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Abstract. Visual dictionary learning has the capacity to determine
sparse representations of input images in a data-driven manner using
over-complete bases. Sparsity allows robustness to distractors and resis-
tance against over-fitting, two valuable attributes of a competent classi-
fication solution. Its data-driven nature is comparable to deep convolu-
tional neural networks, which elegantly blend global and local informa-
tion through progressively more specific filter layers with increasingly ex-
tending receptive fields. One shortcoming of dictionary learning is that it
does not explicitly select and focus on important regions, instead it either
generate responses on uniform grid of patches or entire image. To address
this, we present an object-aware dictionary learning framework that sys-
tematically incorporates region proposals and deep features in order to
improve the discriminative power of the combined classifier. Rather than
extracting a dictionary from all fixed sized image windows, our methods
concentrates on a small set of object candidates, which enables consol-
idation of semantic information. We formulate this as an optimization
problem on a new objective function and propose an iterative solver.
Our results on benchmark datasets demonstrate the effectiveness of our
method, which is shown to be superior to the state-of-the-art dictionary
learning and deep learning based image classification approaches.

1 Introduction

Dictionary learning (DL) has attracted considerable amount of attentions in the
past few years. The goal of DL is to learn an over-complete collection of atoms
by a data-driven manner. The main property of learned dictionary is that it
can approximate the input signal as a linear combination of a small number
of atoms. Recently, the dictionary learning approaches have widely applied to
various problems of computer vision area, such as image denoising [1, 2], image
restoration [3], image synthesis [4, 5], visual tracking [6] and image classifica-
tion [7-9].

The original intention of DL methods is to reconstruct the input data faith-
fully by a learned over-complete dictionary. Therefore, they are not appropriate
for the visual recognition task. To overcome this problem, many literatures [7-19]
aim to design the discriminative dictionary learning approaches for enhancing
the representative ability of feature. For the visual recognition problem, our
observation is that the local semantic information of image often provides the
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Fig. 1. Overall framework of our object-aware dictionary learning method.

important visual cues to improve the discrimination of feature representation.
Thus it is beneficial for the image representation method that incorporates with
the local image information. However, one main drawback of existing visual dic-
tionary learning is that it is unable to select and focus on the important image
regions explicitly. Instead, these methods only generate responses on the regular
patches or the entire image. As a result, useful discriminative semantic informa-
tion within image regions cannot be explored substantially in dictionary learning
process.

Recently, the Convolutional Neural Network (CNN) has been shown to be
successful in numerous visual recognition problems. One main advantage of the
CNN is that it allows integrating the global context and local cues through
multiple filter layers with increasingly extending receptive fields thanks to the
pooling operations.

Inspired by this property of the CNN, we propose an Object-Aware Dictio-
nary Learning (OADL) framework to address the above shortcoming of dictio-
nary learning. To this end, we incorporate the deep features generated by the
CNN into a region proposal framework to discover underlying local semantic
information in the image. We design a new object aware objective for dictionary
learning and then feed the deep features of region proposals to extract multiple
discriminative class-specific dictionaries.

Unlike conventional dictionary learning approaches that extract a dictionary
from all the fixed sized image patches or entire image, our method concentrates
on a small set of object candidates. Since the local semantic information of
image often provides important visual cues for recognition task, we concentrate
on semantically meaningful image regions. To this end, we extract the region
proposals. This facilitates the feature representation to consolidate the semantic
information and suppress the distraction due to the background. In the final
recognition stage, the learned a set of discriminative class-specific dictionaries
are used to encode the deep features of all object candidates within image and
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generates a global image representation by max-pooling. As for the proposed
dictionary learning objective, we derive an efficient optimization algorithm to
solve its variables alternatively. Figure 1 shows the framework of this new OADL
method.

The remainder of this paper is organized as follows: The related works are
briefly reviewed in Section 2. Section 3 presents the proposed object-aware dic-
tionary learning framework that integrates with the region proposals and deep
features systematically to improve the discriminative power of feature represen-
tation. The optimization algorithm of the OADL is also described in this section.
Experimental results are given in Section 4.

2 Related Work

In order to enhance the representation power of image feature, many works aim
to learn a discriminative dictionary for different visual recognition tasks. Existing
dictionary learning approaches can be grouped as unsupervised and supervised
methods. The goal of unsupervised dictionary learning is to compose an over-
complete dictionary by minimizing the reconstruction error. A typical example
for unsupervised dictionary learning would be the KSVD algorithm [15], which
iteratively applies SVD to fit the atoms of a single dictionary to reconstruction
error. To reduce the time complexity, Lee et al. [20] cast the standard sparse
representation to the least squares problem.

To obtain a feature representation with more discriminative power, super-
vised dictionary learning incorporates additional classification objective to re-
construction using the labeled data. The existing supervised dictionary learning
can be further grouped into two categories. Methods in the first category aim
to make the representation coeflicients discriminative by learning a single dic-
tionary across all classes. The common characteristic of recent methods [11-13,
16,17] is to combine a classification error term into the standard sparse dictio-
nary learning formulation. Similarly, Jiang et al. [9] incorporate both a label
consistent constraint and a linear classification cost into the KSVD objective
for enhancing the representative power of features. Methods in the second cat-
egory [7,8,10,14,18,19] learn a set of class-specific sub-dictionaries, then these
multiple sub-dictionaries are concatenated together to form a structured dictio-
nary for feature representation. Specifically, Mairal et al. [18] integrate a softmax
discriminative function with the KSVD model. Ramirez et al. [14] impose an in-
coherent constrain in the standard dictionary learning model, which encourages
the learned class-specific dictionaries to be as independent as possible. Yang et
al. [7] incorporate the Fisher Discriminant criterion into the dictionary learning
for further improving the discriminative capability of class-specific dictionaries.
Zhou et al. [8] propose to learn multiple class-specific dictionaries and a shared
dictionary for the groups of classes that have the visually similar patterns. Gao
et al. [19] also propose to train the class-specific dictionaries and a shared dic-
tionary for addressing the fine-grained recognition problem. In addition, Gu et
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al. [10] learn a structured synthesis dictionary and a structured analysis dictio-
nary simultaneously for enhancing the representation power of feature.

For the feature generation task, the convolutional neural networks [21-23]
provide powerful solutions. One advantage of CNN based methods is that they
allow fusing the global and local information through gradually more specific
filter layers with increasing receptive fields.

Recently, the region proposals approaches [24-27] provide an effective option
to generate the object candidates from image. These methods utilize objectness
measures derived from different visual cues. Compared with the traditional image
interest points and sliding windows, region proposals are capable of detecting
regions with higher semantic content.

3 Proposed Method

We first introduce the three components of our object-aware dictionary learning
framework. Furthermore, the optimization algorithm is presented for solving all
the variables in our OADL objective function.

3.1 Region Proposal Generation

In order to explore the local semantic information within image, we propose
to take advantage of convolutional neural network (CNN) features and further
integrate deep features with the region proposals systematically in our method.
Compared with the fixed size of image patch, the region proposal is a mid-level
element of image. Thus, it enables important region information in image to be
collected for the recognition task.

We use the EdgeBox [27] algorithm to generate a set of initial region proposals
within image. Then the non-maximum suppression (NMS) is adopted to refine
these region windows, where the overlap rate of NMS is set to 0.8 IoU. Afterward,
the deep feature is utilized to describe each region proposal in image. Finally,
all the CNN features of region proposals from the training samples are fed into
our OADL model to obtain these discriminative class-specific dictionaries.

3.2 Object-Aware Dictionary Learning (OADL)

Let X = [X1, X2,..., X¢] be a set of training data with C classes, where X; €
RPN i = 1,2, ...,C denotes the training samples corresponding to class i, d
is the dimension of feature and N; denotes the number of samples from class
i. The goal of the OADL objective is to learn a structured dictionary D =

[D1, Ds,...,Dc, Deyq] € R>K | which is used to transform the CNN feature

. R C+1 - . .
into a discriminative feature space. K = 21:1 K is the number of visual atoms

in dictionary D, where K, denotes the number of visual atoms in class-specific
dictionary D;. Since the background information of different classes may have the
similar visual patterns, we further incorporate a background dictionary D41
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to separate the shareable visual patterns in the OADL model. We formulate the
OADL model for C' classes as:

C N;
i X"~ DeaiZ! |3 X"~ DA |3
Ai7Zi1DlelIC1+lawiabi;{;[” 7 €14y HF + || 7 1 ||F
+ all Af = Z] % + J(wi, b, ATy + M AF [ (1)
C+1
+ Xl Z8 W+ B8 > I DID; |7}
j=1,j#i
where X*, n = 1,2,...,,N; denotes all the feature data of n-th image from

class i, dictionary D¢; is defined as [dexg;}vaDivdeiji}HKq] e R>K 0
is the zero matrix. In other word, dictionary Dg; is a sub-dictionary associ-
ated with class ¢. Z is the representation coefficients of X* on dictionary Dg;,.
D = [Dy,Ds,...,Dc,Dciq] € R¥K is a structured dictionary that concate-
nates all the class-specific dictionaries D;,7 = 1,2, ..., C and the additional back-
ground dictionary D¢y together. A7 is the representation coefficients of X
on the structured dictionary D. J(-) is defined as J(w;, b;, A% y;) = | w; ||
+ R(wg, b;, AT, y;), where R(w;, by, A%, y;) = anQl[maX(O, yi-wl A7 +b;—1))?
is the quadratic hinge loss due to the differentiable property [28], 7 is a constant,
P denotes the number of region proposals in the n-th image from class ¢, y;
is the label of sample corresponding to class ¢, and A?’j denotes the represen-
tation feature of j-th region proposal within the n-th image from class i. The
A;, Z; denote the representation coefficients of X; on dictionaries D and Dg;,
respectively. || A? ||1, || Z |1 are the sparsity constrains imposed on the rep-
resentation coeflicients A} and Z'. a, 8, A1, A2 are the weighting parameters to
balance the different terms in the objective function.

Discriminative reconstruction terms: The first two terms of Eq. (1) are
the reconstruction residual terms. These two terms ensure the input data from
class i not only to be represented using the class-specific dictionary De;, but
also be reconstructed by the structured dictionary D. Due to this property, the
learned class-specific dictionaries have both the constructive and discriminative
capabilities.

Coefficients consistency constraint: The third term || A? — Z ||%. aims to
make the representation coefficients have the consistent characteristic. In this
energy term, A7 is the representation coefficients of X' using the structured
dictionary D, and Z}* denotes the representation coefficients of X" on the class-
specific dictionary D¢;. This penalty term encourages the consistency between
the representation coeflicients A" and Z]'. Therefore, the non-zero entries of A}
only appear on the indexes of visual atoms associated with class-specific dictio-
nary D;. In other words, it indicates that the structured dictionary D tends to
represent the samples X of class ¢ by choosing the visual atoms in dictionary
D;. Due to this consistency property, the discriminative power of feature repre-
sentation can be strengthened.
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Classification error term: The fourth term J(w;,b;, AT, y;) of Eq. (1) is a
loss function to measure the classification error. In our method, we incorporate
a SVM formulation into our dictionary learning objective. w;, b; are the param-
eters of SVM classifier, A} is the representation coefficients of feature sample
X[ on dictionary D. The minimization of this term is to guide the dictionary
learning process, which is beneficial to derive the discriminative feature repre-
sentation.

Dictionary incoherent constraint: The seventh energy term, as in [14], is
designed to ensure the learned class-specific dictionaries to be as independent as
possible. Besides, we also impose the incoherent constraint between all the class-
specific dictionaries D;,i = 1,2, ...,C and the additional background dictionary
D¢ 1, which is used to separate the shared visual patterns and the class-specific
visual patterns for all classes. Due to the incoherent property, the discriminative
power of encoded feature can be enhanced.

3.3 Construction of Image-Level Feature

We first describe the proposed feature representation strategy using a group
sparsity constraint. Moreover, we introduce the construction of image-level fea-
ture for final recognition task.

Given the learned discriminative structured dictionary D = [Dy, Da, ..., D¢,
D¢ 1], we propose to encode the deep feature of object proposal with the Iy /lo-
norm group sparsity constrain. Mathematically, the feature coding step is solved
by the following I /ls-norm regularized least squares problem.

c
min | X = Dyc B 5+ 0 ) |l Bl Il2 (2)
K m=1

where the dictionary D, denotes the structured dictionary D when removing
the visual atoms associated with the background class C' + 1. Instead of using
the overall dictionary D for feature representation, the shared visual patterns of
all classes corresponding to potential background information can be separated
by the dictionary D,c1. B is the representation coefficients of X" on dictio-
nary D/c41. In the feature coding step, we divide the representation coefficients
into C' non-overlapping groups, where Bl' . m = 1,2,...C" denotes the m-th

i,m?

group of representation coefficients B;'. The entry indexes of B}, is associated
to the class-specific dictionary D,,. This feature representation strategy with
l1/l2-norm sparsity encourages the dictionary D¢y to represent feature sam-
ple by selecting the groups of visual atoms corresponding to the class-specific
dictionaries. Therefore, the discriminative power of feature representation can
be promoted effectively. p is a weighting parameter to balance the reconstruction
term and the sparsity constrain in the objective function.

Figure 2 depicts the proposed feature representation property. In our method,
we use the SLEP tool [29] to solve the minimization problem of Eq. (2). Once
all the feature representations of region proposals within an image are com-
puted, we then use them to construct the image-level feature by max-pooling for
recognition task.
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Fig. 2. Visual interpretation of the proposed feature coding strategy.

3.4 Optimization Algorithm

To solve the OADL objective, we derive an iterative optimization algorithm to
compute all the variables in Eq. (1) alternatively. The detailed optimization
procedures can be divided into the following five sub-problems: (1) updating
variable A; with fixed variables Z;, D;, Dcy1 and w;, b;; (2) computing Z; by
fixing A;, D;, Dcy1 and w;, b;; (3) updating dictionary D; when fixing A;, Z;,
Dcy1 and w;, by; (4) updating dictionary Deq with fixed A;, Z;, D;, w;, b;. (5)
updating w;, b; while fixing variables A;, Z;, D;, Dcy1.

Updating A7: With fixing the representation coefficients Z7*, dictionaries D,
D¢y and classifier parameters w;, b;, we can reduce the objective function of
Eq. (1) with respect to A? into the following optimization formulation.

min || X;' — DAY |7 + o [| A7 = 27" |7

(3)
+ R(wi, b, A7 i) + A || A7 |l

For updating the representation coeflicients A}, we propose to update each repre-
sentation feature of region proposal within image one by one. The representation
coefficients A? can be rewritten as A7 = [A™", A2, A?’P"n] e REXF" where
A;L’j e REX j =1,2,..., P denotes the representation feature of j-th region
proposal in the n-th image from class ¢, P;* is the number of region proposals
in the n-th image from class i. To update the representation feature of each
proposal, we first transfer the image label to these region proposals associated
with this image. Then the classification error cost of A} is computed using a
linear SVM with parameters w;, b;. If the predicted label of A?’j is consistent
with the groundtruth, the classification error cost is set to zero. Otherwise, we
use || b — 1+ y; - wl A7 ||% to approximate the quadratic hinge loss. Finally,
the minimization problem of Eq. (1) with respect to each representation feature
A can be converted into the standard sparse coding formulation with /;-norm.
Updating Z!*: Suppose that the variables A7, D;, Dcyq and w;, b; are fixed,
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we can compute the representation coefficients Z7* as the following form:

win | X!~ DeiZl [+ o | A7 = 20 [+ do || 20 0

the above equation can be rewritten as

()~ ()],
Vo A} Vol
where I € RE*¥ denotes an identity matrix, K is the number of visual atoms
in structured dictionary D. Let X! = (X7, /aA™")T, De; = (Dei, JaI)T,
minimization formulation of Eq. (5) is converted to a standard sparse Codlng
problem. In our method, we use SPAMS solver [30] to achieve the optimal vari-
able.

Updating D;: When the representation coefficients A;, Z;, background dictio-
nary D¢ and classifier parameters w;, b; are fixed, each class-specific dictionary
D; can be updated. More specifically, we update these class-specific dictionaries
class by class. While we compute the dictionary D;, all the other dictionaries
are fixed. Removing the terms that are independent of class-specific dictionary
D;, the optimization objective function (1) with respect to D; is reduced to the
following from:

2

min + 2" ()

min | Xi — DeiZi |l + | Xi — DA; |7

C+1 (6)
+8 Y. IDI'D;lIz

j=1j#i

As for the above minimization function, we propose to compute each visual
atom of dictionary D; = [d},d?, ..., dlKl] e R”%i one by one. When we compute
the t-th visual atom d!, the other visual atoms of D; are fixed. We rewrite the
representation coefficients Z; and A; as Z; = [z};22; .. ,zzK} e REXN: 4, =
[al;a?;..;al] € RF*Ni where 2t € RVNi qt ¢ RVNi ¢ = 1,2,..., K denote
the t-th row vector of Z; and A;, respectively. To update visual atom d!, we
let the first derivative of d! equal to zero. Therefore, the t-th visual atom in

dictionary D; is computed as the closed-form
= (1= B I+ @l 31+ BHH) ™ - (Vi +Ye-af ) (7)

where Y1 = X, — Zu 1 JuFt i ;11,7 Y, =X, - Zi{:il,u;ét d;tau Zh 1,h#1 DhA'iL
and H1 = [Dl, D27 ciey z—17 deK,;;Di+1~-~7 Dc, Dc+1]. The AZL denotes the sub-
matrix of representation coefficients A; corresponding to the indexes of h-th class,
O is a zero matrix associated with the indexes of class-specific dictionary D;.
As an visual atom in dictionary, the atom df is further normalized by the
ly-norm, i.e. cif =d!/ | d! ||2. Therefore, we can compute all the visual atoms of
class-specific dictionary D; accordingly.
Updating D¢41: In order to compute the background dictionary Dgyq, the
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other variables A;, Z;, D;, w;, b; are fixed. When removing the independent
terms with respect to D¢ 41, the minimization formulation of Eq. (1) is converted
into the following optimization problem.

C+1
[r)nin | X; — DA; |3+ 3 Z [ D(:I:‘+1Dj 1% (8)
o j=1,j#C+1

In our method, we propose to update each visual atom of background dic-
tionary D¢y one by one. When the t-th visual atom is updated, the rest visual
atoms in D¢y are fixed. Thus, we can compute the ¢-th visual atom d’, 41 by
the closed-form solution.

T
deyy = (| af 131+ BH2HY)™ - (Ya-af ) 9)

where Y3 = X; — S0 deyat — S0 o DrAY and Hy = [Dy, D, ...
D¢, O4xke.,]- The al, t =1,2,...K denotes the ¢-th row vector of representa-
tion coefficients A;, and A! is the sub-matrix of A; corresponding to the indexes
of h-th class, O denotes a zero matrix associated with background dictionary
Dcy1. The updated dictionary atom is then normalized by the l3-norm. Once
all the visual atoms in D¢y is computed, the background dictionary Dg4q is
updated.

Updating w;, b;: To update the classifier parameters w;, b;, the other variables
are fixed. In our method, we cast the SVM classifier learning problem with C
classes into the C' one-vs-all SVM sub-problems. More specifically, we first trans-
fer the image label to these region proposals corresponding to this image. Then
all the feature representations of region proposals across all classes are used to
train multiple SVM classifiers. In our OADL, a linear SVM solver [28] is adopted
to learn the parameters of SVM classifiers.

Initialization: As for our OADL objective, we need to initialize the variables
{Di,Z;i, Ai, @ = 1,2,...,C} and Dcy1. For class-specific dictionary D;, it is
initialized by the K-SVD [15] algorithm using all the region proposals of im-
ages from class i. We also adopt the K-SVD algorithm to initialize the back-
ground dictionary D¢y using the region proposals of training samples across
all classes. The representation coefficients Z; and A; are initialized by solving
the sparse coding problem with ls ;-norm: ming, || X; —DeiZ; [|% + p1 || Zi ||2.1,
ming, || X;—DA; ||% + p2 || Ai ||2,1, respectively. p1, ps are the scale parameters
to balance the different energy terms. The proposed optimization procedures of
the OADL objective are summarized in Algorithm 1.

4 Experiments

In this section, we verify the effectiveness of our method with other compet-
ing methods on the UIUC8 Sport [31] and Graz-02 [32] public datasets. The
goal of our OADL method is to learn a feature subspace for improving the dis-
criminative power of feature representation. In the experiments, we adopt two
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Algorithm 1 Object-Aware Dictionary Learning

Require: training samples X = [X1, X, ..., X¢], the number of visual atoms K;, i =
1,2,...,C,C + 1 for each class-specific dictionary and an additional background
dictionary, parameters «, 3, A1 and Aa.

Ensure: class-specific dictionary D;, i = 1,2, ..., C, background dictionary Dcy1

1: initialize Di, Zi, Ai, 1= 1, 2, ceey C, and Dc+1
2: while not convergence and the maximum number of iterations is not reached do
3: fori=1—Cdo

4: update representation coefficients A7 by solving Eq. (3);

5: update representation coefficients Z;* using Eq. (5);

6: fort=1— K; do

T update the t-th visual atom d! of class-specific dictionary D; by Eq. (7);

8: end for

9: fort=1— Kc+1 do

10: update the ¢-th visual atom d.y; in background dictionary Dc41 by Eq.
(9);

11: end for

12: compute the parameters w;, b; of SVM classifier ;

13:  end for

14: end while

convolutional neural networks: VGG-F [22] and VGG-VeryDeepl9 [23] models
to generate the CNN features and further evaluate our method. The OADL(F)
and OADL(VD19) denote our method integrated with the different deep features
for brevity. As for the OADL, the dimension of deep feature is reduced to 1000
by PCA in the experiments. The weighting parameters «, 8, A1, Ay of the OADL
model are empirically set as 0.01, constant 7 is set to 0.2. In the recognition
stage, the scale parameter p for the regularization term of group sparsity is set
to 0.5. Finally, the obtained global image representation is fed into a linear SVM
classifier for predicting the label of image.

4.1 UIUCS8 Sport Dataset

We first evaluate our method and several competing approaches on the UIUCS
Sport [31] event recognition dataset. This dataset have eight sport classes and
1792 images in total, including rowing, badminton, polo, bocce, snowboarding,
croquet, sailing and rockclimbing. The number of images from each class varies
from 137 to 250. Several example images of this dataset are shown in Fig. 3.
Following the common experimental setting on this dataset [33], we ran-
domly choose 70 images from each class as the training samples and randomly
select 60 images from the rest images as the testing samples in the experiment.
As for our OADL model, we learn the class-specific dictionary with 200 visual
atoms for each class. The number of visual atoms in background dictionary is
also set to 200. We show the confusion matrices of our method on the UTUCS
Sport dataset in Fig. 4. More specifically, the confusion matrix of OADL incor-
porating with the deep feature by VGG-F model is demonstrated in Fig. 4(a).



Object-Aware Dictionary Learning with Deep Features 11

RockClimbing Rowing Sailing Snowboarding

Fig. 3. Sample images from different classes on the UIUCS8 Sport dataset.

Table 1. Performance comparisons between our method and the state-of-the-art ap-
proaches on the UTUCS8 Sport dataset.

‘ Method ‘ Accuracy (%) ‘ Method ‘ Accuracy (%) ‘
KSPM |[34] 79.98 RSP [42 79.6
ScSPM [28] 82.74 LPR [43 86.25

LLC [35] 8177 LSC [33] 82.79
K-SVD [15] 82.21 LScSPM [44] 85.31
SPMSM [36] 83.0 Fusion [45] 94.8
LRSC [37] 88.17 DSFL+DJCAF [46] 96.78
VLAD [38] 79.16 VGG-F [22] 94.5
VCVQ [39] 88.4 VGG-VD19 [23] 95.45

OB [40] 77.88 OADL(F) 96.9

ISPR [41] 805 OADL(VD19) 98.09

Figure 4(b) shows the obtained confusion matrix by our OADL with the deep
feature of VGG-VeryDeepl9 model on the UITUC8 Sport dataset. Moreover, we
evaluate our method with several competing approaches on this dataset, such
as KSPM [34], ScSPM [28], LLC [35], KSVD [15], SPMSM ([36], LRSC [37],
VLAD [38], VC+VQ [39], OB [40], ISPR [41], RSP [42], LPR [43], LSC [33],
LScSPM [44], Fusion [45], DSFL+DdCAF [46] and the two deep features by
VGG-F [22] and VGG-VD19 [23] models. The recognition results of different
methods are summarized in Table 1. It is noticed that our OADL model out-
performs the state-of-the-art methods, including the recent dictionary learning
and two powerful deep learning based image classification approaches. Finally,
our method achieves the highest performance on the UIUC8 Sport dataset. In
addition, we can observe that the OADL(VD19) gains the better recognition
accuracy than the OADL(F). It indicates the discrimination of feature represen-
tation by our OADL method can be further enhanced with the increase of depth
in convolutional network.
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Fig. 4. Confusion matrices on the UIUC8 Sport dataset for our method. (a) Confusion
matrix with the deep feature of VGG-F model. (b) Confusion matrix with the deep
feature of VGG-VeryDeepl9 model.

Table 2. Recognition results of different methods on the Graz-02 dataset.

l Method ‘ Bike ‘ Car ‘ People ‘ Total ‘

[47] 89.5 80.2 85.2 84.9

[48] 91.2 87.5 85.3 88.0

[49] N - - 82.2
VGG-F [22] 94.44 96.05 85.71 92.48
VGG-VD19 [23] 96.91 97.74 89.29 94.98
OADL(F) 98.15 97.18 88.57 94.99
OADL(VD19) | 98.77 97.74 91.43 96.24

4.2 Graz-02 Dataset

The Graz-02 dataset contains 1096 images with three classes, including bike,
car and people. It is also a challenge object recognition dataset because the
objects from each class have the large intra-class differences in location, scale
and viewpoint, as shown in Fig. 5. The effectiveness of our method is also tested
on this dataset following the standard evaluation setting [32]. In detail, the
class-specific dictionary with 400 visual atoms is learned for each class. For the
background dictionary in OADL model, the number of visual atoms is also set
to 400 in the experiment. Furthermore, we compare the OADL method with
several competing approaches [47—49] and the two CNN features by VGG-F [22]
and VeryDeep-19 [23] models on this dataset. The recognition results of different
methods are summarized in Table 2. As can been seen, our OADL method is
superior to the deep features and other competing approaches on the Graz-02
dataset. It is also observed that the discriminative power of feature generated
by our OADL method can be promoted effectively with the increasing depth of
convolutional network.
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Fig. 5. Sample images of different classes from the Graz-02 dataset.
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Fig. 6. Computation time analysis on the Graz-02 dataset. (a) Training time of OADL
as a function of the number of visual atoms per class. (b) Running time of OADL with
the increase of training samples across all classes.

In addition, we give the computation time of our method on the Graz-02
dataset in Fig. 6. Specifically, the number of training samples across all classes
is first fixed to 8874 in the experiments, then we vary the number of visual
atoms per class with [100,200,300,400]. The running time of OADL during
each iteration as a function of the number of visual atoms is shown in Fig. 6(a).
We can see that the computation time of OADL increases with the number of
visual atoms per class gradually. With fixed the number of visual atoms per class
to 200, we change the number of training samples from all classes in the range
[8874, 6000, 4000, 2000]. Figure 6(b) demonstrates that the runtime of OADL
increases with the growth of training samples. All experiments are performed
using a single CPU Intel Core at 3.0GHz.

5 Conclusion

Visual dictionary learning provides a data-driven manner to represent image
data as a linear combination of a few atoms from an over-complete dictionary.
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However, a critical problem of existing dictionary learning is that it does not
select and concentrate on the important image regions explicitly. Thus, discrim-
inative semantic information within image regions cannot be exploited effectively
during dictionary learning procedure. Currently, the convolutional neural net-
work (CNN) has the capacity to combine the global and local information within
image by means of designed specific filter layers with the increasingly receptive
fields. Motivated by the advantage of deep feature, we proposed an object-aware
dictionary learning framework that integrates the deep features and region pro-
posals systematically to overcome this problem. Instead of extracting a dictio-
nary from all the fixed size of image patches or entire image, our method focuses
on the small amounts of object candidates, which ensure the local semantic in-
formation can be encoded into the feature representation of image. We treat this
as an optimization problem and derive an iterative algorithm to solve it. The
experimental results on the public benchmark datasets demonstrate that our
method outperforms the state-of-the-art dictionary learning and deep learning
based image classification approaches.
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