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Pushing the Limits of Deep CNNs for Pedestrian
Detection

Qichang Hu, Peng Wang, Chunhua Shen, Anton van den Hengel, Fatih Porikli

Abstract—Compared to other applications in computer vision,
convolutional neural networks have under-performed on pedes-
trian detection. A breakthrough was made very recently by using
sophisticated deep CNN models, with a number of hand-crafted
features [2], or explicit occlusion handling mechanism [44]. In this
work, we show that by re-using the convolutional feature maps
(CFMs) of a deep convolutional neural network (DCNN) model as
image features to train an ensemble of boosted decision models,
we are able to achieve the best reported accuracy without using
specially designed learning algorithms. We empirically identify
and disclose important implementation details. We also show
that pixel labelling may be simply combined with a detector
to boost the detection performance. By adding complementary
hand-crafted features such as optical flow, the DCNN based
detector can be further improved. We advance state-of-the-art
results by lowering the log-average miss rate from 11.7% to 8.9%
on the Caltech dataset, 11.2% to 8.6% on the Inria dataset. We
also achieve a comparable result to state-of-the-art approaches
on the KITTI dataset.

Index Terms—Pedestrian detection, convolutional feature map
(CFM), ensemble model.

I. INTRODUCTION

The problem of pedestrian detection has been intensively
studied in recent years. Prior to the very recent work in
deep convolutional neural networks (DCNNs) based methods
[2], [44], the top performing pedestrian detectors are boosted
decision forests with carefully hand-crafted features, such as
histogram of gradients (HOG) [6], self-similarity (SS) [39],
aggregate channel features (ACF) [9], filtered channel fea-
tures [49] and optical flow [36].

Recently, DCNNs have significantly outperformed compa-
rable methods on a wide variety of vision problems [25],
[41], [42], [17], [45], [19], [40], [1]. A region-based con-
volutional neural network (R-CNN) [17] achieved excellent
performance for generic object detection, for example, in
which a set of potential detections (object proposals) are eval-
uated by a DCNN model. Later, R-CNN was extended to the
Fast R-CNN [16] which significantly increases the detection
speed. CifarNet [24] and AlexNet [25] have been extensively
evaluated in the R-CNN detection framework in [22] for
pedestrian detection. In their work, the best performance is
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23.3% log-average miss rate (MR) on Caltech dataset, which
was achieved by AlexNet pre-trained on the ImageNet [8]
classification dataset. Note that this result is still inferior
to conventional pedestrian detectors such as [49] and [36].
The DCNN models in [22] under-perform mainly because
the network design is not optimal for pedestrian detection.
The performance of R-CNNs for pedestrian detection has
further improved to 16.43% MR in [44] through the use of
a deeper GoogLeNet model which is fine-tuned using Caltech
pedestrian dataset.

To explicitly model the deformation and occlusion, another
line of research for object detection is part-based models [11],
[12], [28], [18] and explicit occlusion handling [31], [35],
[43]. DCNNs have also been incorporated along this stream
of work for pedestrian detection [33], [34], [30], but none
of these approaches has achieved better results than the best
hand-crafted features based method of [49] on the Caltech
dataset.

The performance of pedestrian detection is improved over
hand-crafted features by a large margin (a ∼ 5% MR gain
on Caltech), by two very recent approaches relying on DC-
NNs: CompACT-Deep [2] combines hand-crafted features and
fine-tuned DCNNs into a complexity-aware cascade. Tian
et al. [44] fine-tuned a pool of part detectors using a pre-
trained GoogLeNet, and the resulting ensemble model (refer to
as DeepParts) delivers similar results as CompACT-Deep. Both
approaches are much more sophisticated than the standard
R-CNN framework: CompACT-Deep involves the use of a
variety of hand-crafted features, a small CNN model and
a large VGG16 model [41]. DeepParts contains 45 fine-
tuned DCNN models and needs a set of strategies (including
bounding-box shifting handling and part selection) to arrive at
the reported result. Note that the high complexity of DCNN
models can lead to practical difficulties. For example, it can
be too costly to load all 45 DCNN models into a GPU card.

Here we ask a question: Is a complex DCNN based learn-
ing approach really a must for achieving the state-of-the-
art performance? Our answer to this question is negative.
In this work, we propose alternative methods for pedestrian
detection, which are simpler in design, with comparable or
even better performance. Firstly, we extensively evaluate the
CFMs extracted from multiple convolutional layers of a fine-
tuned VGG16 model for pedestrian detection. Using only a
CFM of a single convolutional layer, we train a boosted-tree-
based detector and the resulting model already significantly
outperforms all previous methods except the above two so-
phisticated DCNN frameworks. This model can be seen as a
strong baseline for pedestrian detection as it is very simple in
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terms of implementation.
We show that the CFMs from multiple convolutional layers

can be used for training effective boosted decision forests.
These boosted decision forests are combined altogether simply
by score averaging. The resulting ensemble model beats all
competing methods on the Caltech dataset. We further improve
the detection performance by incorporating a semantic pixel
labelling model. Next we review some related work.

A. Related Work

1) Convolutional feature maps (CFMs): It has been shown
in [38], [20], [48] that CFMs have strong representation
abilities for many tasks. Long et al. [29] adapt predominant
DCNNs into fully convolutional networks and transfer their
learned representations by fine-tuning to the semantic seg-
mentation domain. In [20], the CFMs from multiple layers
are stacked into one vector and used for segmentation and
localization. Ren et al. [38] learn a network on the CFMs
(pooled to a fixed size) of a pre-trained model.

The work by Yang et al. [48] is close to ours, which trains a
boosted decision forest for pedestrian detection with the CFM
features from the Conv3-3 layer of the VGG16 model [41],
and the performance (17.32% MR) on Caltech is comparable
to checkerboards [49]. It seems that there is no significant
superiority of the CFM used in [48] over hand-crafted features
on the task of pedestrian detection. The reason may be two-
fold. First, the CFM used in [48] are extract from the pre-
trained VGG16 model which is not fine-tuned on a pedestrian
dataset; Second, CFM features are extracted from only one
layer and the multi-layer structure of DCNNs is not fully
exploited. We show in this work that both of these two issues
are critically important in achieving good performance.

2) Segmentation for object detection: The cues used by
segmentation approaches are typically complementary to those
exploited by top-down methods. Recently, Yan et al. [47]
propose to perform generic object detection by labelling super-
pixels, which results in an energy minimization problem with
data term learned by DCNN models. In [13], [19], segmented
image regions (not bounding boxes) are generated as object
proposals and then used for object detection.

In contrast to the above region (or super-pixel) based meth-
ods, we here exploit at an even finer level of information, that
is, pixel labelling. In particular, in this work we demonstrate
that we can improve the detection performance by simply re-
scoring the proposals generated by a detector, using pixel-level
scores.

B. Contributions

We revisit pedestrian detection with DCNNs by studying
the impact of a few training details and design parameters. We
show that fine-tuning of a DCNN model using pedestrian data
is critically important. Proper bootstrapping has a considerable
impact too. Besides these findings, other main contributions of
this work can be summarized as follows.

1) The use of multi-layer CFMs for training a state-of-
the-art pedestrian detector. We show that it is possible
to train an ensemble of boosted decision forests using

multi-layer CFMs that outperform all previous methods.
For example, with CFM features extracted from two con-
volutional layers, we can achieve a log-average miss rate
of 10.7% on Caltech, which already perform better than
all previous methods, including the two sophisticated
DCNNs based methods [2], [44].

2) Incorporating semantic pixel labelling. We also propose
a combination of sliding-window detectors and semantic
pixel-labelling, which outperforms the best of previ-
ous methods. To keep the method simple, we use the
weighted sum of pixel-labelling scores within a proposal
region to represent the score of the proposal.

3) The best reported pedestrian detector. A new perfor-
mance record for Caltech is set by exploiting a DCNN
as well as two complementary hand-crafted features:
ACF and optical-flow features. This shows that some
types of hand-crafted features are complementary to
deep convolutional features.

Before we present our methods, we briefly describe the
datasets, evaluation metric and boosting models in our exper-
iments. See section A of the supplementary material for the
detailed introduction of these datasets.

C. Datasets, Evaluation Metric and Models

Caltech pedestrian dataset The Caltech dataset [10] is
one of the most popular datasets for pedestrian detection.
It contains 250k frames captured from 10 hours of urban
traffic videos. The standard training set and test set consider
one out of each 30 frames. In our experiments, the training
images are increased to one out of each 4 frames. Note that
many competing methods [49], [48], [22] have used the same
extended training set or even more data (every third frame). We
evaluate the performance of various detectors using the log-
average miss rate (MR) which is computed by averaging the
miss rate at false positive rates spaced evenly between 0.01
to 1 false-positive-per-image (FPPI) range. The dataset has
different test settings with respect to the difficulty of pedestrian
height, visibility and aspect ratio. Unless otherwise specified,
the detection performance on our experiments shown in the
remainder of the paper is the MR on the Caltech Reasonable
test setting.
Inria pedestrian dataset The Inria dataset [6] contains 614
positive training images and 288 positive test images. Images
of Inria are captured from multiple different scenes. We use
the log-average miss rate to evaluate the detection performance
as same as the Caltech. All results are reported on the 288
positive test images (negative images are not used).
KITTI pedestrian dataset The KITTI dataset [15] consists of
7481 training images and 7518 test images, comprising more
than 80 thousands of annotated objects in traffic scenes. The
dataset has three subsets (Easy, Moderate, Hard) with respect
to the difficulty of object size, occlusion and truncation. We
use the Moderate training subset as the training data in
our experiments. Average precision (AP) is used to evaluate
the detection performance for KITTI dataset. The average
precision summaries the shape of the precision-recall curve,
and is defined as the mean precision at a set of evenly spaced
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Model Fine-tuning data Shrinkage Avg. miss rate (%)

CFM3a No fine-tuning − 18.71
CFM3b Collected by ACF − 16.42
CFM3c Bootstrapping with CFM3b − 14.54
CFM3 Bootstrapping with CFM3b 0.5 13.49

TABLE I: Performance improvements with different fine-tuning
strategies and shrinkage (on Reasonable). All boosted decision
forests are trained with the CFM extracted from the Conv3-3 layer of
VGG16. CFM3a: the original VGG16 model pre-trained on ImageNet
is used to extract features. CFM3b: the VGG16 model is fine-tuned
with the data collected by an ACF [9] detector. CFM3c and CFM3: the
fine-tuning data is obtained by bootstrapping with CFM3b. With the
same fine-tuning data, setting the shrinkage parameter of Adaboost
to 0.5 brings an additional 1% reduction on the MR

recall levels. All methods are ranked based on the Moderate
difficult results.
Boosted decision forest For supervised classification tasks,
boosting is a popular method to select features for improving
the performance of any given learning algorithm [14], [7],
[36], [49]. In this paper, we use the boosted decision forest as
a strong classifier which is a convex linear combination of a set
of given weak decision trees. The final classification is based
on the weighted vote of these decision trees. Unless otherwise
specified, we train all our boosted decision forests using the
following parameters. The boosted decision forest consists of
4096 depth-5 decision trees, trained via the shrinkage version
of real-Adaboost [21]. The size of detection model is set to
128×64 pixels for Caltech and Inria, 64×32 pixels for KITTI.
One bootstrapping iteration is implemented to collect hard
negatives and re-train the model. The sliding window stride
is set to 4 pixels.

II. BOOSTED DECISION FORESTS WITH MULTI-LAYER
CFMS

In this section, we firstly introduce the general layout
of VGG16 model. Then, we show that the performance of
boosted decision forests with CFMs can be significantly im-
proved by simply fine-tuning DCNNs with hard negative data
extracted through bootstrapping. Next, boosted decision forests
are trained with different layers of CFMs, and the resulting
ensemble model is able to achieve the best reported result on
Caltech dataset.

A. Architecture of the VGG16 model

In this work, VGG16 [41] model is used to extract CFMs.
In general, the VGG16 model has 13 convolutional (Conv)
layers organized into five convolutional stacks and three fully-
connected (FC) layers. We use ConvY-x to denote a specific
Conv layer, where Y indicates the Yth Conv stack and x
indicates the xth Conv layer in this stack. FC-6, FC-7, and FC-
8 are used to denote three FC layers, respectively. See section
B of the supplementary material for the detailed architecture
of the VGG16 model.

B. Fine-tuning DCNNs with Bootstrapped Data

As we know, the VGG16 model was originally pre-trained
on the ImageNet data with image-level annotations and was

not trained specifically for the pedestrian detection task. The
CCF framework of [48] extracts CFMs from a single con-
volutional layer (Conv3-3) of the pre-trained VGG16 model
to train the boosted decision forest for diverse detection tasks.
To maintain a good generalization ability, the method dose not
fine-tune the VGG16 model on any domain-specific datasets. It
is expected that the detection performance of boosted decision
forests trained with CFMs ought to be improved by fine-tuning
the VGG16 model with Caltech pedestrian data. Moreover,
We extract CFMs from multiple convolutional layers to train
effective boosted decision forests. These boosted decision
forests are combined into an ensemble model which further
improves the detection performance.

To adapt the pre-trained VGG16 model to the pedestrian
detection task, we modify the structure of the model. We
replace the 1000-way classification layer with a randomly
initialized binary classification layer and change the input size
from 224×224 to 128×64 pixels. We also reduce the number
of neurons in fully connected layers from 4096 to 2048. We
fine-tune all layers of this modified VGG16, except the first
4 convolutional layers since they correspond to low-level fea-
tures which are largely universal for most visual objects. The
initial learning rate is set to 0.001 for convolutional layers and
0.01 for fully connected layers. The learning rate is divided by
10 at every 10000 iterations. For fine-tuning, 30k positive and
90k negative examples are collected by different approaches.
The positive samples are those overlapping with a ground-
truth bounding box by [0.5, 1], and the negative samples by
[0, 0.25]. At each stochastic gradient descent (SGD) iteration,
we uniformly sample 32 positive samples and 96 negative
samples to construct a mini-batch of size 128.

Shallow convolutional layers of the VGG16 contain low-
level features which are precise in localization. On the con-
trary, deep convolutional layers contain discriminative infor-
mation which are good in classification. According to the
evaluation of different CFMs of the VGG16 model in [48],
we find that features of Conv3-3 layer provide the best trade-
off between the localization information and the discriminative
information. It means that these features can achieve the
reasonable detection performance and provide effective region
proposals simultaneously.

We train boosted decision forests with the CFM extracted
from the Conv3-3 layer of differently fine-tuned VGG16
models and the results are shown in Table I. Note that all the
VGG16 models in this table are fine-tuned from the original
model pre-trained on ImageNet data. It can be observed that
the log-average miss rate is reduced from 18.71% to 16.42%
by replacing the pre-trained VGG16 model with the one fine-
tuned on data collected by applying an ACF [9] detector on
Caltech training dataset. The detection performance is further
improved to 14.54% MR if it is fine-tuned on the bootstrapped
data using the previous trained model CFM3b. Another 1%
performance gain is obtained by applying shrinkage to the
coefficients of weak learners, with shrinkage parameter being
0.5 (see [37]). The last model (corresponding to row 4 in
Table I) is referred to as CFM3 from now on.
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Fig. 1: The framework of an ensemble of boosted decision forests with multi-layer CFMs (CFM3+CFM4+CFM5), which obtain a 10.46% MR
on the Caltech Reasonable test setting.

Convolutional # Channels Down-sampling Avg. miss rate (%)
layer ratio

Conv3-1 256 4 19.15
Conv3-2 256 4 16.25

Conv3-3 (CFM3) 256 4 13.49

Conv4-1 512 8 12.95
Conv4-2 512 8 12.68

Conv4-3 (CFM4) 512 8 12.21

Conv5-1 (CFM5) 512 16 14.17
Conv5-2 512 16 14.56
Conv5-3 512 16 18.24

TABLE II: Comparison of detection performance (on Reasonable)
of boosted decision forests trained on individual CFMs. Note that
models with Conv3-x features works as sliding-window detectors,
and models with Conv4-x and Conv5-x features are applied to the
proposals generated by CFM3. The top performing layers in each
convolutional stack are Conv3-3, Conv4-3 and Conv5-1 respectively.
The models trained with these three layers are denoted as CFM3, CFM4,
and CFM5 respectively

C. Ensemble of Boosted Decision Forests

In the last experiment, we only use a CFM from a single
layer of the VGG16 model. In this section, we intensively
explore the deep structure of the VGG16 model. We ignore
the CFMs of the first two convolutional stacks since they are
universal for most visual objects.

We train boosted decision forests with CFMs from indi-
vidual convolutional layers of the VGG16 model which is
the one fine-tuned with bootstrapped data (same as row 4 in
Table I). All boosted decision forests are trained with the same
data as CFM3. For models with Conv3-x features, the input
image are directly applied on the convolutional layers and
resulting in a feature map with the down-sampling ratio of 4.
The corresponding boosted decision forests work as a sliding-
window detector with step-size of 4. In detection, we upsample
the image by a factor of 2 as in [49] and the minimum size
of the shortest image edge is 72 pixels. The number of scales
per each octave is set to 8. For models with Conv4-x and
Conv5-x features, they are applied to proposals generated by
CFM3 model. This is due to the large downsampling ratio of
Conv4-x and Conv5-x. If the step-size of the sliding-window
detector is too large, it will hurt the detection performance.

Table II shows the comparison of detection performance of
these boosted decision forests on Caltech Reasonable setting.

(a) conv3-3 (b) conv4-3 (c) conv5-1

Fig. 2: The spatial distribution of regions of CFMs selected by
boosting algorithms. For a 128× 64 input image, the size of feature
maps are 32 × 16, 16 × 8, 8 × 4 respectively. Red pixels indicate
that a large number of features are selected in those regions and blue
pixels correspond to low frequency regions. The most discriminative
regions correspond to the head, shoulder, waist and feet of a human.

We can observe that the MR is relatively high for the Conv3-1
layer and the Conv5-3 layer. We conjecture that the Conv3-1
layer provides relatively low-level features which result in an
under-fitting training. In contrast, the semantic information in
the Conv5-3 layer may be too coarse to precisely localize small
pedestrians. We also note that Conv5-3 layer performs much
worse than Conv5-1 layer. This may be caused by that Conv5-
3 has a larger receptive field than Conv5-1, more localization
information is lost. The large receptive field of Conv5-3 layer
degrades its final detection performance. According to Table II,
the best performing layer in each convolutional stack, are from
inner layers of Conv3-3 (CFM3), Conv4-3 (CFM4), and Conv5-
1 (CFM5) respectively. Fig. 2 shows the spatial distribution
of regions of different CFMs selected by boosting algorithms.
Features within the warm color area are frequently selected by
above three CFM models. We observe that most active regions
correspond to the contours of human-body. The head-shoulder
area shows to be more discriminative than other body parts.

The boosted decision forests trained with CFMs of these
three layers are further combined together simply through
score averaging. Fig. 1 shows the framework of the resulting
ensemble model. Firstly, CFM3 model works as a sliding-
window detector, which rejects the majority of negative exam-



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2648850, IEEE
Transactions on Circuits and Systems for Video Technology

5

Model combination Avg. miss rate (%)

CFM3+CFM4 10.68

CFM3+CFM5 10.88

CFM3+CFM4+CFM5 10.46

CFM3+CFM4+CFM5+DCNN 10.07

TABLE III: The comparison of performance (on Reasonable) of
different ensemble models. DCNN: the entire VGG16 model fine-
tuned by data collected by CFM3. The combination of multi-layer
CFM models improves the detection performance of single-layer
CFM models significantly (3%)

ples and pass region proposals to CFM4 and CFM5. Both CFM4
and CFM5 generate the confidence score for each incoming
proposal. The CFM3 features are reused in the computation of
CFM4 and CFM5 features. A subregion of CFM3 feature map
is cropped and fed into the 4/5-th convolutional layers of
the VGG16 model to compute CFM4 and CFM5 features. The
final score is computed by averaging over the scores output
by these three boosted decision forests. This model delivers
the best reported log-average miss rate (10.46%) on Caltech
Reasonable setting without using any sophisticatedly designed
algorithms.

We also evaluate other combinations of the ensemble mod-
els. Furthermore, a VGG16 model is fine-tuned with another
round of bootstrapping (using CFM3) and its final output is
also combined to improve the detection performance. The
corresponding results can be found in Table III. We can see
that combining two layers already beats all existing approaches
on Caltech, and adding the entire large VGG16 model also
gives a small improvement.

III. PIXEL LABELLING IMPROVES PEDESTRIAN
DETECTION

In this section, the sliding-window based detectors are en-
hanced by semantic pixel labelling. By incorporating DCNNs,
the performance of pixel labelling (semantic image segmenta-
tion) methods have been recently improved significantly [29],
[3], [20], [50], [27]. In general, we argue that pixel labelling
models encode information complementary to the sliding-
window based detectors. Empirically, we show that consistent
improvements are achieved over different types of detectors.

The segmentation method proposed in [3] is used here for
pixel labelling, in which a DCNN model (VGG16) is trained
on the Cityscapes dataset [5]. The prediction map is refined
by a fully-connected conditional random field (CRF) [23] with
DCNN responses as unary terms. The Cityscapes dataset that
we use for training is similar to the KITTI dataset which
contains dense pixel annotations of 19 semantic classes such as
road, building, car, pedestrian, sky, etc. Note that our models
that exploiting pixel labelling have used extra data for training
on top of the Caltech dataset. However, most deep learning
based methods [2], [44] have used extra data, at least the
ImageNet dataset for pre-training the deep model. Pedestrian
detection may benefit from the semantic pixel labelling in the
following aspects:

− Multi-class information: Learning from multiple classes,
in contrast to the object detectors typically trained with two-

class data, the pixel labelling model carries richer object-level
information.
− Long-range context: Using CRFs (especially fully-

connected CRFs) as post-processing procedure, many models
(for example, [3], [27], [50]) have the ability to capture long-
range context information. In contrast, sliding-window detec-
tors only extract features from fixed-sized bounding boxes.
− Object parts: The trained pixel labelling model may

cater for more fine-grained details, such that they are more
insensitive to deformation and occlusion to some extent.

However, it is not straightforward to apply pixel labelling
models to pedestrian detection problems. One of the main
impediments is that it is difficult to estimate the object bound-
ing boxes from the pixel score map, especially for people in
crowds.

To this end, we propose to bring the pedestrian detector and
pixel labelling model together. In our framework (see Fig. 3),
a sliding-window detector is responsible for providing region
proposals and a pixel labelling model is applied to the input
image to generate a score map for the “person” class. Next, a
spatially weighted mask M is applied to the proposal region
x of the “person” score map to generate the weighted sum of
pixel scores. The weighted sum of the kth region proposal,
denoted as Sk, can be calculated by the following equation:

Sk =

H×W∑
i

mix
k
i (1)

where H and W denote the height and width of the mask M,
xk
i denotes the ith local value of the kth region proposal on the

“person” score map, and mi is the corresponding coefficient on
the mask. Note that the dimension of each cropped proposal
region x need to be resized to match the dimension of the
mask M. Finally, the weighted sum and the detector score for
the same proposal are aggregated together as the final score.

To learn the spatially weighted mask, the pixel labelling
model is firstly applied to all training images to generate the
“person” score maps. Then, ground truth regions are cropped
from these score maps and all cropped patches are resized
to the dimension of the detection model without padding
area (e.g. 100 × 41 pixels for Caltech). The mask is learned
by averaging these cropped patches. See section C of the
supplementary material for the visualization of learned masks.

Note that, there are more sophisticated methods for exploit-
ing the labelling scores. For example, one can use the pixel
labelling scores as the image features, similar to ‘object bank’
[26], and train a linear model. In this work, we show that
even simply weighted sum of the pixel scores considerably
improves the results.

Table IV shows the detection performance of different
sliding-window detectors enhanced by pixel labelling. Boosted
decision forests are trained here with three types of features,
which are ACF [9], checkerboards features [49] and the CFM
from the Conv3-3 layer of VGG16 model (CFM3). We can see
that the performances of all the three detectors are improved by
aggregating pixel labelling models. Fig. 4 presents some region
proposals on the original images and the corresponding pixel
score maps. Some of false proposals generated by pedestrian
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Fig. 3: The framework for pedestrian detection with pixel-labelling. The region proposals and pixel-level score maps are obtained by
individually applying the sliding-window detector and the pixel labelling model. Next, the weighted sum of pixel scores within a proposal
region is aggregated with the detector score of the same proposal region.

Method Avg. miss rate (%) Improve. (%)

ACF [9] 22.23
4.50ACF+Pixel label. 17.73

Checkerboards [49] 18.25
3.61Checkerboards+Pixel label. 14.64

CFM3 (ours) 13.49
1.91

CFM3+Pixel label. 11.58

TABLE IV: Performance improvements by aggregating pixel la-
belling models with sliding-window detectors (on Reasonable). All
the three detectors achieve performance gains, which shows that pixel
labelling can be used to help detection. Note that the performance
of our model ‘CFM3 with Pixel labelling’ already outperforms the
previously best reported result of [2]

(a) proposals by detector (b) pixel score map

Fig. 4: Examples of some region proposals on the original images
and the corresponding pixel score maps. A strong complementary
relationship can be found in the generated proposals and the pixel
score maps.

detectors (CFM3) can be eliminated by considering the context
of a larger region (the largest bounding box in the first row
in Fig. 4). Some occluded pedestrians have responses on the
pixel score map (the rightmost bounding box in the third row
in Fig. 4). This clearly illustrates why this combination works.

IV. FUSING MODELS

A. Overview of the proposed framework

Fig. 5 shows an overview of the proposed pedestrian detec-
tion framework. The framework consists of two components:
a pedestrian detector and a semantic pixel labelling model.
Our pedestrian detector is an ensemble detection model which
takes as input an image and outputs a number of proposals
with detection scores. The pixel labelling model takes as input
an image and proposals within the image. It generates the
weighted sum of pixel scores for each proposal. Finally, the
confidence score of one proposal is computed by averaging
outputs of multiple components. To accelerate the detection
speed, the CFM3 detection model can be replaced by a light-
weight proposal method, which is described in section IV-E.

B. Using Complementary Hand-crafted Features

The detection performance of the CFM3 model is critical in
the proposed ensemble model, since later components often
rely on the detection results of this model. In order to enhance
the detection performance of the CFM3 model, we make two
variants of it by combining two hand-crafted features: the
ACF and optical flow. We augment the CFM3 features with
the ACF and optical flow features to train an ensemble of
boosted decision forests. Optical flow features are extracted
the same way as in [36].

Table V shows the detection results of different variants
of CFM3 model. With adding the ACF features, the MR of
CFM3 detector is reduce by 1.11%. With the extra optical flow
features, the MR is further reduced to 11.11%. These exper-
imental results demonstrate that hand-crafted features carry
complementary information which can further improve the
DCNN convolutional features. Fig. 6 shows the visualization
of some intermediate features. We can observe that the ACF
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Fig. 5: Overview of our pedestrian detection framework. The framework consists of one pedestrian detector and one pixel labelling model.
The final confidence score of one proposal is computed by averaging outputs of multiple components.

Image Conv1-2 Conv2-2 Conv3-3

Conv4-3 Conv5-1 ACF Flow

Fig. 6: Visualization of some intermediate features.

(a) Ground truth (b) CFM3

(c) CFM3+ACF (d) CFM3+ACF+Flow

Fig. 7: Visualization of detection results of different variants of
the CFM3 detector. Yellow bounding boxes are ground truth, green
bounding boxes are true positives, and red bounding boxes are false
positives.

Method Avg. miss rate (%)

CFM3 only 13.49

CFM3+ACF 12.38

CFM3+ACF+Flow 11.11

(CFM3+ACF)+CFM4+CFM5+DCNN 9.37

(CFM3+ACF+Flow)+CFM4+CFM5+DCNN 9.32

TABLE V: Comparison of detection results of different variants
of the CFM3 detector (on Reasonable). The convolutional features
of the Conv3-3 layer are combined with different types of hand-
crafted features, and used to train a boosted decision forest. Both the
performance of the variants and the ensemble models is improved
with these additional features. Flow: optical flow features. DCNN:
the entire VGG16 model fine-tuned by data collected by CFM3

features may be viewed as lower-level features, compared with
the middle-level features in CFM3. The optical flow clearly
encodes motion information which is not in CFM3 features. By
adding the other components of the proposed ensemble model,
our detector can achieve 9.32% MR. The MR is slightly
increased to 9.37% by removing motion information. Fig. 7
shows the visualization of detection results of different variants
of the CFM3 detector. By involving these hand-crafted features,
more hard false positives can be eliminated by the proposed
detector.

C. Pixel Labelling

As shown in Section III, the pixel labelling model is also
complementary to convolutional features. Table VI shows the
detection performance of different ensemble models enhanced
by pixel labelling model. The best result is achieved by
combining the most number of different types of models
(which is referred to as All-in-one), which reduces the MR on
the Caltech Reasonable setting from the previous best 11.7%
to 8.9%. Note that the combination rule used by our methods
is simple, which implies a potential for further improvement.

D. Ablation Studies

We investigate the overall pipeline of the All-in-one model
by adding each component step by step, which is shown



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2648850, IEEE
Transactions on Circuits and Systems for Video Technology

8

Model CFM3a CFM3 CFM3+CFM4 CFM3+CFM4 CFM3+CFM4 CFM3+CFM4+CFM5 All-in-one
+CFM5 +CFM5+DCNN +DCNN+Label.

Pipeline CFM3a fine-tuning Add CFM4 Add CFM5 Add DCNN Add Pixel Label. Use (CFM3+ACF+Flow)

Miss rate (%) 18.71 13.49 10.68 10.46 10.07 9.53 8.93

Improve. (%) − +5.22 +2.81 +0.22 +0.39 +0.54 +0.6

TABLE VII: Ablation studies of the All-in-one model on the Caltech Reasonable test setting

Method Avg. miss rate (%)

CFM3+Pixel label. 11.58

CFM3+CFM4+CFM5+Pixel label. 9.94

CFM3+CFM4+CFM5+DCNN+Pixel label. 9.53

(CFM3+ACF)+CFM4+CFM5+
9.06DCNN+Pixel label.

(CFM3+ACF+Flow)+CFM4+CFM5+
8.93DCNN+Pixel label. (All-in-one)

TABLE VI: Comparison of detection performance (on Reasonable)
of different ensemble models with pixel labelling. DCNN: the entire
VGG16 model fine-tuned by hard negative data collected by CFM3;
Pixel label.: pixel labelling model; Flow: optical flow. The pixel
labelling model consistently improves all the considered models in
this table. The All-in-one model set a new record on the Caltech
pedestrian benchmark

in Table VII. As the start point, the CFM3a model with the
original VGG16 model pre-trained on ImageNet data achieves
a miss rate of 18.71%. A 5.22% performance gain can be
obtained by fine-tuning the VGG16 model with bootstrapped
data. The detection results can be improved to 10.46% (better
than all previous methods) by adding CFM4 and CFM5 models to
construct an ensemble model. We obtain 0.39% performance
improvement if we use the entire VGG16 model (fine-tuned by
bootstrapped data with CFM3) as a component of our ensemble
model. Combining the pixel labelling information to detected
bounding boxes can further reduce the MR by 0.54%. By
replacing the CFM3 model to CFM3+ACF+Flow model, the
MR of our ensemble model can eventually achieve 8.93% on
the Caltech Reasonable test setting.

E. Fast Ensemble Models

In this section, we investigate the speed issue of the
proposed detector. Our All-in-one model takes about 8s for
processing one 640 × 480 image on a workstation with one
octa-core Intel Xeon 2.30GHz processor and one Nvidia Tesla
K40c GPU. Most of time (about 7s) is spent on the extraction
of the CFMs on a multi-scale image pyramid. The remaining
components of the ensemble model take less than 1s to process
the passed region proposals. The pixel labelling model only
uses about 0.25s to process one image since it only need to
be applied to one scale. It can be easily observed that the
current bottleneck of the proposed detector is the CFM3 which
is used to extract region proposals with associated detection
scores. The speed of our detector can be accelerated using a
light-weight proposal method at the start of the pipeline in
Fig. 1.

We use two pedestrian detectors ACF [9] and checker-
boards [49] as the proposal methods. Our ACF detector con-
sists of 4096 depth-4 decision trees, trained via real-Adaboost.
The model has size 128 × 64 pixels, and is trained via four

Method Avg. miss rate (%) runtime (s)

CFM3 (proposals)+CFM4+
9.53 8.0

CFM5+DCNN+Pixel label.
ACF (proposals)+CFM3+CFM4+

12.20 0.85
CFM5+DCNN+Pixel label.

Checkerboards (proposals)+CFM3+
10.65 1.25

CFM4+CFM5+DCNN+Pixel label.

TABLE VIII: Comparison of detection performance (on Reasonable)
between the original ensemble model and fast ensemble models

rounds of bootstrapping. The sliding window stride is 4 pixels.
The checkerboards detector is trained using almost identical
parameters as for ACF. The only difference is that the feature
channels are the results of convolving the ACF channels with
a set of checkerboards filters. In our implementation, we adopt
a set of 12 binary 2 × 2 filters to generate checkerboards
feature channels. To limit the number of region proposals, we
set a threshold of the above two detectors to generate about
20 proposals per image in average.

Table VIII shows the detection performance of the orig-
inal ensemble model and fast ensemble models on Caltech
Reasonable test setting. We can observe that the quality of
proposals are enhanced by a large margin using both ensemble
models and the pixel labelling model. The best result of fast
ensemble models is achieved by using proposals generated
by the checkerboards detector. This method uses the data
collected by checkerboards detector as the initial fine-tuning
data. With a negotiable performance loss (e.g., 1.12%), it’s
about 6 times faster than the original method. Note that the fast
ensemble model (with checkerboards proposals) also achieves
the state-of-the-art results.

F. Comparison to State-of-the-art Approaches

1) Caltech: We compare the detection performance of our
models with existing state-of-the-art approaches on the Caltech
dataset. Table IX and Fig. 8 compares our models with a wide
range of detectors, including boosted decision forests trained
on hand-crafted features, RCNN-based methods and the state-
of-the-art methods on the Caltech Reasonable test setting. The
performance of the first two types are quite close to each other.
Using only one single layer of convolutional feature map, our
CFM3 model has outperformed all other methods except the two
sophisticated methods [44], [2]. Note that the RCNN based
methods are based on larger models than CFM3. As feature
representation, the CFM from the Conv3-3 layer of our fine-
tuned model significantly outperforms all other hand-crafted
features. The CFM3+Pixel labelling model already outperforms
the state-of-the-art performance achieved by sophisticated
methods [44], [2]. Our CFM3+CFM4+CFM5 model performs
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Type Method Miss Rate (%)

Hand-crafted Features SpatialPooling [37] 29.24
SpatialPooling+ [36]† 21.89
LDCF [32] 24.80
Checkerboards [49] 18.47
Checkerboards+ [49]† 17.10

RCNN based AlexNet [22] 23.32
GoogLeNet [44] 16.43

State-of-the-arts DeepParts [44] 11.89
CompACT-Deep [2] 11.75

Ours CFM3 13.49
CFM3+Label. 11.58
CFM3+CFM4+CFM5 10.46
CFM3+CFM4+CFM5+DCNN+Label. 9.53
All-in-one† 8.93

TABLE IX: Detection performance of different types of detectors
on the Caltech Reasonable test setting. Three types of approaches
are compared in this table, including boosted decision trees trained
on hand-crafted features, RCNN-based methods and the state-of-the-
art sophisticated methods. All of our models outperform the first
three types of models, and our All-in-one set a new recorded MR on
Caltech pedestrian benchmark. † indicates the methods trained with
optical flow features
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94.73% VJ
68.46% HOG
29.24% SpatialPooling
24.80% LDCF
21.89% SpatialPooling+
18.71% CCF
17.32% CCF+CF
17.10% Checkerboards+
11.89% DeepParts
11.75% CompACT−Deep
11.58% Ours(CFM3+Label.)
10.65% Ours(CB−proposals+CFMs)
10.46% Ours(CFM3+CFM4+CFM5)
8.93% Ours(All−in−one)

Fig. 8: Comparison to state-of-the-art approaches on the Caltech
Reasonable test setting.

even better. Without using hand-crafted features, our model
can achieve 9.53% MR. The best result is achieved by the
All-in-one model which combines a number of hand-crafted
features and CFM models.

2) Inria: Fig. 9 represents the detection results on the Inria
dataset. In our experiments, we only apply the fast ensemble
model without using the pixel labelling method. Since our
pixel labelling model is trained on the Cityscapes dataset
which has totally different scenes from the Inria dataset, the
improvement of pixel labelling is limited for this dataset. It
can be observed that our method achieves the lowest MR of
8.63% outperforming all previously-reported results.

3) KITTI: Table X shows the detection results on the KITTI
dataset. Since images of KITTI are larger than in Caltech, the
feature extraction of CFM3 model is time-consuming. In our ex-
periments, only the fast ensemble model with Checkerboards
proposals is used for testing on KITTI. Our model achieves
competitive results, 74.22%, 63.26%, and 56.44% AP on Easy,
Moderate, and Hard subsets respectively. Fig. 10 presents the
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72.48% VJ
45.98% HOG
15.96% VeryFast
15.95% WordChannels
14.43% InformedHaar
13.79% LDCF
13.53% Roerei
13.32% SketchTokens
11.22% SpatialPooling
8.63% Ours(Fast−CFMs)

Fig. 9: Comparison to state-of-the-art approaches on the Inria positive
test set.

Method Moderate(%) Easy(%) Hard(%)

3DOP∗ [4] 67.47 81.78 64.70
Fast-CFMs (Ours) 63.26 74.22 56.44

Reionlets [46] 61.15 73.14 55.21
CompACT-Deep [2] 58.74 70.69 52.71

DeepParts [44] 58.67 70.49 52.78
FilteredICF [49] 56.75 67.65 51.12
pAUCEnsT [36] 54.49 65.26 48.60

R-CNN [22] 50.13 61.61 44.79

TABLE X: Detection results (AP) on three KITTI test subsets. Note:
∗ indicates the methods trained with stereo images
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Fast−CFMs 63.26%
Regionlets 61.15%
CompACT−Deep 58.74%
DeepParts 58.67%
FilteredICF 56.75%
pAUCEnsT 54.49
R−CNN 50.13%

Fig. 10: Comparison to state-of-the-art approaches on the KITTI
Moderate test set.

comparison of detection performance on the KITTI Moderate
test subset. It can be observed that the proposed detector
outperforms all published monocular-based methods. Note
that the 3DOP [4] is based on stereo images. The proposed
ensemble model is the best-performing detector based on
DCNN, and surpasses CompACT-Deep [2] and DeepParts [44]
by 4.52% and 4.59% respectively.

V. CONCLUSION

In this work, we have built a simple-yet-powerful pedes-
trian detector, which re-uses inner layers of convolutional



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2648850, IEEE
Transactions on Circuits and Systems for Video Technology

10

features extracted by a properly fine-tuned VGG16 model.
This ‘vanilla’ model has already achieved the best reported
results on the Caltech dataset, using the same training data as
previous DCNN approaches. With a few simple modifications,
its variants have achieved even more significant results.

We have presented extensive and systematic empirical eval-
uations on the effectiveness of DCNN features for pedestrian
detection. We show that it is possible to build the best
pedestrian detector, yet avoiding complex custom designs. We
also show that a pixel labelling model can be used to improve
performance by simply incorporating the labelling scores with
the detection scores of a standard pedestrian detector. Note
that simple combination rules are used here, which leaves
potentials for further improvement. For example the ROI
pooling for further speed and performance improvement.
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[19] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simultaneous
detection and segmentation. In Proc. Eur. Conf. Comp. Vis., 2014.
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[23] P. Krähenbühl and V. Koltun. Efficient inference in fully connected
CRFs with Gaussian edge potentials. In Proc. Adv. Neural Inf. Process.
Syst., 2011.

[24] A. Krizhevsky and G. Hinton. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Proc. Adv. Neural Inf.
Process. Syst., 2012.

[26] L.-J. Li, H. Su, Y. Lim, and L. Fei-Fei. Object bank: An object-level
image representation for high-level visual recognition. Int. J. Comput.
Vision, 107(1):20–39, 2014.

[27] G. Lin, C. Shen, I. Reid, et al. Efficient piecewise training of deep
structured models for semantic segmentation. arXiv:1504.01013, 2015.

[28] L. Lin, X. Wang, W. Yang, and J.-H. Lai. Discriminatively trained and-
or graph models for object shape detection. IEEE Trans. Pattern Anal.
Mach. Intell., 37(5):959–972, 2015.

[29] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
pages 3431–3440, 2015.

[30] P. Luo, Y. Tian, X. Wang, and X. Tang. Switchable deep network for
pedestrian detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
2014.

[31] M. Mathias, R. Benenson, R. Timofte, and L. Van Gool. Handling
occlusions with franken-classifiers. In Proc. IEEE Int. Conf. Comp.
Vis., pages 1505–1512, 2013.

[32] W. Nam, P. Dollár, and J. H. Han. Local decorrelation for improved
pedestrian detection. In Proc. Adv. Neural Inf. Process. Syst., 2014.

[33] W. Ouyang and X. Wang. A discriminative deep model for pedestrian
detection with occlusion handling. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., 2012.

[34] W. Ouyang and X. Wang. Joint deep learning for pedestrian detection.
In Proc. IEEE Int. Conf. Comp. Vis., 2013.

[35] W. Ouyang and X. Wang. Single-pedestrian detection aided by multi-
pedestrian detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
2013.

[36] S. Paisitkriangkrai, C. Shen, and A. v. d. Hengel. Pedestrian detection
with spatially pooled features and structured ensemble learning. IEEE
Trans. Pattern Anal. Mach. Intell., 2015.

[37] S. Paisitkriangkrai, C. Shen, and A. van den Hengel. Strengthening the
effectiveness of pedestrian detection with spatially pooled features. In
Proc. Eur. Conf. Comp. Vis., 2014.

[38] S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun. Object detection
networks on convolutional feature maps. arXiv:1504.06066, 2015.

[39] E. Shechtman and M. Irani. Matching local self-similarities across
images and videos. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
2007.

[40] K. Simonyan and A. Zisserman. Two-stream convolutional networks for
action recognition in videos. In Proc. Adv. Neural Inf. Process. Syst.,
2014.

[41] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In Proc. Int. Conf. Learning Representa-
tions, 2015.

[42] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2015.

[43] S. Tang, M. Andriluka, and B. Schiele. Detection and tracking of
occluded people. Int. J. Comp. Vis., 110(1):58–69, 2014.

[44] Y. Tian, P. Luo, X. Wang, and X. Tang. Deep learning strong parts for
pedestrian detection. In Proc. IEEE Int. Conf. Comp. Vis., 2015.

[45] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a
convolutional network and a graphical model for human pose estimation.
In Proc. Adv. Neural Inf. Process. Syst., 2014.

[46] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object
detection. In Proc. IEEE Int. Conf. Comp. Vis., pages 17–24, 2013.

[47] J. Yan, Y. Yu, X. Zhu, Z. Lei, and S. Z. Li. Object detection by labeling
superpixels. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2015.

[48] B. Yang, J. Yan, Z. Lei, and S. Z. Li. Convolutional channel features.
In Proc. IEEE Int. Conf. Comp. Vis., pages 82–90, 2015.

[49] S. Zhang, R. Benenson, and B. Schiele. Filtered channel features for
pedestrian detection. Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2015.

[50] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. Torr. Conditional random fields as recurrent neural
networks. arXiv:1502.03240, 2015.



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2648850, IEEE
Transactions on Circuits and Systems for Video Technology

11

Qichang Hu is a PhD Candidature with the Aus-
tralian Centre for Visual Technologies, University
of Adelaide, Adelaide, SA, Australia. He received
the bachelor’s degree in computer science from the
University of Adelaide, Adelaide, SA, Australia in
2012. His research interests include deep learning,
object detection, and machine learning.

Peng Wang is a post-doctoral researcher at the
University of Adelaide. He received the B.S. de-
gree in electrical engineering and automation, and
the PhD degree in control science and engineering
from Beihang University, China, in 2004 and 2011,
respectively.

Chunhua Shen is a Professor at School of Computer
Science, the University of Adelaide. He was with
the computer vision program at NICTA (National
ICT Australia), Canberra Research Laboratory for
about six years. His research interests are in the in-
tersection of computer vision and statistical machine
learning.

He studied at Nanjing University, Nanjing, China,
and Australian National University, Canberra, ACT,
Australia, and received the PhD degree from the
University of Adelaide. From 2012 to 2016, he holds

an Australian Research Council Future Fellowship.

Anton van den Hengel is a Professor at School of
Computer Science, the University of Adelaide. He is
also the Founding Director of the Australian Centre
for Visual Technologies, Interdisciplinary Research
Centre, University of Adelaide, Adelaide, SA, Aus-
tralia, with a focus on innovation in the production
and analysis of visual digital media.

He received the bachelor’s degree in mathematical
science, the B.L. degree, the master’s degree in
computer science, and the PhD degree in computer
vision from the University of Adelaide in 1991,

1993, 1994, and 2000, respectively.

Fatih Porikli is an IEEE Fellow and a Professor
with the Research School of Engineering, Australian
National University, Canberra, ACT, Australia. He
is also acting as the Leader of the Computer Vision
Group at Data61, Canberra, ACT 2601, Australia.

He received the PhD degree from NYU, New
York, NY, USA, in 2002. Previously he served as
a Distinguished Research Scientist at Mitsubishi
Electric Research Laboratories, Cambridge, MA,
USA. He has contributed broadly to object detection,
motion estimation, tracking, image-based represen-

tations, and video analytics. He is the coeditor of two books on Video
Analytics for Business Intelligence and Handbook on Background Modeling
and Foreground Detection for Video Surveillance. He is an Associate Editor
of five journals including IEEE Signal Processing Magazine, SIAM Imaging
Sciences, EURASIP Journal of Image & Video Processing, Springer Journal
on Machine Vision Applications, and Springer Journal on Real-time Image &
Video Processing. His publications won three best paper awards and he has
received the R&D100 Award in the Scientist of the Year category in 2006.
He served as the General and Program Chair of several IEEE conferences in
the past.


