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Abstract. This paper presents a learning-based object segmentation
proposal generation method for stereo images. Unlike existing methods
which mostly rely on low-level appearance cue and handcrafted similarity
functions to group segments, our method makes use of learned deep
features and designed geometric features to represent a region, as well
as a learned similarity network to guide the grouping process. Given an
initial segmentation hierarchy, we sequentially merge adjacent regions in
each level based on their affinity measured by the similarity network. This
merging process generates new segmentation hierarchies, which are then
used to produce a pool of regional proposals by taking region singleton,
pairs, triplets and 4-tuples from them. In addition, we learn a ranking
network that predicts the objectness score of each regional proposal and
diversifies the ranking based on Maximum Marginal Relevance measures.
Experiments on the Cityscapes dataset show that our approach performs
significantly better than the baseline and the current state-of-the-art.

1 Introduction

Object proposal generation, which aims to produce a set of high-quality ob-
ject candidates in an image, has become a core component in modern object
detection [1–3] and segmentation pipelines. By focusing on a relatively small
set of object-like regions, it enables us to use better object representations and
improves significantly the accuracy of target vision tasks. While most work in
object proposal generation focus on generating bounding boxes for object detec-
tion [4–7], object segments or region proposals play an important role in semantic
segmentation and object segmentation [8, 9].

Compared to bounding box proposals, generating object segment candidates
is more challenging due to inaccuracies in bottom-up segmentation processes.
Early work incorporate boundary consistency and smoothness priors through
superpixel grouping [5, 9] or MRF-based segmentation [8, 10, 11]. They rely on
handcrafted image features to group pixels into region proposals. More recent
approaches use deep ConvNets to learn the feature representation and directly
predict class-agnostic object masks [12, 13]. However, such end-to-end learning
of a deep network makes it difficult to incorporate additional input data from
other sensor modalities, such as depth cues [14, 15]. It may require retraining of
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the full system using a large dataset with instance-level annotations, which can
be expensive and time-consuming.

In this work, we consider the problem of generating object segmentation pro-
posals with stereo image inputs. To efficiently incorporate the depth cues com-
puted from the stereo, we take an alternative deep learning approach, and learn
an iterative merging process for generating a diverse set of high-quality region
proposals. Unlike the previous global approaches, we mainly focus on learning a
representation for object-driven perceptual grouping, which is an easier problem
due to its local nature and potential to be modeled by a simpler network. More
importantly, it enables us to design a late fusion strategy to incorporate the noisy
depth cues into grouping without retraining the full deep network pipeline.

Specifically, our method consists of two stages. We start from an initial seg-
mentation hierarchy of the left image and sequentially merge neighboring regions
in each level of the hierarchy based on an affinity score predicted by a learned
similarity network. This merging process generates new hierarchies of image seg-
ments, which is used to produce a pool of regional proposals by taking single,
pair, triple and 4-tuple neighboring segments from the hierarchies. We then learn
a ranking network that predicts the objectness score of each region proposal. Our
similarity and ranking network use a combination of learned deep features for
intensity and designed geometric features for depth cue. While the similarity
network predicts how likely two regions belong to the same object instance or
the same background class, the ranking network estimates the overlap ratio with
respect to the ground-truth for each candidate region.

We evaluate our algorithm on the Cityscapes dataset[16] with comparisons
to Selective Search baseline and one of the stat-of-the-art methods, Multiscale
Combinatorial Grouping (MCG). Our results show that we achieves significant
improvement over the MCG method. The main contributions of our work are
three folds: first, we propose a deep learning approach to the multi-modal object
segmentation proposal generation; second, we design an alternative method to
produce region proposals with a learned merging network and ranking network;
and finally, our method achieves superior performance to the strong baselines on
the challenging Cityscapes dataset.

2 Related Work

Generating high-quality object proposals plays an important role in the recent
advance of object detection [1, 2], and has drawn much attention in computer vi-
sion literature [17]. Many early work use handcrafted features to score bounding
box hypotheses [4, 6, 7] and generate a set of object candidates mainly for detec-
tion task. More recent work in object detection literature [3], however, begin to
learn the proposal generation as an integrated component of detection networks
and do not rely on a preprocessing step for bounding box generation any more.

In contrast to bounding box generation, much less progress has been made
in object segmentation proposal generation. One strategy is to formulate the
problem as a series of foreground segmentation tasks [8, 10, 11, 18]. By solving
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multiple graph-cut problems with diverse seeds, they can generate a large set
of region proposals. In particular, Lee et al. [19] learns a parametric energy
function to combine handcrafted mid-level cues in order to generate a diverse
set of regional proposals. An alternative approach is to group superpixels into
a hierarchical segmentation and seek semantic meaningful region proposals [5,
9, 20]. The MCG [9] generates multiscale UCMs and takes singletons, pairs,
triplets and 4-tuples in their hierarchical segmentations as object proposals. [21]
integrates both global foreground and local grouping strategies. Yanulevskaya et
al. [22] also learns a grouping method for proposal generation, but their method
uses manually designed appearance features and predefined similarity metrics.
By contrast, our method directly learns a similarity neural network to group
regions.

Deep learning based methods have been applied to object proposal genera-
tion, including bounding boxes [23, 3, 24] and segmentation [12, 13]. Deep seg-
mentation proposal methods usually take an end-to-end framework and use
a global network to produce final candidate masks. By contrast, we adopt a
learning-to-merge strategy and learn a simpler network structure. Such strategy
has been successfully applied to semantic segmentation [25]. We note that our
similarity network does not compute a distance metric between two regions [26].
Instead, it is an affinity score for grouping.

Few work have addressed the multi-modal object proposal generation task.
Chen et al. [15] use depth information in an energy minimization framework to
generate object proposals in a form of 3D bounding boxes. Bleyer et al. [14]
design an iterative labeling strategy to segment object proposals from stereo
images, which is computationally expensive.

Most of existing object segmentation proposal methods use ranking to im-
prove the quality of the candidate pool. For example, [8, 9] both learn a Random
Forest with a set of low-level features to rank the object proposals. By contrast,
we learn a neural network to rank object proposals.

We build our work on top of several existing techniques. Our model uses
FCN network [27] and Hypercolumn feature [28] trained on PASCAL-Context
dataset[29]. We extract deep features using “feature masking” technique intro-
duced in [30].

3 Our Method

We aim to generate a set of object segmentation proposals and their object-
ness scores from a pair of stereo images. To this end, we design a segmentation
proposal generation pipeline that learns to fuse multimodal cues and to merge
oversegmentation into object candidates. Figure 1 illustrates an overview of our
approach. We first estimate a dense depth map of the scene using the stereo
images, and build a segmentation hierarchy of the left image. Given the ini-
tial segmentation hierarchy, we represent all the regions in the hierarchy using
convolutional and depth features. We then train a neural network to predict re-
gions’ affinity, and refine the segmentation hierarchy by incrementally merging
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Fig. 1. Overview: Our system takes as input a pair of stereo images. We first generate
a segmentation hierarchy, compute the convolutional feature maps and reconstruct
the 3D scene. Then, we extract descriptors for regions in the segmentation hierarchy.
Next, we iteratively merge adjacent regions based on their affinity score predicted by a
similarity network to generate object proposals. Finally, we rank these object proposals
through a ranking network and diversify the ranking.

adjacent regions from the bottom level based on the estimated similarity. From
the new segmentation hierarchies, we extract region singletons, pairs, triplets
and 4-tuples as object segment proposals. Finally, we rank these object pro-
posals through a learned ranking network and diversify the ranking based on
Maximum Marginal Relevance measures [8]. We now describe each stage of our
pipeline in detail.

3.1 Initial Segmentation Hierarchy Generation

The first step of our method constructs an initial segmentation hierarchy of the
left image. To generate the segmentation hierarchy, we use the Structured Edge
Detection [31] on the image to obtain an edge map for its efficiency and accuracy.
An Ultrametric Contour Map (UCM) [9] is generated based on the estimated
edge probability map. Then we threshold the UCM at five different levels to cre-
ate the segmentation hierarchy. The thresholds are chosen such that the numbers
of regions from the base level to the top level are roughly 1024,768,512,384 and
256, respectively. For every region, we also record its child regions in the hierar-
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chy, which enables efficient propagation of descriptors of regions from the base
level to higher levels through the hierarchy.

3.2 Multimodal Region Representation

For each region in the segmentation hierarchy, we compute two types of features
to capture its appearance and 3D geometric properties. We take a bottom-up
manner to compute the region features of all the hierarchy levels efficiently. We
only calculate those features explicitly for the base level regions and use max-
pooling or weighted average-pooling to obtain features of higher level regions
recursively.

Appearance Features We extract a set of rich deep features to encode the
appearance of a region. We first feed the left image into a Fully Convolutional
Network (FCN) [27] to generate multiple layers of feature maps for the entire
image. We choose the FCN-8s model trained on PASCAL-Context dataset [29]
for the scene labeling task because of its superior performance and diverse set of
59 classes such as sky, ground, grass, building, road, person, bicycle and car etc..
The feature map outputs from pool1, pool2, pool3, pool4, pool5 and fc7 layers are
used as our representation, inspired by the “Hypercolumns” concept proposed
by Hariharan et al. [28].

Given the feature maps, we compute the appearance features of a region by
masking and max-pooling. As the feature maps of different layers are not of the
same size, the deep features of a region cannot be directly masked out from these
maps. A straightforward way to solve this problem is to upsample the feature
maps to the same size as the image [28]. However, due to high dimensionality
and varying sizes of the feature maps, e.g the output from fc7 layer has 4096
dimensions and a very small size (17 × 33 in our case), such upsampling is very
time-consuming and memory-costly.

To tackle this issue, we adopt the convolutional feature masking technique
proposed by Dai et al. [30]. Specifically, we first compute the receptive field for ev-
ery activation in each layer output according to the receptive field geometry [32].
Then we project each activation onto the image plane, which is located at the
center of its receptive field. We define a “domain of influence” for an activation
on the image plane, which has the same center as its receptive field and a smaller
size such that neighboring activations do not overlap. For example, the activation
at location (1, 1) in pool5 layer may have a square ”domain of influence” with
its center at (16, 16) and its side length as 32 in the image domain. If over 50% of
the ”domain of influence” of an activation is covered by a region mask, we label
this activation as active for this region and it will be included in the calculation
of region feature. By this labeling process, we project the base level region masks
in the image plane onto the feature maps and then we do max-pooling in the
projected masks on the feature maps to extract regions’ deep features. Figure 2
(left) shows an example of our feature computation process. This generates a
5568-dimensional feature to encode the region’s appearance. When computing
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Fig. 2. Left: Illustration of “domain of influence” and feature masking. D1∼D9 red
rectangles are the domains of influence of activations A1∼A9 in pool5 layer. The yellow
mask is a region and only A2, A4, A5, A6 and A8 are activated by this region, as over
half of their domain of influence is overlapped by this region. Right: Illustration of
combinatorial grouping. Singletons:R1∼R13. Pairs:(R2,R6). Triplets:(R3,R5,R8).

the deep features of regions in higher levels, we only need to do max-pooling
among their child region features.

3D Geometric Features To encode geometric properties of a region, we ex-
tract two sets of 3D geometric features. We first estimate the dense depth map
using the method [33] and convert it into a point cloud representation in the
camera coordinate system according to the camera parameters.

Given the point cloud and a base level region mask, we segment out the subset
of the point cloud using the mask. The subset is used to compute two sets of
features to describe the region’s geometric properties. Denoting the position of
a 3D point as (x, y, z), we first compute the center of the region as one set of
features, including mean x,mean y, and mean z. Another set of features describe
the spatial distribution of the point cloud, consisting of three histograms, one
for each dimension of the point cloud. Specifically, for the width, height and
depth dimension, we evenly divide the spatial ranges [−50m, 40m], [−40m, 3m]
and [1m, 100m] into 256 bins, 128 bins and 256 bins in the log space, respectively.
These spatial ranges are obtained from the statistics of the point clouds in the
training set. The spatial histograms are computed based on these bins and then
normalised by their L1 norm. The two sets of features are concatenated to form
a 643-dimensional feature Gri to encode the region’s 3D geometric properties.
The geometric features also can be efficiently computed through the hierarchy
simply by weighted average-pooling of child region features as follows,

Grparent
=

∑
ri∈children Gri × area(ri)∑

ri∈children area(ri)
. (1)

3.3 Similarity Network

Given the segmentation hierarchy, we want to learn a merging process that
generates a high-quality object candidate set from the initial oversegmentation.
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To achieve this, we design and train a neural network to compute the affinity
between two adjacent regions and use the network to merge region pairs recur-
sively. Unlike the manually designed similarity scores used in [5, 22], our network
enables us to learn a more effective merging criterion in the multimodal space.

Network Architecture Our similarity network takes a concatenation of fea-
ture descriptors from two adjacent regions as input and consists of three fully-
connected layers. Each layer has 512 neurons and uses RELU as activation func-
tion except the last layer. We add the dropout layer after the first two layers to
prevent overfitting. The output is the affinity score between two input regions
in the range of [0, 1] and indicates how likely two regions belong to the same
object. We use the MatConvNet [32] to implement our networks in this work.

Network Training We obtain the training examples from the initial segmen-
tation hierarchy. As we are learning a similarity network for object proposal
generation, we expect that the network is able to output a high similarity score
for two regions from the same object instance or the same background class,
and to output a low score for two regions from different object instances. This
network can be viewed as re-weighing the boundary strength between regions in
the original UCM.

We formulate the network training as a binary classification problem. Each
positive example is a pair of neighbouring regions overlapped with the same
object instance and both regions have an overlap score larger than a threshold
tp1 = 0.7. Here we define the overlap score as the intersection of a region and an
object instance divided by the area of that region. We also take pairs overlapped
with the same background class. In particular, we hope that regions belonging
to the same background class around the object instance can merge together so
that they do not interfere with the grouping of those regions from this object
instance. To balance the positive examples from the object instance and from
the background classes, we keep the proportion between them roughly at 1 : 2.

For negative examples, we first take pairs of neighbouring regions in which
one has an overlap with the object instance higher than tp1 = 0.7 while the other
overlaps with the same object instance less than tn = 0.6. Similar to the positive
examples, we also include adjacent background region pairs which satisfy the
same aforementioned condition. We keep the proportion of negative examples
from the object instance and from the background classes at about 1 : 1.

To mimic the process of grouping at test time, we scan regions from all
levels of the segmentation hierarchy and obtain about 4, 120, 000 positive and
3, 370, 000 negative training examples. As there are two ways to concatenating
features from two adjacent regions, we use both orders in training the network
and the total number of training samples is doubled.

We train the similarity network to minimize the log loss using stochastic
gradient descent with a batch size of 2, 000 examples, momentum of 0.9, weight
decay of 0.0005 and for 15 epochs. The learning rate we use for each epoch
changes from 0.001 to 0.000001 evenly in the log space.
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3.4 Hierarchical and Combinatorial Grouping

Given the region features in every level of the segmentation hierarchy and a
learned similarity network, we generate a set of object proposals by a hierarchical
and combinatorial grouping process.

Hierarchical Grouping We start from the initial regions in a single level of
the segmentation hierarchy and re-group them by applying the similarity net-
work. Specifically, we first compute the affinities between all adjacent regions
via forwarding the feature descriptor of neighbouring regions through the sim-
ilarity network. Then two most similar regions are merged into a new region
and the descriptor for this new region is computed. This can be easily done by
max-pooling (for appearance feature) or weighted average-pooling (for geometric
feature) as described in Section 3.2. Next the affinities between this new region
and its neighbours inherited from its child regions are updated using the simi-
larity network. This merging process is repeated until the whole image becomes
a single region. We apply this hierarchical grouping procedure to all five levels of
the initial segmentation hierarchy, and take all single regions (region singletons)
in the five new segmentation hierarchies as our initial set of object proposals.

Combinatorial Grouping Selecting the region singletons in the segmentation
hierarchies only, however, is insufficient to generate a high quality pool of ob-
ject proposals [9]. We follow a combinatorial grouping procedure similar to [9]
to generate a larger object proposal set. In particular, we empirically select
10,000 region pairs, 10,000 region triplets and 5,000 region 4-tuples from every
newly generated segmentation hierarchy to expand our object proposal pool,
which performs well in our experiments. Figure 2 (right) shows an example of
region singletons, pair and triplet in the segmentation hierarchy. We perform
Non-Maximal Suppression (NMS) afterwards, which significantly reduces the
number of candidates, since those region pairs, triplets and 4-tuples from the
same segmentation hierarchy are heavily overlapped. The final pool of object
proposals contains less than 10,000 proposals per image on average.

3.5 Ranking Network

In the final step, we want to estimate the quality of each object proposal, or its
objectness score. This allows us to obtain good trade-off between the number
and the quality of object proposals under various settings. We achieve this by
training a ranking neural network to predict the IoU of each object proposal
with the matched ground truth as in [8].

Network Architecture Our ranking network is a regression network, which
has a similar architecture to the similarity network except the input and output
layer. It also consists of three fully-connected layers and each layer has 512
neurons. The input is the feature descriptor of a single object proposal, which
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can be computed efficiently. The proposals defined by region singletons has their
descriptors precomputed during the merging process. For those proposals formed
by region pair, triplet or 4-tuple, their descriptor can be computed using the same
max-pooling or average-pooling method described before. The output layer of
the network is a linear layer that predicts the IoU between the input proposal
and the corresponding ground truth. We use the the mean squared loss during
network training. In the training stage, we also add a dropout layer after the
first two layers to prevent overfitting.

Network Training We build the training dataset by choosing four types of
training examples. The first type includes all the ground truths and the corre-
sponding target IoUs are 1.0. The remaining training examples come from the
object proposals generated on the training set. We split these object proposals
into three categories according to their IoU to the ground truth:IoU >= 0.5,
0 < IoU < 0.5 and IoU = 0. For the first category, we take all proposals in this
group as training examples and denote its size as N . As to the latter two cate-
gories, we randomly select 3N and 3N examples from their pools respectively,
which balances the training dataset. Finally, we obtain about 5,000,000 training
examples in total.

We train the ranking network using stochastic gradient descent with a batch
size of 2, 000 examples, momentum of 0.9, weight decay of 0.0005 and for 10
epochs. The learning rate we use for each epoch changes from 0.01 to 0.00001
evenly in the log space.

Diversifying the Ranking After assigning every proposal a ranking score, we
diversify the ranking to reduce redundancy. Following [8], we achieve this based
on Maximum Marginal Relevance measure, which is used to remove redundant
object proposals. We apply the same re-ranking procedure as in [8] to lower the
rank of the segment proposals that heavily overlap with higher-ranked proposals.

4 Experiments

In this section, we evaluate our multimodal object proposal generation approach
on the publicly available Cityscapes dataset [16]. To the best of our knowledge,
Cityscapes dataset is the only public dataset with stereo images and object in-
stance segmentation ground truth, which are required by our method for quan-
titative evaluation.

Dataset Cityscpaes [16] is a newly released large-scale dataset for semantic
urban scene understanding. It is comprised of a large diverse set of stereo video
sequences recorded on streets from 50 different cities. 5, 000 of these images
have high quality instance-level annotations for humans and vehicles and they
are split into separate training (2, 975 images), validation (500 images) and test
(1, 525 images) sets. This dataset is very challenging as it is biased towards busy
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Fig. 3. Illustration of the Cityscapes dataset.Top: RGB images. Bottom: instance-
level ground truth.

and cluttered scenes where many, often highly occluded, objects occur at various
scales. Figure 3 shows some examples.

In our experiments, we further split the training set into two subsets: one
for training (2, 614 images) and the other for validation (361 images taken
at Tubingen, Ulm and Zurich). We use their validation set (500 images) to
evaluate the approaches, as the ground truth of the test set is withheld and
their evaluation server does not provide results on proposal generation. The
original image size is 1024 × 2048, which is too large to feed into the GPU
memory when forwarding the image through the FCN-8s. So we downscale
the original image by a factor of 4 into 512 × 1024. The dataset only pro-
vides instance-level annotations for humans (person and rider) and vehicles
(car, truck, bus, bicycle,motorbicycle, caravan and trailer), which are consid-
ered as object proposal ground-truth in our experiments.

Evaluation Measures We employ the recall vs. number of proposals with
a fixed IoU threshold and the average recall (AR) as the evaluation metrics.
As discussed in Hosang et al.’s work [17], AR has been shown to have a strong
correlation with the final detection performance. In our experiments, we compute
the AR between IoU 0.5 to 1 and report AR vs. number of proposals.

Baseline and State-of-the-Art As we focus on object segmentation propos-
als generation, we mainly compare our approach (Ours-Depth-Seg) against two
widely-used top-performing segmentation proposal generation methods: MCG [9]
and SelectiveSearch [5], as well as our approach without geometric feature (Ours-
NoDetph-Seg). In addition, we compare to the more recent ‘Geodesic Object
Proposals’ (GOP) method [34](GOP(200,15) and GOP(140,4)), which has pub-
licly available code.

We use the default parameters in MCG to generate the proposals. For Se-
lective Search, we adopt the parameters used in RCNN [1], and keep the seg-
mentation proposals instead of bounding boxes. The ”Quality” version of Se-
lective search (SeSe-Quality-60k) uses four different initial segmentations, five
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Fig. 4. Recall vs. number of proposals under different IoU thresholds.

color spaces and four similarity functions to diversify object proposals and over
60,000 proposals are generated per image on average. To make a fair comparison,
we randomly select 10,000 proposals (SeSe-Quality-10k) from the SeSe-Quatlity-
60k and evaluate their quality. We repeat this for 5 times and take the average
results as their performance. The ”Fast” version (SeSe-fast) uses only two dif-
ferent initial segmentations, two color spaces and two similarity functions for
diversification and about 12,000 proposals on average are generated per image.

Furthermore, in order to demonstrate that our method can also generate
high-quality bounding-box proposals, we conduct experiments to compare with
the EdgeBoxes [7]. We use the tightest boxes enclosing our segmentation pro-
posals as the output to evaluate our method.

Segmentation Results Figure 4 shows the recall rate when varying the number
of object proposals under different IoU thresholds. We can see that our approach
constantly and significantly outperforms MCG, SeSe-Quality-10k, SeSe-Fast and
GOP. The recall of our approach attains 44.8% at about 5000 proposals when IoU
threshold is 0.5, while MCG attains 33.6%, SeSe-Fast 41.7%, and SeSe-Quality-
10k 44.0%. The performance of both versions of GOP is much lower than the
above methods. With 1,000 proposals and IoU threshold as 0.5, the recall of our
approach is above 40.0% while MCG just gets 26.8%. When the IoU threshold
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Fig. 5. AR vs. number of object proposals. Top left: Overall. Top right: Small ob-
jects. Bottom left: Medium objects. Bottom right: Large objects.

increases, we can see that the performance of Selective Search drops much faster
than Ours and MCG, and particularly when the IoU threshold equals to 0.7, our
method has a similar recall as SeSe-Quality-60k. This indicates that the quality
of our proposals is better than Selective Search.

On the other hand, the performance of our approach using geometry infor-
mation is always better than that without geometry information. Surprisingly,
the upper bound of recall is not boosted by geometry information. This might
be due to the noisy depth cues computed from the stereo images and that the
geometric feature we manually designed is relatively weak. However, the rank-
ing of proposals indeed benefits from the additional geometry information, as
geometry information like the 3D height of a region is a good indicator of the
objectness in street scenes.

Figure 5 (top left) describes the overall AR when changing the number of
object proposals. It shows that our approach is significantly better than MCG,
SeSe-Fast, SeSe-Quality-10k and GOP, but slightly worse than SeSe-Quality-60k
which uses much more proposals. With 1,000 proposals, our method achieves
an AR of 15%, while MCG just 8.7% and this number is consistent with the
performance of instance segmentation task reported by Cordts et al. [16] who
use MCG object proposals in their experiments.
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Table 1. AR at different number of proposals(100, 1,000, 5,000 and total number of
proposals(N)), overall AUC (AR averaged across all proposal counts) and also AUC at
different scales (small, medium and large objects denoted by superscripts S,M and L).

Method AR@100 AR@1000 AR@5000 AR@N AUC AUCS AUCM AUCL

SeSe-Fast - - - 0.122 0.106 0.052 0.206 0.358
SeSe-Quality-10k - - - 0.137 0.108 0.047 0.221 0.402
SeSe-Quality-60k - - - 0.174 0.145 0.077 0.278 0.451
MCG 0.045 0.087 0.113 0.115 0.107 0.041 0.229 0.432
GOP(200,15) 0.032 0.059 0.065 0.065 0.063 0.001 0.169 0.406
GOP(140,4) 0.032 0.056 0.056 0.056 0.055 0.001 0.151 0.344
Ours-noDepth-Seg 0.086 0.140 0.165 0.166 0.159 0.069 0.335 0.559
Ours-Depth-Seg 0.099 0.150 0.165 0.166 0.160 0.070 0.337 0.566

Following [12], we also report the AR vs. the number of object proposals
at different object scales, as the size of object in Cityscapes dataset varies in a
quite wide range. We split the ground truth into three sets according to object
pixel area a: small (a < 322), medium (322 ≤ a ≤ 962) and large (a ≥ 962).
Figure 5 describes the performance at each scale. All methods perform poorly
on small objects (top right), which leads to the low overall AR. By contrast,
when it comes to the categories of medium (Bottom left) and large (Bottom
right) object, the AR by all approaches has a considerable increase and our
method performs substantially better than MCG, SeSe-Fast, SeSe-Quality-10k
and GOP, and also slightly better than SeSe-Quality-60k.

More detailed quantitative results are shown in Table 1, which reports the
AR at selected proposal numbers and the averaged overall AR across all proposal
numbers (AUC), as well as AUC at different object scales. Finally, examples of
generated proposals with the highest IoU to the ground truth on selected images
are shown in Figure 6.

Bounding-Boxes Results We also compare our method against bounding-box
proposal generation method, the EdgeBoxes [7], using the metric of AR. Figure 7
shows that our approach generate much better bounding-box proposals than the
EdgeBoxes. With 1,000 proposals, our approach gets an AR of 27.3%, which is
over 2.5× higher than the EdgeBoxes’ (10.5%). The upper bound of our method
(31.2%) is also much higher than the EdgeBoxes’s (25.0%).

5 Conclusion

In this paper, we propose a learning-based object segmentation proposal gen-
eration method for stereo images, which exploits both deep features and the
depth cue. We extract features from convolutional feature maps and geometry
maps to describe a region. We learn a similarity network to estimate the affinity
between two adjacent regions, sequentially merge regions from a segmentation
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Fig. 6. Qualitative examples of our object proposals. Left: RGB images. Middle:
Ground truth. Right: Our best proposals.
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Fig. 7. AR vs. number of object proposals for Bounding Box proposals.

hierarchy based on the affinity to generate object proposals and learn a ranking
network to predict the objectness of a proposal. Experiments on the Cityscapes
dataset show that our approach achieves much better average recall than the
state-of-the-art and depth cue can improve the ranking of proposals.
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