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Abstract
Despite its attractive properties, the performance of the recently introduced Keep It Simple and
Straightforward MEtric learning (KISSME) is greatly dependent on PCA as a preprocessing step.
This dependency can lead to difficulties, e.g., when the dimensionality is not meticulously set. To
address this issue, we devise a unified formulation for joint dimensionality reduction and metric
learning based on the KISSME algorithm. Our joint formulation is expressed as an optimization
problem on the Grassmann manifold, hence enjoys properties of Riemannian optimization tech-
niques. We also devise end-to-end learning of a generic deep network for metric learning using our
derivation.
Keywords: Mahalanobis Metric Learning, Dimensionality Reduction, Deep Metric Learning,
Riemannian Geometry

1. Introduction

Metric learning algorithms are of practical interest when learning from large number of categories
(with limited training samples per category) is deemed, if the machinery is meant to deal with
unseen classes (e.g., retrieval), or if weaker forms of supervision are considered. In such scenarios,
conventional classification approaches are either not applicable or may fail miserably.

The Keep It Simple and Straightforward MEtric learning (KISSME) Koestinger et al. (2012) al-
gorithm is agnostic to the class labels and learns a metric purely from a set of equivalence constraints
(similar/dissimilar pairs). Furthermore, the algorithm scales beautifully to large scale problems,
makes it a suitable -if not perfect- match for the aforementioned problems.

Some recent studies (e.g., Xiong et al. (2014)) show that the KISSME algorithm is successful
only when its input is carefully processed and denoised using PCA. This in turn results in high
degree of sensitivity to the dimensionality of the PCA step as shown in Fig. 1. In this paper, we
propose to learn a low-dimensional subspace along its metric in the spirit of the KISSME algorithm
in a unified fashion. Furthermore, based on our derivation, we show end-to-end learning of a generic
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Figure 1: Verification accuracy against dimensionality of the space for an experiment using the surveilance
nature images of the CompCars dataset (see §4.3 for more details).

deep Convolutional Neural Network (CNN) for metric learning. In short, our contributions in this
paper are

1. We propose a Joint Dimensionality Reduction formulation for KISSME algorithm (JDR-
KISSME) that learns a low-dimensional space along its metric in the spirit of the KISSME. In
doing so, we benefit from the optimization techniques on Riemannian manifolds Absil et al.
(2009) and in particular the geometry of Grassmann manifolds.

2. Upon our development, we propose a few simple, yet effective steps, to train a deep network
for metric learning using KISSME verification signal as supervision.

2. Related Work

We review some notable examples of conventional and deep metric learning techniques here. We
start by two studies in the restricted mode and follow it up by a classical method devised for the
unrestricted case1.

Mahalanobis Metric for Clustering (MMC) Xing et al. (2003) aims to minimize sum of distances
over similar pairs while ensuring dissimilar pairs are far apart. The problem is formulated as an
iterative gradient descent algorithm where at each iteration the obtained solution is projected back
to the set of Positive Semi-Definite (PSD) matrices to ensure the metric is proper. Projection onto
the PSD cone requires eigenvalue decomposition, making MMC computationally expensive when
dealing with high-dimensional data. Pairwise Constrained Component Analysis (PCCA) Mignon
and Jurie (2012) learns a transformation to project similar pairs inside a ball while dissimilar pairs
are pushed away. Optimization is performed by making use of the gradient descent method.

Large Margin Nearest Neighbor (LMNN) Weinberger and Saul (2009) learns a linear transfor-
mation of labeled input data to improve kNN classification accuracy. Ideally, the learned transfor-

1. Algorithms in restricted metric learning scenario do not have access to the class labels of the samples. These algo-
rithms can also work in the unrestricted scenario while the opposite is not often the case. This makes the restricted
algorithms more appealing as they can address a broader range of problems.
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mation is expected to unite the k-nearest neighbors of each point sharing the same label (called target
neighbors) while minimizing the number of impostors. This is implemented as a semi-definite pro-
gramming problem and solved by iterating between a gradient descent step followed by projecting
the solution onto the PSD cone.

2.1 Metric Learning and Deep Nets

Similarity/distance metric learning using deep nets originates from the advent of Siamese net-
works Bromley et al. (1993); Chopra et al. (2005). In recent years, deep metric learning has received
growing attention, following the trend of deep CNNs in solving large-scale classification problems.
For example, in the spirit of PCCA, a two layer discriminative network for face verification is pro-
posed in Hu et al. (2014). Sun et al. (2014) use an ensemble of networks, each operating on a
different face patch for face verification. The networks are trained by making use of a combination
of classification and verification cost functions.

Very recent works in deep metric learning include the work of Hoffer and Ailon (2015) and Schroff
et al. (2015) in which an LMNN based triplet loss layer is used to direct CNN parameter learn-
ing. Song et al. (2016) show careful construction of batches such as including hard triplets during
training, leads to better clustering and retrieval qualities.

3. Proposed Method

In this part, we present our idea to jointly learn a low-dimensional space and its metric. Throughout
the paper, we use bold lower-case letters (e.g., x) to denote vectors and bold upper-case letters (e.g.,
X) to show matrices. Id is the d × d identity matrix. det(·) shows the matrix determinant. [·]+
indicates the hinge loss function, i.e., max(0, ·).

3.1 Problem Statement

Let
{
xi, x̃i

}N
i=1
, xi, x̃i ∈ RD be a set of N training pairs. Furthermore, let li ∈ {−1, 1} denote

the label of the i-th pair with li = 1 indicating that the corresponding pair is similar and li = −1
otherwise. Koestinger et al. (2012) propose to measure the probability of a pair being (dis)similar by
multivariate Gaussian distributions. In particular and by making use of the symmetry in decisions2,
the function

δ(xi, x̃i) =
N
(
xi − x̃i

∣∣ΣD,0
)

N
(
xi − x̃i

∣∣ΣS ,0
) (1)

models the dissimilarity value of the pair
(
xi, x̃i

)
. Here, N

(
x
∣∣Σ, µ) denotes the multivariate

Gaussian with mean µ and covariance Σ evaluated at x and

ΣD =
1

#(li = −1)

∑
i,li=−1

(
xi − x̃i

)(
xi − x̃i

)T
. (2)

ΣS =
1

#(li = +1)

∑
i,li=+1

(
xi − x̃i

)(
xi − x̃i

)T
. (3)

2. The discrimination value between the pair
(
xi, x̃i

)
should match that of

(
x̃i,xi

)
.
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Intuitively, if the pair
(
xi, x̃i

)
is dissimilar, one expects N

(
xi − x̃i

∣∣ΣD,0
)

attains a high value
while N

(
xi − x̃i

∣∣ΣS ,0
)

being small. This makes δ(xi, x̃i) large while the opposite happens if the

pair
(
xi, x̃i

)
is similar. The lemma below provides the basis of metric construction using δ(·, ·) as

suggested in Koestinger et al. (2012) and is central to our developments presented in the following
section.

Lemma 1 Let δ : RD × RD → R+ be the function defined in Eq. (1). The log(δ) approximates a
form of Mahalanobis metric, up to a constant term in RD. The approximated Mahalanobis metric
is recognized as M = Proj(Σ−1

S −Σ−1
D ) with Proj(·) : Sym(D)→ SD++ being the projection from

the set of D ×D symmetric matrices to the cone of Symmetric Positive Definite (SPD) matrices.

Proof We note that

log
(
δ(xi, x̃i)

)
=

1

2

(
log det(ΣS)− log det(ΣD) + (xi − x̃i

)T
(Σ−1

S − Σ−1
D )(xi − x̃i)

)
. (4)

The first two terms are constant and hence can be removed without loss of generality. From
(xi − x̃i

)T
M(xi − x̃i),M ∈ SD++, (i.e., general form of the squared Mahalanobis distance) and

by noting that Σ−1
S − Σ−1

D is not necessarily an SPD matrix, we conclude that an approximated
Mahalanobis metric associated to log(δ) has the form M = Proj(Σ−1

S − Σ−1
D ).

3.2 Joint Dimensionality Reduction And Metric Learning

As discussed in § 1, the metric M , while scaling well to the number of (dis)similar pairs, is sensi-
tive to the dimensionality of the space (see for example Xiong et al. (2014)). In practice, finding the
optimal dimension (or equivalently the most discriminative subspace) is done through PCA. Obvi-
ously, finding the subspace along its metric is more appealing and promises better discriminatory
power.

As such, our goal is to find a lower dimensional space and its Mahalanobis metric by making
use of lemma 1. Formally, we seek a linear mapping h : RD → Rd and an SPD matrix M such that

d2M
(
h(xi), h(x̃i)

)
=
(
h(xi)− h(x̃i)

)T
M
(
h(xi)− h(x̃i)

)
(5)

reflects the dissimilarity function in Eq. (1) better. In doing so, we keep an eye on Koestinger et al.
(2012) and rewrite Eq.(4) using h(x) = W Tx, W ∈ RD×d as

log
(
δ(h(xi), h(x̃i))

)
=

1

2

(
log det(W TΣSW )− log det(W TΣDW ) (6)

+ (xi − x̃i)
TWMW T (xi − x̃i)

)
.

This enables us to define the loss over all training pairs as

E
(
W ,M) ,

N∑
i=1

li log
(
δ(h(xi), h(x̃i))

)
. (7)

Minimizing Eq. (7) indeed makes the distances between similar pairs smaller while simultaneously
increases the distances between dissimilar pairs. For reasons become clear soon, we opt for an
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alternating optimization scheme to obtain W and M . That is, we keep W fixed to update M ,
followed by updating W by keeping M fixed.

By fixing W , we make use of lemma 1 to obtain a closed form update for M . We note that the
covariance matrix Σ in the space defined by W has the form of W TΣW . Using lemma 1, this in
turn leads to the following metric in the latent space

M∗ = Proj
((

W TΣSW
)−1 −

(
W TΣDW

)−1
)
. (8)

To update W while M is fixed, we add an orthogonality constraint to W . The orthogonality
constraint helps avoiding degeneracy in the solution and is inline with the general practice in dimen-
sionality reduction Weinberger and Saul (2009). As such, we can write the following constrained
optimization problem to update W

minW E
(
W ,M∗)

s.t. W TW = Id
(9)

To minimize (9), we make use of the recent advances in optimization over the matrix mani-
folds Absil et al. (2009). In particular, the constrained optimization problem in (9) can be under-
stood as a minimization problem on space of tall matrices with orthogonal columns which we solve
using Riemannian Conjugate Gradient Descent (RCGD) on Grassmannian.

The geometrically correct setting to minimize a problem with the orthogonality constraint is by
making use of the geometry of the Stiefel manifold St(d,D) = {W ∈ RD×d,W TW = Id}. The
Grassmannian manifold G(d,D) consists of the set of all linear d-dimensional subspaces of RD and
is the quotient of St(d,D) with the equivalence class being (see Absil et al. (2009); Edelman et al.
(1998) for details)

[W ] , {WR,W ∈ St(d,D),R ∈ O(d)} ,

with O(d) denoting the orthogonal group, i.e., RTR = RRT = Id.
A constrained optimization problem with the orthogonality constraint is a problem on Grass-

mannian if its objective is invariant to the right action of O(d). This is indeed the case as a result of
the following theorem.

Theorem 2 The objective defined in Eq. (7) is invariant to the right action ofO(d), i.e., E
(
W ,M∗) =

E
(
WR,M∗),R ∈ O(d).

Proof First, we show that the log det(·) terms in Eq. (6) are invariant to the action ofO(d). Consider
the first term for example. Direct insertion results in

det(RTW TΣSWR) = det(RT ) det(W TΣSW ) det(R)

= det(W TΣSW ),

where we used the fact that det(RT ) = det(R−1) = 1/ det(R).
Now we show that the term with the metric is invariant to the action ofO(d) as well. Let A+ =

Proj(A), ∀A ∈ Sym(d). Using SVD, it is easy to see that RTA+R = Proj(RTAR),∀R ∈

5



O(d). This in turn leads to recognizing Eq. (8) by replacing W with WR as

Proj
((

RTW T ΣSWR
)−1 −

(
RTW T ΣDWR

)−1
)

= Proj
(
R−1

(
W T ΣSW

)−1
R−T −R−1

(
W T ΣDW

)−1
R−T

)
= Proj

(
RT
((

W T ΣSW
)−1 −

(
W T ΣDW

)−1
)
R
)

= RT Proj
((

W T ΣSW
)−1 −

(
W T ΣDW

)−1
)
R .

where we used the fact that RT = R−1.
As such and again by replacing W with WR for the term with M∗ involved (the third term in

Eq. (6)), we arrive at

(xi − x̃i)
TWRM∗RTW T (xi − x̃i)

= (xi − x̃i)
TWRRT Proj

((
W T ΣSW

)−1 −
(
W T ΣDW

)−1
)
RRTW T (xi − x̃i)

= (xi − x̃i)
TWProj

((
W T ΣSW

)−1 −
(
W T ΣDW

)−1
)
W T (xi − x̃i).

This concludes the proof as it shows all the terms are invariant to the right action of O(d).

To perform RCGD on G(d,D), we need to compute the Riemannian gradient of the loss E(W ,M)
with respect to W . For a smooth function f : G(d,D) → R defined over the Grassmannian, the
Riemannian gradient at W denoted by gradW f is an element of the tangent space TWG and is
given by

gradW f =
(
Id −WW T

)
∇W f, (10)

where ∇W f is a D × d matrix of partial derivatives of f with respect to the elements of W , i.e.,
[∇W f ]i,j = ∂f

∂Wi,j
. Below, we derive∇W E(W ,M). For a symmetric matrix Σ

∇W log det(W TΣW ) = 2ΣW
(
W TΣW

)−1
.

Also,

∇W (xi − x̃i

)T
WMW T (xi − x̃i) = 2(xi − x̃i

)
(xi − x̃i

)T
WM .

Therefore,

∇W E
(
W ,M

)
=

N∑
i=1

li

(
ΣSW

(
W TΣSW

)−1 − ΣDW
(
W TΣDW

)−1 (11)

+ (xi − x̃i

)
(xi − x̃i

)T
WM

)
.

Having an alternating optimization solution not only lets us obtain M in closed form according to
Eq. (8), but also justifies the use of Grassmannian, making the search space more confined. Putting
everything together, the algorithm to learn W and M is depicted in Alg. 1. In our experiments, we
observed that the algorithm typically converges in less than 30 iterations.
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Algorithm 1 The proposed JDR-KISSME algorithm
Input:

{
xi, x̃i, li

}N

i=1
a set of training pairs in RD with their similarity labels, the target dimensionality d

Output: Projection W and metric M
1: Compute ΣD and ΣS using Eq. (2) and Eq. (3)
2: Initialize W to an orthonormal matrix (e.g., truncated identity)
3: Compute M∗ using Eq. (8)
4: repeat
5: W ∗ = arg minW E

(
W ,M∗) using RCGD on Grassmannian

6: W ←W ∗

7: Update M∗ using Eq. (8)
8: M ←M∗

9: until convergence

3.3 Incorporating the Solution into Deep Nets

In this part, we elaborate on how the previous developments can be incorporated into deep networks.
The goal is to learn a mapping from images to a compact Euclidean space such that distances
correspond to a notion of semantics between the images. Let us assume that a generic network
provides us with an embedding from the image space to Rd. We denote the functionality of this
network on an input image x by f(x).

Since a metric M is an SPD matrix, it can be decomposed as M = LTL. As a result, the
distance between two images xi and x̃i passing through the network can be written as

d2M
(
xi, x̃i

)
=
(
f(xi)− f(x̃i)

)T
M
(
f(xi)− f(x̃i)

)
= ‖L

(
f(xi)− f(x̃i)

)
‖22 .

This lets us incorporate the metric M into a deep net in the form of a Fully Connected (FC)
layer immediately before a loss layer. The whole setup can be trained via BackPropagation (BP).
Generally speaking, training a deep CNN for metric learning is cast as one of the following forms
(see Song et al. (2016) and Schroff et al. (2015) for more details).

• Pairwise: training data consists of pairs of similar and dissimilar images. Given a predefined
margin τ , training is guided by a loss function which seeks to learn an embedding such that
distances between similar samples are smaller than τ while those between dissimilar ones are
greater than τ . In this manner, the cost function for a batch with N pairs {xi, x̃i} and their
corresponding similarity label li ∈ {1,−1} can be written as

N∑
i=1

[(
‖f(xi)− f(x̃i)

∥∥2
2
− τ
)
li

]
+

(12)

• Triplewise: training data consists of triplets of images: one anchor x, a sample in the same
class x+, and one differently labelled sample x−, and a predefined margin τ . Then, a loss
function supervises training such that for each triplet, the distance between x and x− becomes
greater than the distance between x and x+ plus τ . Thus, the cost function for a batch with
N triplets is

N∑
i=1

[∥∥f(xi)− f(x+i )
∥∥2
2
−
∥∥f(xi)− f(x−i )

∥∥2
2

+ τ
]
+

(13)
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Figure 2: Incorporating JDR-KISSME into deep nets. The dimensionality reduction can be seen as an FC
layer immediately before a loss layer. One can either have the metric M in computing the loss (top panel) or
since M = LLT , combine it with the dimensionality reduction layer (bottom panel).

An important difference between the two categories is that only methods in the first group can
work in the restricted metric learning scenario. We present our extension to deep networks utilizing
the pairwise protocol, making our method applicable to wider set of problems. To this end, we start
with an initial orthonormal W and compute M using Eq. (8), relying on the network to provide
features in the low-dimensional space 3. To tune W and M via BP, two possibilities are

• Initialize the weights of the last FC layer to be W and engage the metric M directly in
computing the distances in the loss layer. To this end, we perform Stochastic Gradient Descent
(SGD) while M is kept fixed. We update M after a number of SGD iterations or when the
network reaches to a reasonably good representation. In this case, BP updates the network
according to the KISSME loss (i.e., Eq. (7)) while M is learned in a closed form manner
using the output of the network and Eq. (8) (see the top panel in Fig. 2 for a conceptual
diagram). We refer to this solution as “pairwise+KISSME”.

• Since M is an SPD matrix (i.e., M = LTL), it can be absorbed in the last FC layer. Here,
we initialize the weights of the last FC layer to be WL. Then, we train the network using
BP. If the explicit form of the metric is required, the weights of the FC layer can be factorized
into an orthogonal matrix W and a full-rank matrix L using any spectral decomposition such
as QR decomposition (see the bottom panel in Fig. 2 for a conceptual diagram). We refer to
this solution as “pairwise+KISSME-Compact”.

Empirically, we observed that pairwise+KISSME solution is more stable and works better. We
conjecture that the separation of learning W and M is the reason here. In § 4.2.3, we compare the
two scenarios in more details. Before concluding this part, we would like to mention that placing a
Local Response Normalization (LRN) block (see Fig. 2) before the dimensionality reduction block
helps the convergence in our solution. This is inline with other deep metric learning models Liu
et al. (2016); Schroff et al. (2015).

3. Recent works in vision extensively use successful architectures such as AlexNet, GoogleNet or variants of VG-
GNet Song et al. (2016); Schroff et al. (2015); Liu et al. (2016). This strategy provides better control over the training
process.
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4. Experiments

In this section, we assess and contrast the performance of our proposal against the KISSME base-
line and several state-of-the-art methods. We begin by evaluating JDR-KISSME using the Com-
prehensive Cars (CompCars) dataset Yang et al. (2015). We then demonstrate the strength of the
solution when incorporated into deep networks using the CUB200-2011 Wah et al. (2011) and Ci-
far100 Krizhevsky (2009) datasets.

4.1 Car Verification (Shallow Experiment)

As our first experiment, we tackle the task of car verification using the recently released CompCars
dataset. The dataset is one of the largest benchmarks for image verification containing 214,345
images of 1,687 car models from two significantly different scenarios: web nature and surveillance
nature. Web nature data is split into three subsets without overlap. Related to verification is part
II and part III of the dataset. Part II contains 4,454 images in 111 models (classes) while there are
22,236 images spanning 1,145 models in part III.

We followed Yang et al. (2015), the standard verification protocol on this dataset, which splits
part III to three sets with different levels of difficulty, namely easy, medium, and hard. Each set
contains 20,000 pairs including equal number of similar and dissimilar pairs. Each image in the
easy pairs is chosen from the same viewpoint, while each pair in the medium pairs is selected
from a random viewpoint. Each dissimilar pair in the hard subset is selected from the same car
make. As for feature extraction, again following Yang et al. (2015), we utilized their available
GoogLeNet Szegedy et al. (2015) fine tuned on part II of the CompCars.

On the web nature part of the CompCars, Yang et al. (2015) utilize Joint Bayesian algorithm Chen
et al. (2012) which works similar in spirit to the KISSME. More specifically, the inference is based
on a symmetry hypothesis comparable to Eq. (1) but with the Gaussian distributions built based on
the between-class and within-class scatter matrices. Hence, it takes the class labels of the samples
into its inference. Sochor et al. (2016) obtain recognition improvements by augmenting CNN inputs
with complementary 3D vehicle information, such as information about 3D orientation.

In Table 1, we compare our JDR-KISSME method against the conventional KISSME algo-
rithm and the state-of-the-art methods. First, we note that the JDR-KISSME shows consistent
improvements over the KISSME. For example, the accuracy gap between the JDR-KISSME and
the KISSME over the hard subset reaches 4.9%. The JDR-KISSME achieves the state-of-the-art
verification accuracies on the medium and hard protocols while working on par with Yang et al.
(2015) on the easy test. However, we note that the work of Yang et al. (2015) utilizes class labels
for training (and hence not applicable to the restricted metric learning scenarios) while our method
does not rely on the availability of such information.
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Table 1: Accuracy on different protocols of the CompCars dataset.

Method Easy Medium Hard
BoxCars Sochor et al. (2016) 85.0% 82.7% 76.8%

Joint Bayesian Yang et al. (2015) 90.7% 85.2% 78.8%
KISSME Koestinger et al. (2012) 88.9% 83.3% 75.4%

JDR-KISSME(ours) 90.1% 86.0% 79.5%
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Figure 3: Verification accuracy, AUC, and EER score metrics on the CUB200-2011 dataset.
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Figure 4: Comparison between the pairwise+KISSME and pairwise+KISSME-Compact deep solutions on
the CUB200-2011 dataset.

4.2 Deep Experiments

In this part, we show the effectiveness of pairwise+KISSME, our deep metric learning method. To
this end, we perform comparisons with the two most common ways of training a CNN for metric
learning, i.e., pairwise metric learning (Eq. (12)) and triplet solution (Eq. (13)). We recall from § 3.3
that the training starts by initializing two matrices, W (or equivalently the last FC layer) and M .
To initialize W , we rely on the initial CNN to provide embeddings of training images up to the last
FC layer. Then, the FC layer is initialized with PCA (of a certain dimensionality). This is consistent
with the original KISSME algorithm. Next, the metric M is initialized using the output of the FC
layer (and Eq. (8)). This is required in the loss layer to perform BP.

To measure the performances, we randomly generate 30,000 similar and 30,000 dissimilar pairs
from our test data. We report verification accuracy, Area Under the ROC Curve (AUC), and Equal
Error Rate (EER) values for our algorithm and of the baselines for comparisons. We use Matconvnet
package Vedaldi and Lenc (2015) for implementation.

Before delving into experiments, we note that our aim here is to present a better, yet general way
of metric learning for deep networks. In doing so, we are not chiefly concerned about best mining
practices as suggested in Song et al. (2016); Schroff et al. (2015).
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Table 2: Accuracy, AUC, and EER on the Cifar100 dataset.

Method Accuracy AUC EER
KISSME Koestinger et al. (2012) 63.1% 69.2% 36.4%

Pairwise 64.3% 70.0% 35.4%
Triplewise 65.8% 72.0% 34.2%

Pairwise+KISSME(ours) 68.2% 75.2% 31.7%

4.2.1 BIRD VERIFICATION

As our first experiment for deep metric learning, we considered the task of image verification us-
ing CUB200-2011 dataset Wah et al. (2011). CUB200-2011 has 200 classes of birds with 11,788
images. We used images of the first 100 classes as training and validation sets and the remain-
ing classes for testing. As the CNN, we utilized the VGG-CNN-M-1024 Chatfield et al. (2014)
pretrained on the ImageNet Deng et al. (2009).

Fig. 3 summarizes the three score metrics of our deep metric learning technique and of our
two baselines for various embedding sizes (or equivalently subspace dimensionality). Similar to
the previous experiment, our solution is consistently superior to the baseline techniques for all
embedding sizes. For example, the difference in the verification accuracy between our method and
its closest competitor, i.e., triplet solution, is about 2% for the size 128 over the 60,000 test pairs.

4.2.2 TINY IMAGE VERIFICATION

As another expperiment for deep metric learning, we studied the task of image verification using
the Cifar100 dataset Krizhevsky (2009) which has 60,000 images of size 32 × 32. To this end,
we trained the LeNet-5 LeCun et al. (1998) network on the Cifar10 dataset Krizhevsky (2009) for
22,500 iterations of SGD. We then cropped the pretrained network at the fourth layer and fine tuned
it on the Cifar100 similar to the previous experiment. We kept the embedding size to 32 for this
experiment (i.e., W was 64×32 and M was 32×32). All other experimental details (e.g., train/test
split, number of test pairs, etc) were the same as the bird verification experiment.

In Table 2, we compare our method against the so called pairwise and triplet methods as well as
the original KISSME on the pretrained network (i.e., without fine tuning). Here again, our solution
comfortably outperforms the other methods for all the studied metrics over the 60,000 test pairs.

4.2.3 FURTHER ANALYSIS

In this part, we empirically compare the pairwise+KISSME method to the pairwise+KISSME-
Compact solution discussed in § 3.3. To this end, we conducted further experiments on the CUB200-
2011 (bird verification) dataset. The accuracy, AUC and EER values for various embedding sizes
are depicted for the two solutions in Fig. 4. From Fig. 4, we conclude that the pairwise+KISSME
solution leads to superior performances and is more stable, hence our proposal. This is a consistent
extension to the JDR-KISSME, our developments in the shallow mode, where we have an alternat-
ing algorithm to find the two matrices W and M .

We conjecture that the separation of learning W and M is the reason. More specifically, assume
the ideal projection is W ∗. From Lemma 1, we conclude that the ideal metric is obtained as M∗ =
Γ(W ) where the function Γ(·) is a nonlinear function as a result of the projection to the positive
definite cone. The pairwise+KISSME is more aligned with Lemma 1 as the metric is explicitly
obtained from the representation. On the other hand, the pairwise+KISSME-Compact removes the
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dependency of M∗ on W ∗ in the hope of learning M∗, W ∗ and the underlying nonlinear projection
together.

4.3 Experimental setup

For fine tuning the CNNs, we randomly generated 300,000 similar pairs and 300,000 dissimilar pairs
(and equal number of triplets) and fed them to the CNNs. For all experiments, we set maximum
number of SGD iterations to 20,000, margin to τ = 1.0, momentum to µ = 0.9, and learning rate
to η = [10−4, 10−7] in log-space range. We observed that increasing the learning rate of the fully
connected layer by a factor of 10 helps faster convergence. A simlar observation is reported in Song
et al. (2016). To augment the data, we resorted to only flipping the images at random.

We also provide details of the experiment used to generate Fig. 1. We used the surveillance
images of the CompCars dataset which has 44,481 images in 281 classes. We randomly split the
dataset into 140 classes for training and used the remaining 141 classes for testing. We generated
200,000 training pairs and 60,000 testing pairs, randomly from the training and testing sets. To
extract image descriptors, we computed SIFT features on a dense grid and then computed Bag Of
Word representations using a dictionary of size 4096, trained by the k-means algorithm.

5. Conclusions

In this paper, we introduced a joint dimensionality reduction technique for the KISSME algorithm,
namely JDR-KISSME. Our motivation stems from the fact that the KISSME fails badly when its
input is not meticulously denoised using PCA. Along the way, we formulated the solution as a
Riemannian optimization problem. Furthermore, based on our proposal, we showed an end-to-end
learning of a generic deep network for metric learning. Our experiments demonstrate consistent
improvements of the JDR-KISSME and its deep extension over the original KISSME and state-of-
the-art methods.
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