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Abstract

Most of the conventional face hallucination methods as-
sume the input image is sufficiently large and aligned, and
all require the input image to be noise-free. Their perfor-
mance degrades drastically if the input image is tiny, un-
aligned, and contaminated by noise.

In this paper, we introduce a novel transformative dis-
criminative autoencoder to 8× super-resolve unaligned
noisy and tiny (16×16) low-resolution face images. In con-
trast to encoder-decoder based autoencoders, our method
uses decoder-encoder-decoder networks. We first employ
a transformative discriminative decoder network to upsam-
ple and denoise simultaneously. Then we use a transforma-
tive encoder network to project the intermediate HR faces
to aligned and noise-free LR faces. Finally, we use the sec-
ond decoder to generate hallucinated HR images. Our ex-
tensive evaluations on a very large face dataset show that
our method achieves superior hallucination results and out-
performs the state-of-the-art by a large margin of 1.82 dB
PSNR.

1. Introduction
Face images provide critical information for visual per-

ception and identity analysis. However, when they are noisy
and their resolutions are inadequately small (e.g.as in some
surveillance videos), there is little information available to
be inferred reliably from them. Very low-resolution and
noisy face images not only impede human perception but
also impair computer analysis.

To tackle this challenge, face hallucination techniques
aim at recovering high-resolution (HR) counterparts from
low-resolution (LR) face images and have received signif-
icant attention in recent years. Previous state-of-the-art
methods mainly focus on recovering HR faces from aligned
and noise-free LR face images. More specifically, face

∗This work was supported under the Australian Research Council‘s
Discovery Projects funding scheme (project DP150104645)

(a) LR (b) HR (c) Denoised/Aligned LR (d) NN

(e) Bicubic (f) URDGN [25] (g) encoded LR (h) Ours

Figure 1. Comparison of our method with the CNN based face
hallucination URDGN [25]. (a) 16 × 16 LR input image. (b)
128 × 128 HR original image. (c) Denoised and aligned LR im-
age. We firstly apply BM3D [4] and then STN [10]. (d) The cor-
responding most similar face in the training dataset. (e) Bicubic
interpolation of (c). (f) Image generated by URDGN. Note that,
URDGN super-resolves the denoised and aligned LR image, not
the original LR input (in favor of URDGN). (g) The denoised and
aligned LR image by our decoder-encoder as an intermediate out-
put. (h) The final hallucinated face by our TDAE method.

hallucination methods based on holistic appearance mod-
els [1, 2, 14, 20, 15, 8, 22, 24, 13, 12, 19, 25] require LR
faces to be precisely aligned beforehand. However, when
the LR images are contaminated by noise, the accuracy of
face alignment degrades dramatically. Besides, due to the
wide range of pose and expression variations, it is difficult
to learn a comprehensive, holistic appearance model for LR
images not aligned appropriately. As a result, these meth-
ods often produce ghosting artifacts for noisy unaligned LR
inputs.

Rather than learning holistic appearance models, facial
components based face hallucination methods have been
proposed [18, 23, 28, 29]. They transfer HR facial com-
ponents from the training dataset to the input LR images
without requiring alignment of LR input images in advance.
These methods heavily rely on the successful localization of
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facial landmarks. Because facial landmarks are difficult to
detect in very low resolution (16×16 pixels) images, they
fail to localize the facial components accurately and thus
produce artifacts in the upsampled face images. In other
words, the facial component based methods are not suitable
to upsample noisy unaligned LR faces either.

Considering the resolution of faces is too small and the
presence of noise, face detectors may also fail to locate such
tiny noisy faces. Thus, using pose specific face detectors
as a preprocessing step to compensate for misalignments is
also impractical.

In this paper, we propose a new transformative discrimi-
native autoencoder (TDAE) to super-resolve a tiny (16×16
pixels) unaligned and noisy face image by a remarkable up-
scaling factor of 8×, where we estimate 64 pixels for each
single pixel of the input LR image. Furthermore, each pixel
has also been contaminated by noise, making the task even
more challenging.

Our TDAE consists of three serial components: a de-
coder, an encoder, and a second decoder. Our decoder net-
work comprises deconvolutional and spatial transformation
layers [10]. It can progressively upsample the resolution-
s of the feature maps by its deconvolutional layers while
aligning the feature maps by its spatial transformation lay-
ers. Similar to [25], we employ not only the pixel-wise in-
tensity similarity between the hallucinated face images and
the ground-truth HR face images but also the class similari-
ty constraint that enforces the upsampled faces to lie on the
manifold of real faces by a discriminative network. Hence,
we achieve a transformative decoder that is also discrimina-
tive. Since the LR inputs are noisy, the hallucinated faces
after the decoder may still contain artifacts. In order to ob-
tain aligned and noise-free LR faces, we project the upsam-
pled HR faces back onto the LR face domain by a trans-
formative encoder. Finally, we train our second decoder on
the projected LR faces to attain hallucinated HR face im-
ages. In this manner, the artifacts are greatly reduced and
our TDAE produces authentic HR face images.

Overall, the contributions of this paper are mainly in four
aspects:
• We propose a new transformative-discriminative archi-

tecture to hallucinate tiny (16×16 pixels) unaligned
and noisy face images by an upscaling factor of 8×.
• In contrast to conventional autoencoders, we first de-

vice a decoder-encoder structure to generate noise-
free and aligned LR faces, and then a second decoder
trained on the encoded LR faces to hallucinate high-
quality HR face images.
• Our method does not require to model or estimate

noise parameters. It is agnostic to the underlying s-
patial deformations and contaminated noise.
• To the best of our knowledge, our method is the first at-

tempt to address the super-resolution of tiny and noisy

face images without requiring alignment of LR faces
beforehand, which makes our method practical.

2. Related Work
Face hallucination has received significant attention in

recent years [18, 23, 19, 12, 28, 29, 25]. Previous face hal-
lucination methods mainly focus on recovering HR faces
from aligned and noise-free LR face images, and in general,
they can be grouped into two categories: holistic methods
and part-based methods.

Holistic methods use global face models learned by P-
CA to hallucinate entire HR faces. In [20], an eigen-
transformation is proposed to generate HR face images by
establishing a linear mapping between LR and HR face sub-
spaces. Similarly, [15] employs a global appearance model
learned by PCA to upsample aligned LR faces and a lo-
cal non-parametric model to enhance the facial details. The
work in [12] explores optimal transport and subspace learn-
ing to morph an HR output according to the given aligned
LR faces. Since holistic methods require LR face images
to be precisely aligned and share the same pose and expres-
sion as the HR references, they are very sensitive to the mis-
alignments of LR images. Besides, image noise makes the
alignment of LR faces even more difficult.

Part-based methods upsample facial parts rather than en-
tire faces, and thus they can handle various poses and ex-
pressions. They either employ a training dataset of refer-
ence patches to reconstruct the HR counterparts of the in-
put LR patches or exploit facial components. In [2], high-
frequency details of aligned frontal face images are recon-
structed by finding the best mapping between LR and HR
patches. The work in [24] uses coupled LR/HR dictionar-
ies to enhance the details. In [22], an LR face image is
super-resolved with position patches sampled from multiple
aligned HR images. [13] models the local face patches as a
sparse coding problem rather than averaging the reference
HR patches directly. In [18], SIFT flow [16] is exploited
to align the facial parts of LR images, and then the detail-
s of LR images are reconstructed by warping the reference
HR images. [23] first localizes facial components in the LR
images and then transfers the most similar HR facial com-
ponents in the dataset to the LR inputs. Since part-based
methods often require extraction of facial components in L-
R inputs, their performance degrades dramatically when the
LR faces are tiny or noisy.

As large-scale data becomes available, convolutional
neural network (CNN) based SR methods have been pro-
posed and achieved the state-of-the-art performance [11, 21,
6, 3]. However, because these SR methods are designed
to upsample generic patches and do not fully exploit class-
specific information, they are not suitable to hallucinate tiny
faces. The work in [28] employs a CNN to extract facial fea-
tures and then generates high-frequency facial details based



Figure 2. Our transformative discriminative decoder consists of two parts: a transformative upsampling network (in the red frame) and a
discriminative network (in the blue frame).

Figure 4. Workflow of our transformative discriminative autoen-
coder. Colors of the boxes refer to the networks in Fig.2 and Fig.3.

on the extracted features. Due to the requirement of the fa-
cial feature extraction, the resolution of the input cannot be
low. Very recently, [25] presents a discriminative genera-
tive network to super-resolve LR face images. This method
addresses different facial expressions and head poses with-
out requiring facial landmarks, but it needs the eyes to be
aligned in advance. [29] proposes a cascade bi-network
to super-resolve very low-resolution and unaligned faces.
However, when there is noise in the LR images, this method
may fail to localize the face parts accurately, thus producing
artifacts in the outputs.

3. Proposed Method: TDAE

Our transformative discriminative autoencoder has three
complementary components: two transformative discrimi-
native decoders (as shown in Fig. 2) and a transformative
encoder (as shown in Fig. 3). In the training phase, our pa-
rameters of TDAE are learned in three steps (§.3.3). In the
testing phase, we cascade the transformative upsampling
network of the first decoder DEC1, the encoder ENC, and
the second decoder DEC2 together to hallucinate the final
HR faces in an end-to-end manner. The whole pipeline is
illustrated in Fig. 4

3.1. Architecture of Decoder

Our decoder architecture is composed of two sub-
networks, a transformative upsampling network (TUN) and
a discriminative network. In the transformative upsampling
network, we first apply two convolutional layers with larg-
er receptive fields to partially reduce noise artifacts rather
than feeding noisy images into the deconvolutional layers
directly. The deconvolutional layer can be made of a cas-
cade of an upsampling layer and a convolutional layer, or a
convolutional layer with a fractional stride [27, 26]. There-
fore, the resolution of the output image of the deconvolu-
tional layer is larger than the resolution of its input image.
We employ the `2 regression loss, also known as Euclidean
distance loss, to constrain the similarity between the hallu-
cinated HR faces and their HR ground-truth versions.

As reported in [25], deconvolutional layers supervised
by `2 loss tend to produce over-smoothed results. To tackle
this, we embed the class-specific discriminative information
into the deconvolutional layers by a discriminative network
(as shown in the blue frame in Fig. 2). The discriminative
network is able to distinguish whether an image (its input)
is sampled from authentic face images or hallucinated ones.
The corresponding discriminative information is backprop-
agated to the deconvolutional layers. Hence, the deconvo-
lutional layers can generate HR face images more similar to
the real faces.

We notice that rotational and scale misalignments of LR
face images will lead to apparent artifacts in the upsampled
face images in [25]. By contrast, our decoder can align the
LR faces automatically and hallucinate face images simul-
taneously. In order to align LR faces, we incorporate the s-
patial transformation network (STN) [10] into our network,
as shown in the green box in Fig. 2. STN can estimate the



Figure 3. Architecture of our transformative encoder.

transformation parameters of images, and then warp images
to a canonical view.

There are three modules in STN: a localization module,
a grid generator module, and a sampler. The localization
module consists of a number of hidden layers and output-
s the transformation parameters of an input relative to the
canonical view. The grid generator module constructs a
sampling grid according to the estimated parameters, and
then the sampler module maps the input onto the generated
grid by bilinear interpolation.

Here, we mainly focus on in-plane rotations, translation-
s, and scale changes, and thus use the similarity transforma-
tion to align faces. Considering the resolution of our inputs
is very small and input images are noisy, using state-of-the-
art denoising algorithms to reduce noise and then employ-
ing an STN to align LR faces will introduce extra blurriness,
as shown in Fig. 1(c) and Fig. 5(c). Therefore, aligning LR
faces in the image domain may blur the original LR facial
patterns and leads to artifacts as visible in the results of [25]
in Fig. 1(f). To prevent from this, we apply STNs to align
feature maps. As reported in [10], using multiple STNs can
improve the accuracy of the alignment. As a trade-off be-
tween the accuracy and GPU memory usage, we employ
two STNs following the first two deconvolutional layers.

Our decoder not only embeds discriminative information
but also processes multiple tasks (denoising, alignment, and
upsampling) simultaneously. As shown in Fig. 5(f), our
transformative discriminative decoder can reconstruct more
salient high-frequency details and aligned upsampled HR
face images as well.

3.2. Architecture of Encoder

By feeding an unaligned and noisy LR input to our trans-
formative discriminative decoder network DEC1, we obtain
an intermediate HR face image. As shown in Fig. 5(f), the
intermediate HR face contains more high-frequency details
and it is roughly aligned. The noise is comparatively re-
duced as well. However, the intermediate images may still
contain artifacts, which are mainly caused by noise. We ob-
serve that noise not only distorts the LR facial patterns but
also affects the face alignment. In order to achieve authen-
tic HR face images, these artifacts should be removed while

preserving the high-frequency facial details.
Our intuition is that projecting intermediate HR images

to LR images, artifacts and noise can be suppressed fur-
ther, which would allow us to apply our decoder to super-
resolve these almost noise-free and approximately aligned
LR faces. However, a decimation with anti-aliasing or sim-
ple downsampling may introduce additional artifacts into
the LR face images. Therefore, we design another CNN,
regarded as the encoder ENC, to project intermediate HR
images to noise-free LR versions as illustrated in Fig. 3.
Considering the upsampled HR faces may still have mis-
alignments, we also incorporate STNs into our encoder to
provide further alignment improvement.

When training the encoder, we constrain the projected
LR faces to be similar to the aligned ground-truth LR faces.
This helps us to generate aligned and noise-free LR faces,
as shown in Fig. 1(g) and Fig. 5(g).

To obtain HR face images, we employ a second decoder
DEC2 to super-resolve the LR faces projected by the ENC.
The decoder DEC2 shares the same architecture as the one
in Fig. 2. By employing the decoder-encoder structure, we
can jointly align the input LR faces and handle noise as
shown in Fig. 1(g) and Fig. 5(g). By exploiting the encoder-
decoder structure, we are able to remove artifacts in the up-
sampled HR faces, thus achieving high-quality, more au-
thentic, hallucinated HR face images as shown in Fig. 5(h).

3.3. Training Details of TDAE

We divide the training phase of our TDAE into three
stages: i) Training the transformative discriminative de-
coder network DEC1, as illustrated in Fig. 2. ii) Training
the encoder ENC, as shown in Fig. 3. iii) Training the de-
coder DEC2, which shares the same architecture as DEC1.

3.3.1 Training Discriminative Decoder

We construct LR and HR face image pairs {lni , hi} as our
training dataset for the training of our transformative dis-
criminative decoder DEC1. Here, hi represents aligned HR
face images, and lni is not directly downsampled from the
HR face image hi. We apply rotations, translations, and s-
cale changes to hi to obtain unaligned HR image hui . Then,
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Figure 5. Comparison of our method with the CNN based face hallucination methods. (a) The input 16 × 16 LR image. (b) The original
upright 128× 128 HR image (for comparison purposes). (c) The denoised and aligned version of (a). (d) The result of URDGN [25]. (e)
The result of CBN [29]. (f) The result of our DEC1. (g) The aligned and noise-free LR face projected by our ENC. (h) Our final result.

we downsample hui and then add Gaussian noise to obtain
the noisy unaligned LR faces lni .

Since we impose the upsampled image ĥi by our decoder
should be similar to its corresponding reference HR image
hi, we use pixel-wise Euclidean distance, as known as `2
regression loss, to enforce the intensity similarity. The loss
function U(s) of the TUN is modeled as,

min
s
U(s) = E(lni ,hi)∼p(ln,h)‖ĥi − hi‖2F , (1)

where s indicates the parameters of the TUN. The convolu-
tional layers, the STN layers, and the deconvolutional layer-
s are updated jointly in the TUN. The STN layers align the
feature maps while the deconvolutional layers upsample the
resolution of the feature maps gradually. Here, p(ln, h) in-
dicates the joint distribution of the LR and HR face images
in the training dataset.

As mentioned in [25], only applying intensity similar-
ity constraint will lead to over-smoothed results. Similar
to [7, 5, 17, 25], we infuse class-specific discriminative in-
formation into the TUN by exploiting a discriminative net-
work. The architecture of the discriminative network is il-
lustrated in the blue frame in Fig. 2. It is designed to dis-
tinguish whether an image is realistic or hallucinated. If
an HR face super-resolved by our decoder can convince the
discriminative network that it is a real face image, our hal-
lucinated faces will be similar to real face images. In other
words, our goal is to make the discriminative network fail
to distinguish hallucinated faces from real ones. Hence, we
maximize the cross-entropy of the discriminative network
L as follows:

max
t
L(t)=E

[
logD(hi)+log(1−D(ĥi))

]
=Ehi∼p(h)[logD(hi)]+Eĥi∼p(ĥ))[log(1−D(ĥi))],

(2)

where t represents the parameters of the discriminative net-
work, p(h) and p(ĥ) indicate the distributions of the real
faces and the hallucinated faces, and D(hi) and D(ĥi) are
the outputs of the discriminative network. The loss L is
backpropagated to the TUN in order to update the param-
eters s. By injecting discriminative information to s, our
decoder can hallucinate more authentic HR faces.

In our decoder network, every layer is differentiable, and
thus we use backpropagation to learn its parameters. RM-
Sprop [9] is employed to update s and t. To maximize the
discriminative network objective L, we use the stochastic
gradient ascent that updates the parameters t as follows:

∆i+1 = γ∆i + (1− γ)(
∂L

∂t
)2,

ti+1 = ti + r
∂L

∂t

1√
∆i+1 + ε

,
(3)

where r and γ are the learning rate and decay rate, respec-
tively, i is the index of iteration, ∆ is an auxiliary variable,
and ε is set to 10−8 to avoid division by zero. For the TUN,
both losses U and L are used to update the parameters s by
the stochastic gradient descent,

∆i+1 = γ∆i + (1− γ)(
∂U

∂s
+ λ

∂L

∂s
)2,

si+1 = si − r(∂U
∂s

+ λ
∂L

∂s
)

1√
∆i+1 + ε

,
(4)

where λ is a trade-off weight between the intensity similar-
ity term and the class similarity term. Since our goal is to
hallucinate an HR face, we put a higher weight on the in-
tensity similarity term and set λ to 0.01. As the iteration
progresses, the super-resolved faces will be more similar to
real faces. Therefore, we gradually reduce the impact of the
discriminative network by decreasing λ as,

λj = max{λ · 0.99j , λ/2}, (5)

where j indicates the index of the epochs. Eqn. 5 also guar-
antees that the class-specific discriminative information is
preserved in the decoder network during the training phase.

3.3.2 Training Encoder

In training our transformative encoder, we use the outputs of
DEC1 ĥi and the ground-truth aligned LR images li as our
training dataset. Since there may be misalignment in ĥi,
we also embed STNs into our encoder ENC to align the LR
faces. During the training of the transformative encoder, the
downsampled LR faces l̂i is constrained to be similar to the



ground-truth aligned LR faces li. Therefore, the objective
function of the transformative encoder E(e) is modeled as,

min
e
E(e) = E(li,ĥi)∼p(l,ĥ)‖Ψ(ĥi)− li‖2F

= E(li,ĥi)∼p(l,ĥ)‖l̂i − li‖
2
F ,

(6)

where e is the parameters of the transformative encoder, and
Ψ(ĥi) represents the mapping from the intermediate upsam-
pled HR faces ĥi to the projected LR faces l̂i. Similar to
Eqn. 1, we also use RMSprop to update e by the stochastic
gradient descent.

To obtain the final HR faces, we integrate a second de-
coder DEC2 to super-resolve the projected LR face images.
DEC2, as shown in Fig. 4, is trained on the encoded LR and
aligned ground-truth HR image pairs {l̂i, hi}.

After training the encoder network, we use the encoder
ENC to generate the training dataset l̂i, and then train DEC2

by using the image pairs {l̂i, hi}. The training procedure of
DEC2 is as the same as §. 3.3.1.

3.4. Hallucinating HR from Unaligned & Noisy LR

The discriminative network is only employed in training
our decoders. When hallucinating HR faces, the discrimi-
native work is not used. In the testing phase, we first feed an
unaligned and noisy LR face lni into the decoder DEC1 to
obtain an upsampled intermediate HR image ĥi. Then, we
use our encoder ENC to project the intermediate HR face ĥi
to an aligned LR face l̂i. Finally, we use the decoder DEC2

to super-resolve the aligned LR face l̂i and attain our final
hallucinated face h̃i.

Since in the training phase we use upright HR faces as
targets, our TDAE not only super-resolves the LR faces but
also aligns HR face images simultaneously. Although we
need to train our network in three steps, it can hallucinate
an unaligned and noisy LR face to an upright HR version in
an end-to-end fashion.

3.5. Implementation Details

The STN layers, as shown in Fig. 2 and Fig. 3, are built
by convolutional and ReLU layers (Conv+ReLU), max-
pooling layers with a stride 2 (MP2) and fully connected
layers (FC). Specifically, STN1 layer is built by cascading
the layers: MP2, Conv+ReLU (filter size: 512×20×5×5),
MP2, Conv+ReLU (20×20×5×5), FC+ReLU (from 400 to
20 dimensions) and FC (from 20 to 4 dimensions). STN2

is constructed by cascading the layers: MP2, Conv+ReLU
(256×128×5×5), MP2, Conv+ReLU (128×20×5×5), M-
P2, Conv+ReLU (20×20×3×3), FC+ReLU (from 180
to 20 dimensions) and FC (from 20 to 4 dimensions).
STN3 is constructed by cascading the layers: MP2, Con-
v+ReLU (128×20×5×5), MP2, Conv+ReLU (filter size:
20×20×5×5), MP2, FC+ReLU (from 80 to 20 dimension-
s) and FC (from 20 to 4 dimensions). STN4 layer is built

by cascading the layers: Conv+ReLU (96×20×5×5), M-
P2, Conv+ReLU (20×20×5×5), FC+ReLU (from 80 to 20
dimensions) and FC (from 20 to 4 dimensions). In the con-
volution operations, padding is not used.

In the following experimental part, some algorithms re-
quire the alignment of LR inputs [22, 25]. Thus, we employ
STN0 to align the LR images for those methods. The on-
ly difference between STN0 and STN1 is that the first MP2
step in STN1 is removed in STN0.

In training our decoders and encoder, we use the same
learning rate r and decay rate γ. We set the learning rate r
to 0.001 and multiply 0.99 after each epoch, and the decay
rate is set to 0.01.

4. Experiments
We compare our method with the state-of-the-art meth-

ods qualitatively and quantitatively. We employ BM3D [4]
to reduce the image noise, and then align the LR inputs by
STN0. In the experiments, we only show the upright HR
ground-truth faces hi for comparison purposes.

4.1. Dataset

We use the Celebrity Face Attributes (CelebA)
dataset [30] to train our TDAE. There are more than 200K
face images in this dataset, and the images cover different
pose variations and facial expressions. We use these im-
ages without grouping them into different pose and facial
expression subcategories.

When generating the LR and HR face pairs, we random-
ly select 30K cropped aligned face images from the CelebA
dataset, and then resize them to 128×128 pixels as HR im-
ages. We use 28K images for training and 2K for our tests.
We manually transform the HR images while constraining
the faces to be visible in the in the image, downsample the
HR images to generate LR images, and add Gaussian noise.
In the training of the decoder DEC1, we apply zero mean
Gaussian noise with the standard deviation 10% of the max-
imum image intensity to the LR images.

4.2. Qualitative Comparison with the SoA

Since some super-resolution baselines [22, 25] require
the input LR faces to be aligned, for a fair comparison we
align the LR faces by STN0 for the compared methods. We
present only the aligned upright HR ground-truth faces for
easy comparisons.

As shown in Fig. 6(c), conventional bicubic interpolation
cannot generate facial details. Since the resolution of inputs
is very small, little information is contained in the input im-
ages. Furthermore, the upsampled images also have some
deformations. This indicates that aligning very LR images
is more difficult when there is noise in the images.

Dong et al. [6] present a CNN based general purpose
super-resolution method, also known as SRCNN. Since SR-
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Figure 6. Comparison with the state-of-the-arts methods at the noise level 10%. (a) Unaligned and noisy LR inputs. (b) Original HR
images. (c) Bicubic interpolation. (d) Results of [6]. (e) Results of [22]. (f) Results of [29]. (g) Results of [25]. (h) Our method.

CNN is patch based, it cannot capture the global face struc-
ture. Training SRCNN with the full face images introduces
more ambiguity because the patch size (i.e.128×128) is too
large to learn a valid non-linear mapping. Hence, we em-
ploy an upscaling factor of 8× to retrain it. As seen in
Fig. 6(d), SRCNN cannot produce authentic facial details.

Ma et al. [22] exploit position patches to hallucinate HR
faces. This method requires the LR inputs to be precisely
aligned with the reference images in the training dataset.
As visible in Fig. 6(e), when there are alignment errors, it
produces deformed faces. Moreover, as the upscaling factor
increases, the correspondences between LR and HR patches
become inconsistent. Hence, it suffers from severe block
artifacts around the boundaries of different patches.

Zhu et al. [29] propose a deep cascaded bi-network for
face hallucination, known as CBN. This method has its own
aligning process that localizes facial landmarks used to fit
a global face model. When the noise level is low, it can
align LR faces based on the landmarks. However, when the
noise is not negligible, it fails to localize landmarks thus
produces ghosting artifacts (see Fig. 6(f)). Since noise im-

pedes the landmark detection, we apply BM3D as a remedy.
However, LR faces becomes smooth, and detecting facial
landmarks becomes even difficult. Our observation is that
CBN is not designed for noisy images.

Yu and Porikli [25] developed a discriminative genera-
tive network to super-resolve very low resolution face im-
ages, known as URDGN. Their method also employs de-
convolutional layers to upsample LR faces and a discrimi-
native network is used to force the generate network to pro-
duce sharper results. However, this method requires aligned
images and cannot super-resolve unaligned faces. In addi-
tion, noise may damage the LR facial patterns, which may
degrade the performance as visible in Fig. 6(g).

In comparison, our method reconstructs authentic fa-
cial details as shown in Fig. 6(h). We note that the input
faces have different poses and facial expressions. Since our
method applies multiple STNs on feature maps to align face
images and remove noise simultaneously, it achieves much
better alignment. With the help of the encoder, it obtains
aligned and noise-free LR images. With its second decoder,
it produces visually pleasing results, which are similar to the



Table 1. Quantitative evaluations on the entire test dataset. Dif-
ferent configurations: (1) STN+SR+BM3D, (2) STN+BM3D+SR,
(3) BM3D+STN+SR. Here, SR is the compared super-resolution
method. Our method does not use BM3D or a separate STN.

PSNR SSIM
Noise 5% 10% 5% 10%

1

Bicubic 17.93 17.77 0.51 0.49
SRCNN [6] 17.77 17.53 0.51 0.48

Ma [22] 17.98 17.90 0.51 0.50
CBN [29] 17.16 16.93 0.47 0.44

URDGN [25] 16.58 16.45 0.38 0.36

2

Bicubic 18.59 18.30 0.52 0.51
SRCNN [6] 18.59 18.32 0.53 0.51

Ma [22] 18.63 18.37 0.50 0.49
CBN [29] 18.34 18.26 0.52 0.52

URDGN [25] 16.95 16.79 0.41 0.40

3

Bicubic 17.87 17.63 0.52 0.50
SRCNN [6] 17.74 17.53 0.51 0.50

Ma [22] 17.86 17.65 0.49 0.48
CBN [29] 17.39 17.28 0.49 0.48

URDGN [25] 18.95 18.65 0.49 0.47
Ours 21.02 20.47 0.58 0.56

ground-truth faces as well. Our method does not need any
landmark localization or any information about the noise.
When the noise is low, it also attains superior performance.

Figure 7. The PSNR curves of the state-of-the-art methods on syn-
thetic test datasets with noise level from 1% to 10%.

4.3. Quantitative Comparison with the SoA

We quantitatively measure the performance of all meth-
ods on the entire test dataset in different noise levels by the
average PSNR and the structural similarity (SSIM) scores.
Table 1 presents that our method achieves superior perfor-
mance in comparison to other methods, outperforming the
second best with a large margin of 1.82 dB in PSNR.

For an objective comparison with the SoA methods, we
report results for three possible scenarios. In the first case,
we first apply STN0 to align noisy LR faces, then super-
resolve the aligned LR images by the SoA, and finally use

(a) 3% (b) 5% (c) 7% (d) 10%

Figure 8. Visualization of our results for different noise levels.
Please refer to Fig. 5(b) for the ground-truth HR image.

BM3D to remove the noise in the upsampled HR images.
In the second case, we apply STN0 followed by BM3D and
then super-resolution. In the third case, we first denoise
by BM3D, then align by STN0, and finally super-resolve.
When aligning noisy LR images, we train STN0 with noisy
LR faces. Otherwise, if we first use BM3D to reduce noise,
we train STN0 with noise-reduced LR faces.

Table 1 also indicates that simply denoising and then
aligning, or aligning and then denoising LR faces cannot
lead to good performance by the SoA methods.

Furthermore, we demonstrate that our method can suc-
cessfully hallucinate faces in different noise levels in Fig. 8.
When the noise level increases, our hallucinated faces re-
main consistent and retain their visual quality, which im-
plies that our method is robust to noise variations.

Figure 7 shows the PSNR curves for different noise lev-
els. We observe that our method achieves higher PSNRs
over the other methods, and for lower noise levels it per-
forms even better. Furthermore, we apply Gaussian blur
with σ = 2.4 to the spatially transformed HR images,
downsample HR faces, and add noise to the LR images.
As shown in Fig. 7, our network still performs well with-
out obvious degradation (dashed red line). Note that, we
do not need to know the noise level or re-train our network
with blurred LR inputs. We also combine DEC1 and ENC
together as another baseline, denoted as AE.

5. Conclusion

We presented a transformative autoencoder network to
super-resolve very low-resolution (16×16 pixels) unaligned
and noisy face images with a challenging upsampling fac-
tor of 8×. We leverage on a new decoder-encoder-decoder
architecture. Our networks jointly align, remove noise,
and discriminatively hallucinate input images. Since our
method is agnostic to image noise, face pose, and spatial
deformations, it is very practical. At the same time, it can
generate rich and authentic facial details.
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