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Abstract

Tracking by detection based object tracking methods en-
counter numerous complications including object appear-
ance changes, size and shape deformations, partial and full
occlusions, which make online adaptation of classifiers and
object models a substantial challenge.

In this paper, we employ an object proposal network that
generates a small yet refined set of bounding box candidates
to mitigate the this object model refitting problem by con-
centrating on hard negatives when we update the classifier.
This helps improving the discriminative power as hard neg-
atives are likely to be due to background and other distrac-
tions. Another intuition is that, in each frame, applying the
classifier only on the refined set of object-like candidates
would be sufficient to eliminate most of the false positives.
Incorporating an object proposal makes the tracker robust
against shape deformations since they are handled natu-
rally by the proposal stage. We demonstrate evaluations on
the PETS 2016 dataset and compare with the state-of-the-
art trackers. Our method provides the superior results.

1. Introduction

Object tracking has been widely studied [31, 28, 19, 30]
owing to its extensive applications from video surveillance
to robotic vision. Robust and reliable tracking enables high
level visual tasks. However, as we can see in Figure 1,
real-life scenarios, especially surveillance videos, comprise
many challenges:

e Pose and shape change — Humans have articulated bod-
ies and they do not always stand up as depicted in the
first row of Figure 1.

e Occlusion — In crowded scenes humans occlude each
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Figure 1: Typical video clips from the PETS 2016 dataset.
Green bounding boxes denote ground truth annotations. As
visible, objects undergo drastic size changes, deformations
and partial occlusions, which cause obstacles for conven-
tional object trackers. Our method handles these challenges
naturally using object proposals generated by a deep convo-
lutional neural network.

other frequently in the camera view as shown in the
second row of Figure 1.

e Size change — Cameras are usually positioned to cap-
ture as wide viewing angles as possible. This causes
objects to sustain significant size changes especially
when they move along the imaging plane normal di-
rection, e.g when humans enter the scene from faraway
locations, as shown in the last row of Figure 1.

Most object trackers incorporate either a generative or
a discriminative learning strategy to train their appearance
models. Generative learning based models including the
subspace learning [24] and sparse representation [21, 17,
15] mainly concentrate on how to construct an object rep-



resentation in specific feature spaces. In contrast, discrim-
inative learning based appearance models aim to maximize
the inter-class separability between the object and back-
ground regions using discriminative learning techniques,
e.g. SVMs [2, 32, 35, 33], random forest [20], ridge re-
gression [11, 6, 12] and multiple instance learning [3, 32],
to name a few.

To adapt appearance changes due to deformations, size
and shape changes, object models have to be processed and
updated in an online manner using previous estimations.
Since the appearance models are trained on the previous
estimations and only a few positive training samples from
the initial frames are reliable, it is considerably hard for
these trackers to make accurate bounding box estimations
when the target objects undergo drastic appearance changes.
Once the tracker starts drifting, the location and overlap er-
rors accumulate quickly distorting object model recursively
and eventually leading up to a total tracking failure.

In this work, we introduce an object proposal genera-
tion procedure for handling the problem of model degrada-
tion. We obtain a small yet high-quality set of object pro-
posals efficiently in the entire frame using a deep convo-
lutional neural network (CNN) called region proposal net-
work (RPN) [23] as shown in Figure 2. This network was
trained offline using a large image dataset. When applied
to a given image, it generates bounding boxes on the image
regions that are likely to contain objects.

The benefits of using object proposals are fourfold:

e Since the extracted object proposals cover only
“object-like” regions, a “regularity” for the tracking
procedure is imposed by reducing the spurious false
positives.

e Object proposals also suggest good negative samples
for training as they correspond to possible distractions
that may otherwise deteriorate the tracking process.

e The bounding boxes naturally accommodate size
changes of the object.

e Tracking by object proposals enables tracking any ob-
ject motion at any frame rate.

We validate the above arguments on the PETS 2016
[1] dataset comparing with several state-of-the-art trackers.
Our method accomplishes the best precision score of 58.5
where the second best is achieved by EBT [34] with 52.6.

2. Related Work

We first review the current work using CNN features for
visual tracking. Then, we give a simple introduction of ob-
ject proposal methods and discuss some relative studies rel-
evant to our method.

Convolutional Neural Networks for Tracking
Although significant advances have been attained by
CNNs for object detection and classification tasks [25],

there are comparably limited adaptations of CNNs for track-
ing task and most CNN based trackers use such networks to
learn better features. In their pioneering work [16] employs
a candidate pool of multiple CNNSs as a data-driven model
of different instances of the target object. Inspired by this,
[20] interprets the hierarchies of convolutional layers as a
nonlinear counterpart of an image pyramid representation
and adaptively learns correlation filters on each convolu-
tional layer to encode the target appearance. The recent
work in [22] pretrains a CNN using a large set of videos
with ground truth trajectories. The network is composed of
shared layers and multiple branches of domain-specific lay-
ers. They train the network with respect to each domain iter-
atively to obtain generic target representations in the shared
layers. In contrast, our method applies the CNN in a differ-
ent fashion for both object proposal generation and feature
extraction at the same time.

Object Proposals

As reported in [ 13, 36], use of proposal significantly im-
proves the object detection benchmark along with the con-
volutional neural nets. Since, a subset of high-quality candi-
dates are used for detection, object proposal methods boost
not only the speed but also the accuracy by reducing false
positives. The top performing detection methods [8, 29] for
PASCAL VOC [7] use detection proposals.

The EdgeBoxes method [36] proposes object candidates
based on the observation that the number of contours wholly
enclosed by a bounding box is an indicator of the likeli-
hood of the box containing an object. It is designed as a
fast algorithm to balance between speed and proposal recall.
BING [5] makes a similar observation that generic objects
with well-defined closed boundary can be discriminated by
looking at the norm of gradients. R-CNN [23] introduces
the region proposal network (RPN), which is a fully end-
to-end convolutional network that simultaneously predicts
object bounds and objectness scores at each position. It
shares full-image convolutional features with the detection
network, thus enabling nearly cost-free region proposals.

Since it enables efficient extraction of object proposals
and deep features, we employ RPN as the proposal genera-
tor in this paper.

Object Proposals for Tracking

A straightforward strategy based on linear combination
of the original tracking confidence and an adaptive object-
ness score obtained by BING [5] is employed in [18]. In
[14], a detection proposal scheme is applied as a post-
processing step, mainly to improve the tracker’s adaptabil-
ity to scale and aspect ratio changes. More recent trackers
[33, 34] are the most relevant approaches to ours. Here, we
take the advantage of the deep networks and achieve better
performance for PETS 2016 dataset.
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Figure 2: Framework of the proposed method. In a new frame ¢ + 1, an offline VGG network [27] is used to generate a
feature map, which is then fed to the region proposal network (RPN) [23] to obtain candidate bounding boxes. Region of
interest (Rol) pooling layer extracts feature vectors with a fixed size for the online structured support vector machine (SSVM)
[4] that serves as the classifier. The proposal with the maximal response is assigned as the new location of the object. We call

our method as Region Proposal Network Tracker: RPNT.

3. Proposed Tracker: RPNT

Our method follows a popular structured support vector
machine (SSVM) based tracking-by-detection framework
[4, 10]. The object location is initialized manually at the
first frame ¢ = 1. Denote B; as a bounding box at frame
t and can be represented as coordinates of its four corners.
Then, given a classification function F;_; trained on the
previous frames, the current location of the object is esti-
mated through:

Bf = argmaxp .5, Fy_1(By), (1

where B; is a set of candidate samples at the current frame.
To select samples, traditional trackers use heuristic search
windows around the previously estimated object location
for computational reasons. They apply each sample into
a classifier. For example, a search radius of 30 pixels is
used in [10]. Suppose the support vector set maintained by
SSVM as V;_ and the classification function can be written
as a weighted sum of affinities:

Fia(B) = Y.

3271€V1_1

wt IK(Bt 1, Bt), (2)

where w!_; is a scalar weight associated with the support
vector B!_,. Kernel function K (B;_,, B;) calculates the
affinity between two feature vectors extracted from B;_;
and B, respectively.

The classifier will then revise its model with the new lo-
cation of the object to adapt appearance changes. To update
the support vector set V;_; — V; in an online fashion, a

critical step is the selection of negative supports vector ac-
cording to the following function:

B; = argmathGBt\ B} th]_(Bt) + L(Bt, .B:)7 (3)

where the loss function L(B;, Bf) = 1 — (B, N Bf)/
(B U BY) defines on the bounding box overlap. Optimiza-
tion (3) corresponds to finding such a negative training sam-
ple that locates far from the positive one (high L(B;, B}))
yet presents close appearance (high F;_;(B;)). For more
details, refer to [10].

3.1. Region Proposal Network

The method proposed in this paper uses a similar frame-
work as introduced above, yet we made one critical change
to it. We recognize not all candidate bounding boxes B; €
B; should be treated equally (as the traditional trackers of-
ten do) since those boxes possess different “object-like” ap-
pearance, i.e. “objectness” characteristics, which should be
taken into account.

To this end, we have incorporated the region proposal
network (RPN) [23] to generate a small set of candidate
bounding boxes (as shown in Figure 2), denoted as Bf.
This network is basically a combined classification and re-
gression layer built upon a feature map extracted from a
pretrained CNN network such as VGG[27]. We use the im-
plementation of RPN from [23] which is pretrained on the
PASCAL VOC dataset [7].

Similar to [34], we additionally generate a bounding box
set by sampling only around the previous object location
as BtR (as in traditional methods). We find them useful to



help smoothen the tracking trajectory as the object proposal
component works independently at each frame, which in-
evitably results temporally inconsistent proposals. Thus a
combined set of B; = BE UBL is used during the test stage.
However, we only update the classifier when the estimated
one is from B¢ to resist potential corruption. More details
in Section 3.4.

3.2. Deep Feature Extraction

Like other CNN trackers [16, 20, 22], we extract deep
features from the pretrained deep network. It is convenient
to apply the extraction in our framework as the RPN is built
on the deep feature map. We employ a spatial pooling layer
[9] to avoid warping each image patch independently corre-
sponding to bounding box candidates of various sizes. The
feature pooling layer takes all the candidates in a single shot
and saves computational cost by sharing the feature map.

3.3. Candidates Classification

Instead of Eq.1, we use the following decision function
to estimate the new location of the object:

B} =argmaxp, 5, Fi_1(B:) + S(By, Bf_;).

S(By, Bf_;) is a term representing the motion smooth-
ness between the previous object location and the candi-
date box. This is important in our formulation as we are
testing candidates generated from various locations at the
frame. We use a simple weighting function in this paper:
S(B¢, Bf_1) = min(o||e(Bt) — ¢(Bf_4)||, 1), where ¢(B)
is the center of bounding box B; and o is a constant.

3.4. Online Updating with Proposals

During the update stage, we use both of BE and BF to
choose negative support vector. BY\ B} represents other
good “object-like” regions and training with them increases
the discriminative power among “objects-like” candidates.
BE is used for training as well as the negative sample space
contains a lot more other negative samples.

As mentioned in Section 3.1, we treat the estimated re-
sult B} as an indication for model updating. This is to say,
when Bf € BPE, we assume that there is no good object
proposal and the current estimation is a compromise for tra-
jectory smoothness, thus skipping the model updating. If
B; € Btc , then it suggests a good estimation which has both
maximal classifier response and high “objectness”, then we
update the object model immediately.

4. Experiments on PETS

We evaluate the proposed method on several video se-
quences from Performance Evaluation of Tracking and
Surveillance (PETS) 2016 [1]:

e N1_ARENA-01_02_.TRK_RGB_2: three humans walk-
ing in parallel towards the camera, significant size
change, as shown in the last row of Figure 1.

e W1_ARENA-11_03_.ENV_RGB_3: two humans
crashed, one was pulled down by the other, articulated
body deformation, as shown in Figure 4 (a).

e WI_ARENA-11_.03_.TRK RGB_1:  Another view-
ing angle of “W1_ARENA-11_03_ENV_RGB_3", as
shown in Figure 4 (b).

e A1_ARENA-15_06_TRK_RGB_2: Four humans fight-
ing, one was pulled down, occlusion and body defor-
mation, as shown in Figure 4 (c-f).

We list the details of the four sequences in Table 1 with
corresponding attributes labeled. As we can see, all se-
quences contain the attribute of size change, while sequence
“A1_ARENA-15_06_.TRK_RGB_2” is the most challenging
video containing size change, deformation and occlusion.

All trackers are initialized at the same frame of each se-
quence using a human detector [23].

4.1. Compared Trackers and Evaluation Metrics

Our method is denoted as RPNT and we compare it with
several state-of-the-art trackers: EBT [34], MUSTer [12],
SRDCEF [6], KCF [11], Struck [10] and MEEM [32]. Most
of them have been ranked at the top positions in recent large
benchmarks [31, 28, 19, 30]. Among these trackers, EBT
uses a similar proposal framework with EdgeBox [36] used
as candidate generation algorithm. MUSTer and SRDCF
improve the KCF tracking system. MEEM is an improved
support vector machine tracker. Stuck uses the same SSVM
classification model as ours, with a local uniform sampling
scheme. For all the trackers, we use their default settings.

Evaluation metrics and code are provided by the bench-
mark [31, 30]. We employ the one-pass evaluation (OPE)
and use two metrics: precision plot and success plot. The
former one calculates the percentage (precision score) of
frames whose center location is within a certain threshold
distance with the ground truth. A commonly used threshold
is 20 pixels. The latter one calculates a same percentage but
based on bounding box overlap threshold. We utilize the
area under curve (AUC) as an indicative measurement for
it.

Parameters For the RPN setting, non-maximum sup-
pression parameter is fixed at 0.7. The maximal number of
proposal is 600. Notice that a typical number of proposals
actually generated for PETS 2016 is about 400. For the set-
ting in SSVM, we use the same parameters as used in EBT
[34]. For the smooth motion function S(B;, Bf_;) in Eq.4,
o is set as the diagonal length of the initialized bounding
box.



videos #humans  #frames |size change deformation occlusion
N1_ARENA-01_02_.TRK_RGB_2 3 115 Yes No No
WI1_ARENA-11_03_ENV_RGB_3 2 107 Yes Yes No
WI1_ARENA-11_03_.TRK_RGB_1 2 101/148 Yes Yes No
A1_ARENA-15_06_TRK_RGB_2 3 582/198/195 Yes Yes Yes

Table 1: Details of the tested video sequences from the PETS 2016 dataset.

Notice that, we fix all of the parameters for all of the se-
quences. We do not fine-tune parameter values for optimal
performance.

4.2. Quantitative Experimental Results

The quantitative experimental results can be found in Ta-
ble 2 and Figure 3. In Table 2, we have details of the track-
ing results for each human being tracked in the four videos.
We report precision score (center distance threshold at 20
pixels) and area under curve (AUC) of the success plot re-
spectively. In Figure 3, results at various thresholds can be
found and they are ranked using precision score or AUC of
success plot.

Our method, PRNT, achieves the best overall perfor-
mance among the compared trackers. Especially when
compared with EBT, which is the closest method to ours,
we have a 1.5% improvement in AUC of success plot and
5.9% in term of precision score. This shows the advan-
tage of using deep CNN based feature and object proposal
method, comparing to the contour based proposal approach
(RPN vs EdgeBox) and crafted feature (deep feature vs in-
tensity histogram). More discussion is in Section 4.5.

The results also demonstrates that the object proposal
based framework works noticeably better than conventional
trackers which explore only the information from the video
itself, on the PETS 2016. The EBT and proposed RPNT
outperforms the best non-proposal tracker, SRDCF, 4%+ in
AUC metric and 1.3%+ in precision score. Tt indicates the
robustness of the incorporated “objectness” cues when the
videos contain drastic appearance changes.

4.3. Size Adaption

From the results, we can see the importance of the
tracker’s ability to adapt the size change. As from Table 1,
all four video sequences contain the attribute of size change.

While in the participated trackers, ours method and EBT
adapt the size change naturally during proposing the object
candidates. MUSTer and SRDCF additionally build a cor-
relation filter in the scale space and select the one with the
maximal response. In contrast, KCF, Struck and MEEM are
all fixing the bounding box size thorough the tracking.

It is clear to see the differences when looking at the AUC
metric, as the best non-size-adapt tracker, MEEM, achieves
35.6%, comparing to 51.5% of RPNT. While in term of pre-

cision score, KCF manages to achieve 50.6%, comparing to
58.5% of RPNT. This is surprising, as it does not lose the
object totally. However, it would be better if the size change
could be adapted from the first place.

4.4. Qualitative Experimental Analysis

We illustrate several qualitative results in Figure 4
from top ranked trackers: RPNT, EBT, SRDCF and
MUSTer, for an intuitive analysis. The demonstrated
results are from “WI1_ARENA-11_03_ENV_RGB_3”,
“WI1_ARENA-11_03_. TRK RGB_1” and “Al1_ARENA-
15.06_.TRK_RGB_2”. Especially, the last one contains
occlusion, deformation as well as size change.

As we can see from the illustrated figures, the proposed
RPNT adapts the size and appearance change naturally in
most circumstances. For the challenging “A1_ARENA-
15_.06_.TRK_RGB_2” video, the RPNT shows strong robust-
ness while most of other trackers start to drift.

4.5. Proposal and Feature

We also test two PRNT variants: (1) using EdgeBox pro-
posal and deep feature; (2) using RPN with histogram of
intensity (Hol) feature. The results are included in Table
3. We can see that the first variant using “EdgeBox + Deep
feature” generates a similar result to RPNT while the lat-
ter one, “RPN + Hol” generates a relatively inferior result.
This demonstrates the importance of applying the deep fea-
ture while EdgeBox performs as well as RPN.

Table 3: Performance of two variants.

RPN + Hol feature
50.5/53.5

EB + Deep feature
51.1/57.6

PETS (AUC/PS)

4.6. Computational Cost

The running speed of the proposed RPNT is reported
in Table 2. The RPN and feature pooling network are im-
plemented using GPU. They are running at a similar speed
as EdgeBox proposal method. Overall, our method runs a
close speed to EBT and Struck. As the SSVM classifier is
currently implemented in C++ and an interface between the
proposal component and SSVM is needed, RPNT could be
further speed up with code optimization.



videos | Pro.RPNT[ EBT[3{] MUSTer[I2] SRDCF[6] KCF[II] Struck [I0] MEEM [32]]
NI_ARENA-01 02 TRK RGB2| 73.6/99.1] 68.0/72.2  74.7/97.4  72.8/100.0 58.6/99.1 57.3/100.0 57.8/53.9
61.2/95.7| 65.9/86.1  47.4/91.3  64.2/80.0 44.8/93.9 47.9/96.5  47.2/92.2
59.4/87.8| 69.3/89.6  64.6/94.8  67.1/94.8 47.0/99.1 16.7/20.9  40.7/22.6
WI1_ARENA-11_03_ ENV_RGB3| 64.0/100.0] 49.5/100.0 56.3/98.1 57.5/100.0 43.8/85.0 41.7/85.0  44.4/82.2
42.9/81.3| 43.9/82.2  21.3/47.7  21.8/57.0 25.1/63.6 48.2/93.5  40.8/100.0

WI1_ARENA-11_03. TRK RGB_1|  9.6/6.9 9.2/4.0 12.3/5.9 8.5/5.9 11.1/5.9  24.4/24.6 9.4/5.9
39.2/25.7| 45.6/15.5 18.5/5.4 21.2/2.0  20.9/2.0 45.8/12.2  11.7/1.4

A1_ARENA-15.06_ TRK RGB2| 51.4/21.5| 46.4/8.4 4.4/1.0 44.2/2.7  4.5/1.0  24.4/24.6 4.5/0.9
57.9/29.2| 47.9/11.7  40.6/12.4  34.2/10.7 64.4/28.5 63.0/17.8  63.4/15.1
55.8/37.9| 54.0/56.4  63.0/61.5  68.4/60.0 31.3/28.2 18.4/15.4  31.7/24.6
Overall 51.5/58.5] 50.0/52.6  40.3/51.6  46.0/51.3 35.1/50.6 35.3/44.8  35.6/40.1

fps 3.8 4.4 2.1 7.8 70.9 4.8 8.8

Table 2: Area Under Curve (AUC) of success plot and precision score (20 pixels threshold) reported on the tested video
sequences in PETS 2016 (AUC/PS). Note every video contains several targets. fps: frames per second.
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Figure 3: Success plot and precison plot on the PETS 2016 dataset of OPE. The number followed by the algorithm name
is the area under the curve (AUC) and the precision score (PS) at the location error threshold of 20 pixels, respectively. Our
method has an overall better performance.

5. Conclusion

This paper presented a robust object tracking method that

trackers was provided.
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