
AN EVALUATION OF THE OVERALL RUNTIME OF THE PROPOSED

FRAMEWORK WITH VARIOUS FEATURE COMBINATIONS

E. An Evaluation of the Overall Runtime

We conduct an experiment on the evaluation of the overall
runtime of the proposed detection framework on the KITTI
dataset. All experiments are carried out on a computer with an
octa-core Intel Xeon 2.50 GHz processor. The average runtime
of each component of the framework can be seen in Table XIV.
For feature extraction, we observe that the ACF features can be
extracted very quickly within 0.1 s. When we add the sp-LBP
features, the runtime increases moderately, but these features
provide an obvious performance gain in all three applications.
When the sp-Cov features are employed, the runtime of feature
extraction increases rapidly and dominates the total runtime
of the system. For object detection, we observe that the car
detector costs the most time in this framework since it has
25 sub-detectors. The traffic sign detector uses the least time
since it has only 3 sub-detectors. We also observe that the
runtime of detection increases as we add more complicated
features in the framework. According to observe the detection
results of three applications, we conjecture that using a combi-
nation of ACF features and sp-LBP features can provide a better
trade-off between detection performance and system runtime.

IV. CONCLUSION

In this paper, we propose a common detection framework
for detecting three important classes of objects in traffic scenes.
The proposed framework introduces spatially pooled features
as a part of aggregated channel features to enhance the feature
robustness and employs detectors of three important classes
to detect multiple objects. The detection speed of the frame-
work is fast since dense features need only to be evaluated
once rather than individually for each detector. To remedy the
weakness of the VJ framework for object classes with a large
intra-class variation, we propose an object subcategorization
method to improve the generalization performance by captur-
ing the variation. We demonstrated that our detector achieves
the competitive results with state-of-the-art detectors in traf-

fic sign detection, car detection, and cyclist detection. Future
work could include that contextual information can be used to
facilitate object detection in traffic scenes and convolutional
neural network can be used to generate more discriminative
feature representations.
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