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Abstract. Conventional face super-resolution methods, also known as
face hallucination, are limited up to 2∼4× scaling factors where 4 ∼ 16
additional pixels are estimated for each given pixel. Besides, they be-
come very fragile when the input low-resolution image size is too small
that only little information is available in the input image. To address
these shortcomings, we present a discriminative generative network that
can ultra-resolve a very low resolution face image of size 16 × 16 pix-
els to its 8× larger version by reconstructing 64 pixels from a single
pixel. We introduce a pixel-wise `2 regularization term to the generative
model and exploit the feedback of the discriminative network to make
the upsampled face images more similar to real ones. In our framework,
the discriminative network learns the essential constituent parts of the
faces and the generative network blends these parts in the most accu-
rate fashion to the input image. Since only frontal and ordinary aligned
images are used in training, our method can ultra-resolve a wide range
of very low-resolution images directly regardless of pose and facial ex-
pression variations. Our extensive experimental evaluations demonstrate
that the presented ultra-resolution by discriminative generative networks
(UR-DGN) achieves more appealing results than the state-of-the-art.
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1 Motivation

Face images arguably carry the most interesting and valuable visual information
and can be obtained in a non-intrusive manner. Still, for many applications from
content enhancement to forensics, face images require significant magnification.

In order to generate high-resolution (HR) face images from low-resolution
(LR) inputs, face hallucination [1,2,3,4,5,6,7,8,9,10,11,12] attracted great inter-
est in the past. These state-of-the-art face hallucination methods can achieve
exciting results up to 4× upscaling factors when accurate facial features and
landmarks can be found in LR images [9,10], manual supervision is provided,
suitably similar HR images of the same person are included in the support
dataset, and the exemplar HR face images are densely aligned [4,5,6,7]. When the
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(a) LR (b) HR (c) NN (d) Bicubic (e) [16] (f) Ours (g) Ours

Fig. 1. Comparison of our UR-DGN over CNN based super-resolution. (a) 16×16 pixels
LR face images [given]. (b) 128× 128 original HR images [not given]. (c) The nearest
neighbors of (a) in the training set. (d) Upsampling by bicubic interpolation. (e) The
results generated by the CNN based super-resolution [16]. This network is retrained
with face images. (f) Our UR-DGN without the feedback of the discriminative model.
(g) Our UR-DGN.

input image resolution becomes smaller, landmark based methods fail gravely
because of erroneous landmark localization. In other words, their performances
highly depend on the input image size. Furthermore, when the appearances of
the input LR images are different from the HR images in the dataset due to pose,
lighting and expression changes, subspace based methods degrade by producing
ghosting artifacts in the outputs.

When ultra-resolving (8× scaling factor) a low-resolution image, almost 98.5%
of the information is missing. This is a severely ill-posed problem. As indicated
in [13], when the scaling factor increases to 8×, the performances of existing
approaches degrade acutely.

Our intuition is that by better exploring the information available in the nat-
ural structure of face images, appearance similarities between individuals, and
emerging large-scale face datasets [14,15], it may be possible to derive competent
models to reconstruct authentic 8× magnified HR face images. Deep neural net-
works, in particular convolutional neural networks (CNN), are inherently suitable
for learning from large-scale datasets. Very recently, CNN based generic patch
super-resolution methods have been proposed [16,17] without focusing on any
image class. A straightforward retraining (fine-tuning) of these networks with
face image patches cannot capture the global structure of faces. As shown in
Fig. 1(e), these networks fail to produce realistic and visually pleasant results.
In order to retain the global structure of faces while being able to reconstruct
instance specific details, we use whole face images to train our networks.

We are inspired from the generative adversarial network (GAN) [18] that
consists of two topologies: a generative network G that is designed to learn the
distribution of the training data samples and generate a new sample similar to
the training data, and a discriminative network D that estimates the probability
that a sample comes from the training dataset rather than G. This work is
empowered with a Laplacian pyramid by [19] to progressively generate images
due to the higher dimensional nature of the training images. One advantage
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of GAN is that it generates face images yet sharp images from nothing but
noise. However, it has two serious shortcomings: (i) The output faces are totally
random. (ii) GAN has fixed output size limitation (32×32 [18] and 64×64 [19]).
Therefore, GAN cannot be used for ultra-resolution directly.

Instead of noise, we apply the LR face image l as the input for our discriminative-
generative network (DGN) and then generate a HR face image ĥ. In order to

enforce the similarity between the generated HR face image ĥ and the exemplar
HR image h, we impose a pixel-wise `2 regularization on the differences between
ĥ and h in the generative network. This enables us to constrain the affinity be-
tween the exemplar HR images and the generated HR images. Hereby, a loss
function layer is added to G. Finally, the generative network G produces a HR
image consistent with the exemplar HR image. In training DGN, the discrimi-
native network D provides feedback to G to distinguish whether the upsampled
face image is considered (classified by the D) as real (sharp) or as generated
(smooth). As shown in Fig. 1(f), by directly upsampling images by the gener-
ative network G, we are not able to obtain face images with sharp details. In
contrast, with the help of the network D, we can generate much sharper HR
face images, as shown in Fig. 1(g). Since the discriminative network is designed
to distinguish between the real face images and generated ones, the generative
network can produce HR face images more similar to real images.

Our method does not make any explicit assumption or require the location
of the facial landmarks. Because the convolutional neural network topologies we
use provide robustness to translations and deformations, our method does not
need densely aligned HR face images or constrain the face images to controlled
settings, such as the same pose, lighting and facial expression. Our approach
only requires frontal and approximately nearby eye locations in the training
images, which can be easily satisfied in most of face datasets. Hence, our UR-
DGN method can ultra-resolve 8× a wide range of LR images without taking
other information into account.

Overall, the contributions of this paper are mainly in four aspects:

– We present a novel method to ultra-resolve, 8× scaling factor, low-resolution
face images. The size of our input low-resolution images is tiny, 16×16 pixels,
which makes the magnification task even more challenging as almost all facial
details are missing. We reconstruct 64 pixels from only 1 pixel.

– To the best of our knowledge, our method is the first attempt to develop
discriminative generative networks for generating authentic face images. We
demonstrate that our UR-DGN achieves better visual results than the state-
of-the-art.

– We show that by introducing a pixel-wise `2 regularization term into the
network and backpropagating its residual, it is possible to ultra-resolve in
any size while GANs can only generate images in fixed and small sizes.

– When training our network, we only require frontal and approximately aligned
images, which makes the training datasets more attainable. Our UR-DGN
can ultra-resolve regardless of pose, lighting and facial expressions variations.

– Due to its feed-forward topology, our ultra-resolution method is very fast.
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2 Related Work

Super-resolution can be basically classified into two categories: generic super-
resolution methods and class-specific super-resolution methods. When upsam-
pling LR images, generic methods employ priors that ubiquitously exist in natu-
ral images without considering any image class information. Class-specific meth-
ods, also called face hallucination [1] if the class is face, aim to exploit statistical
information of objects in a certain class. Thus, they usually attain better results
than generic methods when super-resolving images of a known class.

Generic super-resolution: In general, generic single image super-resolution
methods have three types: interpolation based methods, image statistics based
methods [20,21] and example (patch)-based methods [22,23,24,7,25,26]. Interpo-
lation based methods such as bilinear and bicubic upsampling are simple and
computationally efficient, but as the scaling factor increases, they generate overly
smooth edges and fail create high resolution details. Image statistics based meth-
ods employ natural image priors to predict HR images, but they are limited to
smaller scaling factors [27]. Example-based methods have potential to break this
limitation of the maximum scaling factor. [24,28,29,26] exploit self-similarity of
patches in an input image to generate high resolution patches. [22,23] constructs
LR and HR patch pairs from a training dataset, and then the nearest neighbor
of the input patch is searched in the LR space. The HR output is reconstructed
from the corresponding HR patch. [7] proposes a sparse representation formula-
tion by reconstructing corresponding LR and HR dictionaries, while [30] applies
convolutional sparse coding instead of patch-based sparse coding. Recently, sev-
eral deep learning based methods [16,17] have been proposed. Dong et al. [16]
incorporates convolutional neural networks to learn a mapping function between
LR and HR patches from a large-scale dataset. Since many different HR patches
may correspond to one LR patch, the output images would suffer from artifacts
at the intensity edges. In order to reduce the ambiguity between the LR and HR
patches, [31] exploits the statistical information learned from deep convolutional
network to reduce ambiguity between LR and HR patches.

Face hallucination: Unlike generic methods, class-specific super-resolution
methods [1,2,3,4,5,6,8,9,10,11,12] further exploit the statistical information in
the image categories, thus leading to better performances. In one of the earlier
works, [1] builds the relationship between HR and LR patches using Bayesian
formulation such that high-frequency details can be transferred from the dataset
for face hallucination. It can generate face images with richer details. However,
artifacts also appear due to the possible inconsistency of the transferred HR
patches.

The work in [4] employs constraints on both LR and HR images, and then
hallucinate HR face images by an eigen-transformation. Although it is able to
magnify LR images by a large scaling factor, the output HR images suffer from
ghosting artifacts as a result of using a subspace. Similarly, [5] enforces linear
constraints for HR face images using a subspace learned from the training set
via Principle Component Analysis (PCA), and a patch-based Markov Random
Field is proposed to reconstruct the high-frequency details in the HR face im-
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ages. This method works only when the images are precisely aligned at fixed
poses and expressions. In other cases, the results usually contain ghosting arti-
facts due to PCA based holistic appearance model. To mitigate artifacts a blind
bilateral filtering is used as a post-processing step. Instead of imposing global
constraints, [8] uses multiple local constraints learned from exemplar patches,
and [32] reserves to sparse representation on the local structures of faces. [33]
uses optimal transport in combination with subspace learning to morph a HR
image from the LR input. These subspace based methods require that face im-
ages in the dataset are precisely aligned and the test LR image has the same
pose and facial expression as the HR face images.

In order to handle various poses and expressions, [9] integrates SIFT flow to
align images. This method performs adequately when the training face images
are highly similar to the test face image in terms of identity, pose, and expression.
Since it uses local features to match image segments, the global structure is not
preserved either.

By exploiting local structures of face images, [10] presents a structured face
hallucination method. It divides a face image into facial components, and then
maintains the structure by matching gradients in the reconstructed output. How-
ever, this method relies on accurate facial landmark points that are usually un-
available when the image size is very small. The recent work in [11] proposes a
bichannel CNN to hallucinate face images in the wild. Since it needs to extract
features from the input images, the smallest input image size is 48× 48.

Some generative network [34,18,19,35] can generate random face images from
nothing but random noise. Among those generative models, generative adversar-
ial networks (GANs) [18,19] can generate face images with much sharper details
due to the discriminative network. However, the generated images are only sim-
ilar in the class domain but different in the appearance domain. In other words,
GAN is capable of generating only random faces. Moreover, GAN only uses the
cross entropy loss function of discriminative models to optimize the entire net-
work. Hence, the generative models in GAN are difficult to generate images in
high resolutions. For instance, [18] only produces images of size 32× 32 pixels.

3 Proposed Ultra-Resolution Method

A processing pipeline of UR-DGN is shown in Fig. 2. Below, we present the
pipeline of UR-DGN and describe the details of training the network. We also
discuss the differences between UR-DGN and GAN.

3.1 Model Architecture

Let us first recap the generative model G that takes a noise vector z from a
distribution Pnoise(z) as an input and then outputs an image x̂ in [18]. The
discriminative model D takes an image stochastically chosen from either the
generated image x̂ or the real image x drawn from the training dataset with a
distribution Pdata(x) as an input. D is trained to output a scalar probability,
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Fig. 2. The pipeline of UR-DGN. In the testing phase, only the generative network in
the red dashed block is employed.

which is large for real images and small for generated images from G. The gen-
erative model G is learned to maximize the probability of D making a mistake.
Thus a minmax objective is used to train these two models simultaneously

min
G

max
D

Ex∼Pdata(x)[logD(x)] + Ez∼Pnoise(z)[log(1−D(G(z)))]. (1)

This equation encourages G to fit Pdata(x) so as to fool D with its generated
samples x̂.

We cannot directly employ Eqn. 1 for the ultra-resolution task since GAN
takes noise as input to learn the distribution on the training dataset. In UR-
DGN, we design a deconvolutional network [36] as the generative model G to
ultra-resolve LR inputs, and a convolutional network as the discriminative model
D. We construct LR and HR face image pairs {li, hi} as the training dataset.

Because the generated HR face image ĥi should be similar to its corresponding
HR image hi, a pixel-wise `2 regularization term induces the similarity. Thus,
the objective function F (G,D) is modeled as follows:

min
G

max
D

F (G,D) = Ehi∼PH(h)[logD(hi)] + Eli∼PL(l)[log(1−D(G(li)))]

+ λE(hi,li)∼PHL(h,l)[‖ĥi − hi‖2F ]

= Ehi∼PH(h)[logD(hi)] + Eli∼PL(l)[log(1−D(G(li)))]

+ λE(hi,li)∼PHL(h,l)[‖G(li)− hi‖2F ],

(2)
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where PL(l) and PH(h) represent the distributions of LR and HR face images
respectively, PHL(h, l) represents the joint distribution of HR and LR face im-
ages, and λ is a trade-off weight to balance the cross entropy loss of D and the
Euclidean distance loss of G.

3.2 Training of the Network

The parameters of the generative network G and the discriminative network
D are updated by backpropagating the loss in Eqn. 2 through their respective
networks. Specifically, when training G, the loss of the last two terms in Eqn. 2
is backpropagated through G to update its parameters. When training D, the
loss of the first two terms in Eqn. 2 is backpropagated through D to update its
parameters.

Training D: Since D is a CNN with a negative cross-entropy loss function,
backpropation is used to train the parameters of D. Thus, the derivative of
the loss function F (G,D) with respect to D is required when updating the
parameters in D. It is formulated as follows:

∂F (G,D)

∂D
= ∇θD

(
Ehi∼PH(h)[logD(hi)] + Eli∼PL(l)[log(1−D(G(li)))]

)
, (3)

where θD is the parameters of D, and ∇ is the derivative operator. Specifically,
given a batch of LR and HR image pairs {li, hi}, i = 1, . . . , N , the stochastic
gradient of the discriminator D is written as

∂F (G,D)

∂D
= ∇θD

(
1

N

N∑
i=1

logD(hi) + log(1−D(G(li)))

)
, (4)

whereN is the number of LR and HR face image pairs in the batch. Since we need
to maximize D, the parameters θD are updated by ascending their stochastic
gradients. RMSprop [37] is employed to update the parameters θD as follows:

δj+1 = αδj + (1− α)(
∂F (G,D)

∂D
)2,

θj+1
D = θjD + η

∂F (G,D)

∂D
/
√
δj+1 + ε.

(5)

where η and α represent the learning rate and the decay rate respectively, j
indicates the iteration index, ε is set to 10−8 as a regularizer to avoid division
by zero, and δ is an auxiliary variable.

Training G: G is a deconvolutional neural network [36]. It is trained by
backpropagation as well. Similar to training D, the derivative of the loss function
F (G,D) with respect to G is written as

∂F (G,D)

∂G
= ∇θG

(
Eli∼PL(l)[log(1−D(G(li)))]

+λE(hi,li)∼PHL(h,l)[‖G(li)− hi‖2F ]
)
, (6)
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Algorithm 1 Minibatch stochastic gradient descent training of UR-DGN

Input: minibatch size N , LR and HR face image pairs {li, hi}, maximum number of
iterations K.

1: while iter < K do
2: Choose one minibatch of LR and HR image pairs {li, hi}, i = 1, . . . , N .
3: Generate one minibatch of HR face images ĥi from li, i = 1, . . . , N , where ĥi =

G(li).
4: Update the parameters of the discriminative network D by using Eqn. 4 and

Eqn. 5.
5: Update the parameters of the generative network G by using Eqn. 7 and Eqn. 8.
6: end while
Output: UR-DGN.

where θG denotes the parameters of G. Given a batch of LR and HR face image
pairs {li, hi}, i = 1, . . . , N , the stochastic gradient of the generator G is

∂F (G,D)

∂G
= ∇θG

(
1

N

N∑
i=1

log(1−D(G(li))) + λ‖G(li)− hi‖2F

)
. (7)

Since we will minimize the cost function for G, the parameters θG are updated
by descending their stochastic gradients as follows:

δj+1 = αδj + (1− α)(
∂F (G,D)

∂G
)2,

θj+1
G = θjG − η

∂F (G,D)

∂G
/
√
δj+1 + ε.

(8)

In our algorithm, we set the learning rate η to 0.001 and the decay rate to
0.01, and the learning rate is multiplied by 0.99 after each epoch. Since we super-
resolve an image rather than generate a face image, we set λ to 100 to constrain
the similarity between the generated face image G(li) and the exemplar HR face
image hi. The training procedure of our UR-DGN is presented in Algorithm 1.

3.3 Ultra-Resolution of a Given LR Image

The discriminative network D and the pixel-wise `2 regularization are only re-
quired in the training phase. In the ultra-resolution (testing) phase, we take LR
face images as the inputs of the generative network G, and the outputs of G
are the ultra-resolved face images. This end-to-end mapping is able to keep the
global structure of HR face images while reconstructing local details.

3.4 Differences between GAN and UR-DGN

GAN of [18] consists of fully connected layers, while Denton et al. [19] use a fully
connected layer and deconvolutional layers. In [19], the noise input is required
to be fed into a fully connected layer first before fed into deconvolutional layers.
The fully connected layer can be considered as a nonlinear mapping from the
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(a) LR (b) HR (c) GAN∗ (d) GAN (e) Ours

Fig. 3. Illustration of the differences between GAN and our UR-DGN. (a) Given LR
image. (b) Original HR image (not used in training). (c) GAN∗: GAN with no fully
connected layer. Without a fully connected layer, GAN∗ cannot rearrange the convolu-
tional layer features (activations) of the input noise to a face image. (d) GAN with fully
connected layer. Given the test LR image (not noise!), GAN still outputs a random
face image. (d) Result of our UR-DGN.

noise to the activations of a feature map. If we remove the fully connected layer
while leaving other layers unchanged, GAN will fail to produce face images, as
shown in Fig. 3(c). Therefore, fully connected layers are necessary for GAN.

Since deconvolutional layers are able to project low-resolution feature maps
back to high-resolution image space, we take a LR face image as a 3-channel
feature map, and then project this LR feature map into the HR face image
space. However, the fully connected layers are not necessary in our UR-DGN.
Because LR face images are highly structured, they can be regarded as feature
maps after normalization, which scales the range of intensities between −1.0 and
1.0. Feeding a LR face image into a fully connected layer may destroy the global
structure of the feature map, i.e. the input LR face image. In other words, UR-
DGN does not need a nonlinear mapping from an input LR image to a feature
map via a fully connected layer.

Furthermore, since there is no pixel-wise regularization in GAN, it cannot
produce HR results faithful to the input LR face images and generate high-
quality face images as the output size increases as shown in Fig. 3(d). In conclu-
sion, the original architecture of GAN cannot be employed in the ultra-resolution
problem.

4 Experiments

In order to dissect the performance of UR-DGN, we evaluate it qualitatively
and quantitatively, and compare with the state-of-the-art methods [5,7,10,16,8].
Liu et al.’s method [5] is a subspace based face hallucination method. The work
in [7] uses sparse representations to super-resolve HR images by constructing LR
and HR dictionaries. Yang et al.’s method [10] hallucinates face images by using
facial components from exemplar images in the dataset. Dong et al. [16] employ
CNN to upsample images. Ma et al. [8] use position-patches in the dataset to
reconstruct HR images.

4.1 Datasets

We trained UR-DGN with the celebrity face attributes (CelebA) dataset [15].
There are more than 200K images in this dataset, where Liu et al. [15] use
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similarity transformation to align the locations of eye centers. We use the cropped
face images for training. Notice that the images in this dataset cover remarkably
large pose variations and facial expressions. We do not classify the face images
into different subcategories according to their poses and facial expressions when
training UR-DGN.

We randomly draw (all protocol details, data and code for this paper will be
released) 16, 000 aligned and cropped face images from the CelebA dataset, and
then resize them to 128 × 128. We use 15, 000 images for training, 500 images
for validation, and 500 images for testing. Thus, our UR-DGN model never sees
the test LR images in the training phase.

We downsample the HR face images to 16×16 pixels (without aliasing), and
then construct the LR and HR image pairs {li, hi}. The input of UR-DGN is an
image of size 16 × 16 with 3 RGB channels, and the output is an image of size
128× 128 with 3 RGB channels.

4.2 Comparisons with SoA

We do side-by-side comparisons with five state-of-the-art face hallucination meth-
ods. In case an approach does not allow 8× scaling factor directly, i.e. [7] and [16],
we repeatedly (three times) apply a scaling factor 2× when ultra-resolving a LR
image. For a fair comparison, we use the same dataset CelebA for training of all
other algorithms. Furthermore, we apply bicubic interpolation to all input LR
images as another baseline.

Comparison with Liu et al.’s method [5]: Since this method requires
the face images in the dataset to be precisely aligned, it is difficult for it to
learn a representative subspace from the CelebA dataset where face images have
large variations. Therefore, the global model of the input LR image cannot be
represented by the learned subspace, and its local model impels patchy artifacts
on the output. As shown in Fig. 4(d), Fig. 5(d) and Fig. 6(d), this method cannot
recover face details accurately, and suffers from distorted edges and blob-like
artifacts.

Comparison with Yang et al.’s method [7]: As illustrated in Fig. 4(e),
Fig. 5(e) and Fig. 6(e), Yang et al.’s method does not recover high-frequency
facial details. Besides, non-smooth over-emphasized edge artifacts appear in their
results. As the scaling factor becomes larger, the correspondence between LR
and HR patches becomes ambiguous. Therefore, their results suffer exaggerated
pixellation pattern of the LR, similar to a contrast enhanced bicubic upsampled
results.

Comparison with Yang et al.’s method [10]: This method requires
landmarks of facial components and building on them, and reconstructs trans-
ferred high-resolution facial components over the low-resolution image. In 16×16
input images, it is extremely difficult to localize landmarks. Hence, this method
cannot correctly transfer facial components as shown in Fig. 4(f), Fig. 5(f) and
Fig. 6(f). In contrast, UR-DGN does not need landmark localization and still
preserve the global structure.
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(a) LR (b) HR (c)bicubic (d) [5] (e) [7] (f) [10] (g) [16] (h) [8] (i) Ours

Fig. 4. Comparison with the state-of-the-art methods on frontal faces. (a) LR inputs.
(b) Original HR images. (c) Bicubic interpolation. (d) Liu et al.’s method [5]. (e)
Yang et al.’s method [7]. (f) Yang et al.’s method [10]. (g) Dong et al.’s method [16].
(h) Ma et al.’s method [8]. (i) UR-DGN. (please zoom-in to see the differences between
(f) and (g). In (f), there are artificial facial edges while (g) has jitter artifacts.)

Comparison with Dong et al.’s method [16]: It applies convolutional
layers to learn a generic patch-based mapping function, and achieves state-of-
the-art results on natural images. Even though we retrain their CNN on face
images to suit better for face hallucination, this method cannot generate high-
frequency facial details except some noisy spots in the HR images as shown in
Fig. 4(g), Fig. 5(g) and Fig. 6(g).

Comparison with Ma et al.’s method [8]: This method employs local
constraints learned from positioned exemplar patches to avoid ghosting artifacts
caused by a global model such as PCA. However, it requires the exemplar patches
to be precisely aligned. As shown in Fig. 4(h), Fig. 5(h) and Fig. 6(h), this
method suffers from obvious blocking artifacts and uneven oversmoothing as a
result of the unaligned position patches in the dataset CelebA.

In contrast to the above approaches, our method provides more visually pleas-
ant HR face images that not only contain richer details but also are similar to
the original (not given to our method). UR-DGN takes the input LR image as
a whole and reduces the ambiguity of the correspondence between LR and HR
patches. Our method attains much sharper results.
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(a) LR (b) HR (c)bicubic (d) [5] (e) [7] (f) [10] (g) [16] (h) [8] (i) Ours

Fig. 5. Facial expression: Comparison with the state-of-the-art methods on images with
facial expressions. (a) LR inputs. (b) Original HR images. (c) Bicubic interpolation.
(d) Liu et al.’s method [5]. (e) Yang et al.’s method [7]. (f) Yang et al.’s method [10].
(g) Dong et al.’s method [16]. (h) Ma et al.’s method [8]. (i) UR-DGN. (please zoom-in
to see the differences between (f) and (g) )

Table 1. Quantitative comparisons on the entire test dataset

Methods Bicubic [5] [7] [10] [16] [8] Ours

PSNR 23.22 21.60 21.35 23.07 23.11 23.12 24.82
SSIM 0.67 0.55 0.60 0.65 0.65 0.64 0.70

4.3 Quantitative Results

We also assess UR-DGN performance quantitatively by comparing the average
PSNR and structural similarity (SSIM) on the entire test dataset. Table 1 shows
that our method achieves the best performance. As expected, bicubic interpola-
tion achieves better results than the other baselines since it explicitly builds on
pixel-wise intensity values without any hallucination. Notice that bicubic inter-
polation achieves the second best results, which implies that the high-frequency
details reconstructed by the state-of-the-art methods are not authentic. Our
method on the other hand achieves facial details consistent with real faces as it
attains the best PSNR and SSIM results while improving the PSNR an impres-
sive 1.6 dB over the previous best.

5 Limitations

Since we use a generative model to ultra-resolve LR face images, if there are
occlusions in the images, our method cannot resolve the occlusions. Still, occlu-
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(a) LR (b) HR (c)bicubic (d) [5] (e) [7] (f) [10] (g) [16] (h) [8] (i) Ours

Fig. 6. Pose: Comparison with the state-of-the-art methods on face images with differ-
ent poses. (a) LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d) Liu et
al.’s method [5]. (e) Yang et al.’s method [7]. (f) Yang et al.’s method [10]. (g) Dong et
al.’s method [16]. (h) Ma et al.’s method [8]. (i) UR-DGN. (please zoom-in to see the
differences between (f) and (g) )

(a) LR (b) HR (c)bicubic (d) [5] (e) [7] (f) [10] (g) [16] (h) [8] (i) Ours

Fig. 7. Comparison with the state-of-the-art methods on unaligned faces. (a) LR in-
puts. (b) Original HR images. (c) Bicubic interpolation. (d) Liu et al.’s method [5]. (e)
Yang et al.’s method [7]. (f) Yang et al.’s method [10]. (g) Dong et al.’s method [16].
(h) Ma et al.’s method [8]. (g) UR-DGN.

sions of facial features do not adversely affect ultra-resolution of the unoccluded
parts as shown in Fig. 8.
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(a)LR,HR (b) UR-DGN

Fig. 8. Illustrations of influence of occlusions. Top row: the LR inputs, bottom row: the
results of UR-DGN. (a) LR and HR images. (b) Results of UR-DGN with occlusions.
As seen, occlusions of facial features and landmarks (eyes, mouth, etc.) does not cause
any degradation of the unoccluded parts of the faces.

(a)LR,HR (b) UR-DGN

Fig. 9. Effects of misalignment. Top row: the LR images, bottom row: the results of
UR-DGN. (a) LR and HR images. (b) Results with translations. From left to right, the
y-axis translations are from -4 to +4 pixels. Notice that, the size of the LR image is
16×16 pixels. As visible, UR-DGN is robust against severe translational misalignments.

Our algorithm alleviates the requirements of exact face alignment. As shown
in Fig. 7 and Fig. 9, it is robust against translations, but sensitive to rotations.
As a future work, we plan to investigate incorporating an affine transformation
estimator and adapting the generative network according to estimated transfor-
mation parameters.

6 Conclusion

We present a new and very capable discriminative generative network to ultra-
resolve very small LR face images. Our algorithm can both increase the input LR
image size significantly, i.e. 8×, and reconstruct much richer facial details. The
larger scaling factors beyond 8× only require larger training datasets (e.g., larger
than 128×128 training face images for 16×16 inputs), and it is straightforward
to achieve even much extreme ultra resolution results.

By introducing a pixel-wise `2 regularization on the generated face images
into the framework of DGN, our method is able to generate authentic HR faces.
Since our method learns an end-to-end mapping between LR and HR face images,
it preserves well the global structure of faces. Furthermore, in training, we only
assume the locations of eyes to be approximately aligned, which significantly
makes the other face datasets more attainable.
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