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With flexible data description ability, one-class Support Vector Machine (OCSVM) is one of the most pop-
ular and widely-used methods for one-class classification (OCC). Nevertheless, the performance of OCSVM
strongly relies on its hyperparameter selection, which is still a challenging open problem due to the ab-
sence of outlier data. This paper proposes a fully automatic OCSVM hyperparameter selection method,
which requires no tuning of additional hyperparameter, based on a novel self-adaptive “data shifting”
mechanism: Firstly, by efficient edge pattern detection (EPD) and “negatively” shifting edge patterns along
the negative direction of estimated data density gradient, a constrained number of high-quality pseudo
outliers are self-adaptively generated at more desirable locations, which readily avoids two major diffi-
culties in previous outlier generation methods. Secondly, to avoid time-consuming cross-validation and
enhance robustness to noise in the given training data, a pseudo target set is generated for model valida-
tion by “positively” shifting each given target datum along the positive direction of data density gradient.
Experiments on synthetic and benchmark datasets demonstrate the effectiveness of the proposed method.
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1. Introduction

One-class classification (OCC) [1] describes training data from a
single class (called “target class”) as a normalcy model and aims
to detect data from any other class (called “outlier class”) as out-
liers. OCC has numerous applications, especially when training data
from outlier class are hard or even impossible to obtain. To deal
with OCC, existing methods basically fall into three categories: (i)
Density based methods. Density based methods, like one-class Gaus-
sian Mixture Model (OCGMM) [2] and Parzen density estimation
[3], estimate the density of the target class and detect data in low-
density area as outliers. (ii) Reconstruction based methods. Recon-
struction methods, such as auto-encoder network [4], assume that
target data can be reconstructed by a network with low recon-
struction error, while outliers cannot. (iii) Boundary based meth-
ods. Boundary based methods, such as One-class Support Vector
Machine (OCSVM) [5] and Support Vector Data Description (SVDD)
[6], are able to learn a tight and smooth boundary that encloses
target data by introducing non-linear kernel tricks, which makes
boundary based methods particularly popular in OCC. As a preva-
lent boundary based OCC method, OCSVM has been studied and
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applied actively in numerous realms of academic research and in-
dustrial applications, such as fault detection [7], video abnormal
event detection [8], media classification [9], network intrusion de-
tection [10], video summarization [11], etc. Besides, another repre-
sentative OCC method SVDD is shown to be equivalent to OCSVM
when stationary kernel is used [5] (e.g. standard Gaussian kernel).

However, a pivotal issue to apply OCSVM is the hyperparame-
ter selection, which has a significant influence on its performance.
To be more specific, with the standard Gaussian kernel, two hyper-
parameters of OCSVM need to be properly tuned: the regulariza-
tion coefficient v and the Gaussian kernel width o (details will
be reviewed in Section 2.1). v controls the upper bound of re-
jected target data [5], which is often tuned to reject noise in the
target data during training OCSVM, while ¢ controls the smooth-
ness of decision boundary. To illustrate this, we show the decision
boundary of OCSVM with different hyperparameter settings on a
noisy 2-D “banana” dataset (see Fig. 1): what we expect OCSVM
to obtain is the decision boundary in Fig. 1b, which is both tight
enough to detect outliers effectively and smooth enough to gen-
eralize on unseen target data. An overly large o or small o will
cause underfitting (see Fig. 1a) and overfitting (see Fig. 1c) respec-
tively. Meanwhile, choosing a proper v enables OCSVM to properly
exclude noisy training data in the target set (see Fig. 1b), while im-
proper v will make the decision boundary distorted by noisy target
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Fig. 1. The influence of hyperparameters on OCSVM decision boundary for “banana” dataset.

data (see Fig. 1d) or reject excessive target data. Hence, hyperpa-
rameter selection plays a fundamental role in the application of
OCSVM [12]. While the tuning of OCSVM hyperparameters is not
straightforward, a more thorny issue is that standard hyperparam-
eter selection schemes like leave-one-out (LOO) or cross-validation
will be problematic for OCC due to the absence of data from outlier
class, and the model error on outlier class can longer be obtained
directly [12,13]. As a result, hyperparameter selection of OCSVM re-
mains a challenging open problems and many attempts have been
made to tackle this problem, which will be reviewed in Section 2.2.

In this paper, we enable fully automatic OCSVM hyperparam-
eter selection by a novel self-adaptive data shifting (SDS) based
method, which consists of two contributions: Firstly, based on
an efficient edge pattern detection (EPD) method, pseudo outliers
are generated by “negatively” shifting the detected edge patterns
for model error estimation on outlier class. The proposed method
can generate a controllable number of high-quality determinis-
tic pseudo outliers at more desirable locations in the data space,
which can effectively regulate the decision boundary of OCSVM for
a more accurate target data description. More importantly, negative
shifting avoids two major difficulties in previous outlier generation
methods (discussed in Section 2.2). Secondly, a pseudo target data

set is generated by an efficient “positive shifting” mechanism for
model validation on target class, which can avoid time-consuming
cross-validation. The generated pseudo target data can perfectly
preserve the original target data distribution, so as to soundly eval-
uate the generalization performance on target class and prevent
overfitting. Meanwhile, it can enhance the robustness to noise in
the given target data by generating normal pseudo target data from
noise for model validation. Unlike many previous methods, both
negative and positive shifting are self-adaptive and leave no addi-
tional hyperparameter for users to tune during OCSVM hyperpa-
rameter selection. Experimental results demonstrate that the pro-
posed method enables OCSVM to accurately describe target data
with complex data distributions and achieve satisfactory OCC per-
formance.

The rest of paper is organized as follows: Section 2 revisits
the basics of OCSVM (Section 2.1) and then briefly reviews ex-
isting hyperparameter selection methods for OCSVM (Section 2.2).
Section 3 presents the proposed data shifting based OCSVM hyper-
parameter selection method in detail. Section 4 reports the exper-
imental results of the proposed method on both synthetic datasets
and benchmark datasets in comparison with existing OCSVM hy-
perparameter selection methods. Section 5 concludes this paper.
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2. Related work
2.1. One-class support vector machine (OCSVM)

Before we discuss the hyperparameter selection of OCSVM, it
is necessary to review the basics of OCSVM first. As an extension
of the standard binary SVM, Scholkopf et al. [5] proposed OCSVM
to handle OCC problems. Formally, suppose that the target data to
be described by OCSVM is X¢arger = {X1.Xy. -+, Xy}, and an implicit
mapping ¢(-) that can map target data from their original feature
space to a new feature space #. OCSVM intends to seek such a
hyper-plane IT in #: the hyper-plane IT:w' . ¢(Xx) —p =0 (w is
a normal vector of IT) has the largest distance to the origin, while
all mapped target data ¢(x;) lie at the opposite side of hyper-plane
to the origin. This goal can be formulated as the following primal
optimization problem:

. 1T, 1 &
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where v is the regularization coefficient mentioned in Section 1,
which trades off model complexity and training error, and &; is the
slack variable that enables OCSVM to have soft matgin so as to
exclude some noisy training data. It is proved that, hyperparameter
v controls the upper bound of the training data that are excluded
by the decision boundary of OCSVM [5]. Since the mapping ¢( - ) is
usually implicit, the above optimization problem is usually solved
by its dual form:
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where K(x;, X;) =¢(xi)T-¢(xj) is the inner product of mapped
data, while «; is the dual variable. In practice, one usually di-
rectly specifies kernel function K(x;, X;) instead of the mapping
¢(x), which may be indefinite, and Gaussian kernel K(x;,X;) =

x.|12
exp(—”x’a’z(’|| ) is usually the standard choice (o is the Gaus-

sian kernel width). With selected kernel function and its hyper-
parameter, the above dual optimization problem can be solved
as a quadratic programming problem. Having solved «; by the
dual optimization problem, p can be obtained by choosing any X;
that its corresponding «; satisfies 0 < o; < ]}—N and calculate p =
Z’}’:l a;K(x;, x;). In the meantime, any x; that has a correspond-
ing o; >0 is called a support vector, which supports the decision
boundary of OCSVM. An incoming new datum X; is determined as
an outlier if it satisfies:

fx) =) oKX, X;) —p <0 (3)

;>0

In this paper, we will focus on the hyperparameter selection of
standard Gaussian kernel based OCSVM, but the applicability of the
proposed method is not limited to Gaussian kernel. Existing meth-
ods on OCSVM hyperparameter selection are reviewed in next sec-
tion below.

2.2. Existing OCSVM hyperparameter selection methods

Since the very beginning, researchers have noticed the dramatic
influence of hyperparameters on the performance of OCSVM/SVDD.
Scholkopf et al. [5] analyzed the influence of hyperparameter v and
o from a theoretical view, but did not provide specific guidelines

to their selection. Afterwards, a host of methods are proposed and
we roughly classify them into two categories:

(1) Pseudo outlier generation based methods. The motivation of
this type of methods is straightforward as they intend to tackle
the essence of OCC problem: the absence of outlier data. An early
attempt is Fan et al. [14], who replaced the feature value that ap-
pears most frequently with a randomly chosen value to generate
artificial anomalies. However, this method can only deal with fea-
ture with discrete values. Tax et al. [1]| studied an intuitive so-
lution: generating uniformly distributed random outliers in the
hyper-cube that encloses the target data to guide hyperparame-
ter selection, and they further improved the hyper-cube into a
hyper-sphere to better fit the target data [12]. Unfortunately, as
[12] pointed out by themselves, such simple random outlier gen-
eration faces two major difficulties: Firstly, outliers are not guar-
anteed to be generated at desirable locations due to random-
ness [6] discovered that pseudo outliers inside or overly far from
the target data are not contributing, and they may even lead to
selecting poor hyperparameters. Secondly, as a small number of
randomly located outliers cannot deliver an accurate error esti-
mation on outlier class, such methods require generating mas-
sive random outliers to fill in the entire data space, so as to
yield a relatively good estimation of the model error on outlier
class, [12] pointed out that the number of pseudo outliers re-
quired for filling can grow exponentially as the feature dimen-
sion increases, which makes it particularly difficult to know the
exact number of outliers sufficient for a good outlier error esti-
mation. In other words, such methods actually introduce another
non-intuitive hyperparameter to specify: the amount of generated
outliers N,. Some other improved outlier generation methods are
proposed: Deng et al. [15] proposed a “skewness” based outlier
generation method, which generates outliers by randomly “skew-
ing” each target datum from its original location. However, the de-
gree of skewness « is another sensitive hyperparameter for users
to specify. Banhalmi et al. [16] detect boundary points and gen-
erate outliers by a transformation between each given datum and
its nearest boundary point, but it requires training one SVM for
each datum for boundary detection, which is extremely expen-
sive. Besides, it introduces two additional hyperparameters dist and
curv. Desir et al. [17] improved pseudo outlier distribution by us-
ing a complementary histogram to indicate the probability of out-
lier generation. In addition, Tax et al. [13] proposed a “consistency”
based method to avoid the difficulties of explicit outlier generation.
It starts with the most underfitting OCSVM model, and gradually
tightens the model boundary until the model no longer satisfies
the defined “consistency” criteria, which is set under an implicit
uniform outlier distribution assumption. Nevertheless, the perfor-
mance of this method is actually very sensitive to the “consistency”
criteria, which depends on the threshold of variance, a tunable hy-
perparameter.

(2) Heuristics based methods. Due to the difficulties of pseudo
outlier generation, heuristics based OCSVM hyperparameter tuning
has gained increasing popularity over the years. Generally speak-
ing, heuristics based methods assume that good hyperparameters
of OCSVM typically satisfy some intuitive observations or empir-
ical prior knowledge, and some corresponding heuristic rules are
adopted to provide guidance on OCSVM hyperparameter selection.
Specifically, Evangelista et al. [18] proposed to select good o by
maximizing the ratio between the variance and average value of
kernel matrix’s off-diagonal elements. Khazai et al. [19] proposed
to determine o by the maximal distance between target data and
target data number. Xiao et al. [7] proposed two heuristics to tune
o based on maximal-minimal distance between target data and
the statistics of distance to nearest neighbor, respectively. However,
all methods above need to pre-specify v, which can sometimes be
difficult. Wang et al. [20] proposed a method named Min#SV+MaxL
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to tune both v and o based on a trade-off between minimizing
support vector number and maximizing objective value. Xiao et al.
[21] put forward an interesting method named MIES: by calculat-
ing normalized distance (ND) from target data to OCSVM'’s deci-
sion boundary, MIES is based on the following observation: good
OCSVM hyperparameters can maximize the difference between ND
of data inside the target set (called “interior patterns”) and the
ND of data on the boundary area of the target set (called “edge
patterns”). A more recent work by Ghafoori et al. [22] proposed
to estimate v and o efficiently and unsupervisedly by seeking the
“knee-point” with the largest curvature in the sorted density mea-
sure of target data and a revised Duplex Max-margin Model Se-
lection (RDMMS) method. Heuristics based methods can avoid the
difficulties of pseudo outlier generation, but they sometimes per-
form poorly since the underlying observations do not hold. In addi-
tion, the application of heuristics based methods are often limited
to certain kernel functions like Gaussian kernel.

3. Methodology

As we discussed in Section 2.2, existing outlier generation based
hyperparameter selection methods are faced with two major un-
solved difficulties, and usually introduce additional hyperparam-
eters that need to be specified by users. This paper proposes a
self-adaptive OCSVM hyperparameter selection method based on
a novel “data shifting” mechanism, which can readily avoid the
aforementioned difficulties in previous outlier generation methods
and leave no tuning of additional hyperparameter to users.

3.1. Self-adaptive data shifting

Our hyperparameter selection method for OCSVM based on
self-adaptive data shifting is composed of three components: (1)
Pseudo outlier data generation by negative shifting. By employ-
ing edge pattern detection (EPD) [23] method and calculating the
negative data density gradient [24], we develop a new “negative
shifting” mechanism to obtain pseudo outlier data by shifting the
detected edge patterns of the target data along the direction of
negative data gradient. (2) Pseudo target data generation by pos-
itive shifting. With the calculated data density gradient of each
given target datum, we develop a novel “positive shifting” mech-
anism to generate pseudo target data by shifting each target da-
tum slightly along the direction of positive data density gradient.
(3) Grid search. With the generated pseudo outlier and target data
as validation data, we use grid search to select good hyperparame-
ters for OCSVM. The proposed positive shifting and negative shift-
ing mechanism will be introduced in detail by Section 3.2 and
Section 3.3 respectively, and the whole algorithm will be shown
by Section 3.4.

3.2. Pseudo outlier data generation by negative shifting

3.2.1. Edge pattern detection (EPD)

The proposed method is inspired by the working mechanism
of SVM [25]: the decision boundary of SVM can be supported only
using the exterior patterns in each data class, which are called sup-
port vectors. Motivated by this, we discover that it is actually un-
necessary to generate massive random outliers to fill in the entire
data space like [12]. To regulate the OCSVM decision boundary for
an accurate target data description, we can simply generate a small
number of high-quality pseudo outliers that tightly surround the
domain of target data, serving as pseudo “supports” from the out-
lier class. Thus, a novel solution is proposed to generate such high-
quality outliers: we shift the data at the exterior surface of target
class (denoted as “edge patterns”) outwards into pseudo outliers

(see Fig. 3a), which is called “negative shifting” and will be dis-
cussed in the next section. Before we generate outliers by negative
shifting, we will show how to locate the edge patterns at the exte-
rior of target class efficiently in the first place, which is called edge
pattern detection (EPD).

Instead of previous time-consuming and complicated boundary
detection methods, Li et al. [23] proposed a simple and efficient
EPD method by exploiting local geometrical and statistical infor-
mation within data. The idea of EPD is intuitive: For an edge pat-
tern x;, suppose v;; = &%m
tion vector from its jy, k-nearest neighbor (k-nn) x;; to itself. EPD
approximates the normal vector n; of the data exterior surface’s
tangent plane at x; by the sum of v;, and detects edge pattern x;
based on the following fact: for an edge pattern X;, all or most
of v;; should satisfy viTj-ni > 0 (see Fig. 2a). A detailed EPD algo-
rithm is shown in Algorithm 1, in which the indicator function
I(-) =1 if the statement in the bracket is true, otherwise I(-) = 0.
It should be noted that two parameters of the EPD algorithm, the
number of nearest neighbors k and the decision threshold T, have
been thoroughly studied by Li et al., and we simply fix them as the
recommended values from [23] in Algorithm 1. Therefore, the EPD
process does not require user to specify any parameter. As an il-
lustration, EPD is performed on the banana dataset and the results
are displayed in Fig. 2b, which shows EPD can effectively detect
the edge patterns of a given target data set.

j=1,2,---k, denotes the unit direc-

3.2.2. Negative shifting

With detected edge patterns, we will introduce how to shift
them into pseudo outliers to regulate the OCSVM decision bound-
ary and provide guidance on selecting good hyperparameters. Since
the edge patterns are shifted “away” from the target data, this pro-
cess is called “negative shifting” (see Fig. 3a).

To generate high-quality outliers, two key elements need to be
determined for negative shifting: the shifting direction and shifting
magnitude. We will discuss the shifting direction first. Theoreti-
cally, we should shift edge patterns along the direction of target
data density’s negative gradient, in which the target data density
drops at the fastest rate. In other words, it is the easiest direction
for edge patterns to be shifted to the nearby region that has no
existence of target data and become valid high-quality pseudo out-
liers. Formally speaking, with the density of target data at a point
x denoted as p(x), the ideal shifting direction is —Vp(x). We fol-
low the method in [24] (p. 534) to derive the approximation of
—-Vp(x): for any given X, we define a sufficiently small local re-
gion centered at x with radius r: L(x) = {y|||x — y||2 < r?}. As the
data density at y is p(y), the total amount of data covered by L(x)

Algorithm 1: EPD Algorithm.
Input: Taregt dataset Xrarger = {X1.Xp, -+ , Xy}
Output: Edge pattern set Xggg

1 calculate k = [5logo N1;

2 set threshold T = 0.1;

3 set Xegge = ¥;

safori=1¢to N do

5 calculate k-nn direction vector v;

(Xi—X;;) =12,k

i = T d =
6 approximate normal vector n; = Z?:] vij;

7 | calculate Oij:v{j.ni,jzlyzﬁ..k;

s | calculate | = £ 3% 1(6; > 0);

9 | if;>1-T then

10 L xedge = xedge UX;;

-
=

return X ge;
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Fig. 2. EPD (left) and detected edge patterns on banana dataset (right).
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Fig. 3. Negative shifting (left) and pseudo outliers on banana dataset (right).

is:

a:ﬂmpry (4)

The direction vector from the center X to a point y in L(X) is
(y — x). The expectation of such direction vectors in L(x) is:

E(y - mumn~/ -0y (5)

As L(x) is a small enough local region centered at X, we can
approximate a by the equation below:

a =/ p(y)dy = p(x)u (6)
L(x)

where u is the volume of L(x). By Taylor expansion, we have p(y) =
p(X) + (y — x)TVp(x). Therefore, with Taylor expansion of p(y) and
Eq. (6), Eq. (5) can be transformed into:

HW—mumnz/ (v %) dy

Vp(x)
p(x)

Since L(x) is a symmetric region, we have fL(x> (y—x)%dy =0.
By the conclusion from [24] (Appendix B.6), Eq. (7) can be con-

/ ¥ - -0 dy (7)
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verted to:
~ r] Vp(x)
By -0k = [ v-0m-0"dy=F
_ rz Vp(x)
T D+2 p(x) )

where D is the dimension of x. Finally, with the scalar value
D”p(x) £ s, the desired shifting direction —V p(X) can be approx-
imated by:

-VpXx) =sE{(x-y)|LX)} = (9)

(‘\'\U’

k
Zx X;)

where X; is the jy; k-nn of x. Eq. (9) suggests that the negative
data density gradient direction can be approximated by the direc-
tion vectors from the k-nn data of x to itself. However, the ap-
proximation in Eq. (9) has a practical problem: since the given
real-world target data near the data exterior surface are usually
non-uniform and noisy, the estimated —V p(x) is often dominated
by some noisy k-nn with very large magnitude ||x —x;||. To en-
hance the robustness to k-nn noise, we adopt the same solution
in [16,23] to normalize the k-nn direction vector by its magnitude.
This makes the estimated —Vp(x) exactly coincide with the nor-
mal vector n calculated during EPD, which facilitates us to deter-
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mine both edge patterns and their shifting directions by EPD:

k

X —X;j

—Vp(x);nzz:”x_ixj|| (10)
=1

where the scalar § in Eq. (9) is dropped since we are only inter-
ested in the direction of —V p(x). The second consideration is the
negative shifting magnitude I,s. A proper shifting magnitude is vi-
tal: overly large I;s will generate outliers that cannot regulate the
OCSVM decision boundary, while overly small I;s will make out-
liers too close to target data, which may lead to overfitting de-
cision boundary. However, it is not easy to manually set a good
shifting magnitude for different target data. To automatically de-
termine a proper I, it is assumed that a functioning pseudo out-
lier has a I that is equal to the average distance of k-nn data to
this edge pattern. The assumption is intuitive: it ensures the gen-
erated outlier to be no further than the furthest k-nn data of an
edge pattern, which avoids an overly distant outlier, while it also
ensures that the generated outlier to be no closer than some k-nn
data of an edge pattern, which avoids an overly close outlier, i.e.
min; ||X — X || < lns < max; ||x — X;|| (see Fig. 3a). As we mentioned
above, the k-nn of a single edge pattern is often noisy, so we aver-
age the mean k-nn distance of all edge patterns as a more robust

Ins:

k
= 1 1
by = o— E - E X; — Xjj 11
ns |Xedge| k p= ” i 1]” ( )

X; €Xﬁdge

Finally, we can generate a pseudo outliers set by negative shift-
ing as follows:

Xouttier = {x((Jl> |ng) =X+ <Ins, VX; € xedge} (12)

i
([

Since both k-nn distance and n; have been calculated during
EPD, the outlier generation calls for minimal computation. We vi-
sualize the generated outliers for banana dataset in Fig. 3b as an
example. Compared with previous outlier generation methods, the
pseudo outlier data generated above enjoy the advantages below:
(1) As Fig. 3b shows, the generated pseudo outliers can compactly
surround the target data domain while keeping a moderate dis-
tance to target data, which soundly addresses the first difficulty
discussed in Section 2.2: generating good outliers at desirable loca-
tions. (2) Since each pseudo outlier is yielded by negatively shift-
ing the detected edge patterns, the number of generated pseudo
outlier is always smaller or equal to the number of target data,
i.e. Xouttier| = [Xedge| < [Xtarget|, which avoids the second difficulty
to generate exponentially-growing pseudo outliers in the high-
dimensional space. (3) A prominent merit of the proposed negative
shifting process is self-adaptiveness: it requires no tuning of addi-
tional hyperparameters by users. Both the shifting direction and
magnitude are automatically derived from the target data without
human effort, and the number of generated pseudo outliers needs
not to be specified as well. In addition, it is worth noting the gen-
erated outliers are only for model validation purpose, i.e. they are
not used as training data. Using those outliers as negative training
data will make the decision boundary shift towards the outliers to
cover redundant marginal space and accepts more outliers.

3.3. Pseudo target data generation by positive shifting

Having obtained pseudo outliers to estimate the error on out-
lier class, we also need to estimate the error on target class, so
as to preserve generalization performance and avoid an overfitting
model like Fig. 1c. To estimate error on target class, leave-one-
out (LOO) or cross-validation (CV) are usually adopted, which of-
ten leads to intolerable long hyperparameter selection time [6,22].
The problem is further exacerbated when dealing with a relatively

600 o—cv

——SDS

500

400

300

200

Implementation time (/sec.)

100

0 1000 2000 3000 4000 5000 6000
Number of training data

Fig. 4. Implementation time comparison on CV and the proposed SDS with varying
number of training data generated by banana distribution.

large number of training data. For example, since the training com-
plexity of OCSVM is usually O(N3) [5], applying a standard 10-fold
CV to validating a certain hyperparameter combination requires
roughly a complexity of 0(10 x (5N)3) ~ 0(7.29N?). However, if
we can generate a separated pseudo target data set as the val-
idation set, it only requires training OCSVM once with all given
target data, i.e. a complexity of O(N3), which can be much faster
than usual CV. To illustrate this, we compare the implementation
time of 10-fold CV and the proposed SDS method with a sepa-
rated pseudo target set for validation when the number of training
data varies in Fig. 4. Besides, there is another problem with real-
world datasets: the given training data are usually noisy, and such
noise will degrade the performance of model validation on target
class. Therefore, we are supposed to reduce the influence of target
data noise during model validation. Motivated by reasons above,
we propose to generate a pseudo target data set using a novel pos-
itive shifting mechanism, in order to achieve a more efficient and
robust model validation on target class.

The idea to generalize existing training data into new ones is
not new. For example, Li et al. [26] viewed the points on the line
passing any two data from the same class (called “feature line”) as
new data of this class, and then use them for model generalization.
Juszczak et al. [27] improved the feature lines into the edges of a
minimal spanning tree. However, existing methods have obvious
flaws: they either generate pseudo data that lie outside the target
domain and sabotage the original data distribution, or require rel-
atively large additional computation. To overcome those flaws, we
propose a highly efficient and self-adaptive alternative based on
the following idea: pseudo target data can be generated by slightly
shifting each given target data along the positive direction of tar-
get data density gradient, Vp(x), which is the direction that target
data density grows most rapidly. Specifically, for given target data
X; and their k-nn neighbors x;;,j=1.2,---,k, the pseudo target
data set X;arget is generated by:

/ i) 1o (i Vp(x;) i Vp(x;)
_ D) 14D _ . i min+ _ .\ Y E\S
Rerger = {xf = < Vpeol ™0 ) TVpel

VXl‘ € xtarget } (13)
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Fig. 5. Positive shifting (left) and pseudo target data of banana (right).

where < .- > denotes inner product and x{?i” is defined by:

mi . Vp(X;)
XMt — argming a+ 1 o, Xij — X;
Yy weh; {<||VP(X:')|| Y

where Af is the set of k-nn data of x; that satisfy

<M x,vj—x,v>>0 (A; can be defined as the opposite),

(14)

TVp&x)I”
and Vp(x;) can be estimated by Eq. (10) as we discussed in last
section. For an intuitive interpretation, we show the process of

p(X;)

positive shifting by Fig. 5a: the term <W’XU

the projection length of (x;; —x;) on the direction of Vp(x;).
Eq. (13) actually indicates that a new pseudo target datum is gen-
erated by the k-nn datum that has the smallest positive projection
distance to the original target datum (the red point in Fig. 5a),
which explains the name “positive shifting”.

We will explain why the generated pseudo target data have
very high confidence to be data from the target class: since the
pseudo target data are generated by shifting each given target da-
tum along the direction Vp(x;) by a small distance (we will ex-
plain why the distance is small later), we have two good reasons to
believe that the generated data belong to the target class: Firstly,
it is on the direction that target data density rises most rapidly
(Vp(x;)); Secondly, if a given target datum is not noise, the gen-
erated datum will be guaranteed to stay very closely to the origi-
nal target datum. To prove this, suppose the nearest k-nn data to
x; in the set A is denoted by XZ.* (denoted by the orange point

in Fig. 5a, and x?j* is similarly defined), the generated datum (red

point) will be strictly confined to the small region centered at x;
with radius IIX?j+ —X;|| (denoted by the orange dashed circle in

— X;) represents

Fig. 5a), which can be proved easily by the definition of xg.‘i“ in
Eq. (14):

i i Vp(x; YV p(x:
I = xill = <xg‘lm+ - Xi, p(')> < <xj?j+ —Xi, p(,)>

Vx|l Vx|l
(15)

< x5 — x|

By Eq. (15), for edge patterns on convex surface of the tar-
get data (l; =1 in EPD, e.g. the edge pattern shown in Fig. 2a),
we have ||x?j+ — ;|| = min; ||x;; — x;|| because A} contains all k-nn
data, which yields:

Ix? — x| < mjin [Ix;; — Xl (16)

For edge patterns on non-convex surface and target data that
are not edge patterns (l; < 1), since the vector Vp(x;) points to the
region with denser data, ||x:?j+ - Xl < ||x;1]f —X;|| is usually satis-
fied (though not always), Eq. (16) can often be satisfied as well.
Therefore, if x; is not noise, xt(') stays very closely to x;, i.e. often
closer than the nearest neighbor of x;. In the meantime, by defini-

tion of A;’, we have:

Vp(x;)

HVM&N>>O (17)

MP—&H=&?“—m,

Consequently, each x{” is definitely different from the given x;
by Eq. (17), but it is guaranteed to stay closely to the original x;
by Eq. (16) (the distance in most cases is less than the distance
to Xx;'s nearest neighbor). Thus, the proposed pseudo target data
generation method enjoys the following merits:

(1) Each pseudo target datum, if not noise, is generated through
shifting the original target datum off its original location by a prov-
able small distance, so the generated pseudo target data can per-
fectly preserve the data distribution of the given target data (e.g.
see the generated pseudo target data on banana dataset in Fig. 5b).
Thus, the generated pseudo target data can provide a favorable es-
timation on the model error of target class to prevent overfitting.
(2) Like negative shifting, the proposed positive shifting can gen-
erate pseudo target data in an efficient and self-adaptive manner.
As Eq. (13) suggests, the k-nn and data density gradient Vp(x) can
both be obtained during the EPD process in Section 3.2.1, and little
additional computation is needed. Meanwhile, the positive shifting
process leaves no hyperparameter for users to tune, which is self-
adaptive as well. (3) More importantly, the designed positive shift-
ing scheme can encourage robustness to noise in the given target
data by generating noise-free pseudo target data for model valida-
tion. To encourage a smooth and tight boundary, noise should be
encouraged to be excluded by OCSVM decision boundary. The pro-
posed positive shifting enables training data noise to generate a
normal pseudo target datum that is not noise by attracting it back
to data-dense region (see Fig. 6). In this way, an error of noise is
no longer regarded as an error on target class during model val-
idation, which enhances the robustness to noise. As an example,
in Fig. 5b, the training data noise of banana dataset (in blue tri-
angle) generates a normal pseudo target datum (in red triangle)
for validation. This encourages OCSVM decision boundary not to
be spoiled by the noise like Fig. 1d.



S. Wang et al./Pattern Recognition 74 (2018) 198-211 205

Data exterior surface

® Target data

® Noise in target data

e Pseudo target data
Candidate data

® k-nn data

Fig. 6. Positively shifting the noise back to target data domain.

Finally, the generated pseudo target data are only used for
model validation as well: they prevent OCSVM from selecting an
overfitting decision boundary.

3.4. The whole algorithm

As we have generated pseudo outlier and target data for OCSVM
model validation, the hyperparameter v and o can be simply se-
lected by the grid search, which is still the most widely-used hy-
perparameter search method. The whole algorithm of OCSVM hy-
perparameter selection based on adaptive data shifting is summa-
rized in Algorithm 2. It is worth noting that in Algorithm 2, the
implementation of line 1, 2, 3 can actually be finished by running
one EPD process, because the information needed by line 2, 3 (k-
nn, edge patterns, normal vectors) has been calculated as interme-
diate results during EPD.

In terms of time complexity, the major computation of the pro-
posed method is incurred by EPD. A naive implementation of EPD
needs to calculate the distance matrix of the given target data
(O(N?)) and find the k-nn data of each target datum (O(N? - log N)).
Since generating pseudo outlier and target data utilize the re-
sults that are already calculated by EPD, they require negligible
computation. Therefore, considering no speed-up technique with
advanced data structure like kd-tree, the overall complexity for
a naive implementation of the proposed method is O(N2-logN),

Algorithm 2: OCSVM hyperparameter selection.
Input: Taregt dataset X¢qrgee, hyperparameter range vyange,

O range
Output: Optimal hyperparameter combination (Vopt, Oopt)
1 implement EPD in Algorithm 1;
2 generate pseudo outlier set Xoier bY Eq. 12;
3 generate pseudo target set X:'arget by Eq. 13;
4 set Errpeq = 00;
5 for each hyperparameter combination (v, o) from Vrange, Orange
do
6 train an OVSVM model M(v, o) with hyperparameter
(v, 0);
7 estimate the error rate on the outlier class Erry by X,siier:
8 | estimate the error rate on the target class Erre by X;arget;
9 calculate current overall error rate
Err=0.5-Erro+0.5-Erry ;
10 | if Erryey > Err then
n L (Vopt» Oopt) = (v, 0);

12 return (Vopt, Oopt);

which is favorably acceptable when compared with the standard
cross-validation (see Fig. 4).

4. Experiments

In this section, we report experimental results of the proposed
self-adaptive data shifting (SDS) based OCSVM hyperparameter se-
lection. The implementation of OCSVM is from LibSVM toolbox!
[28], and the OCC framework is borrowed from PRTools? [29] and
dd_tools toolbox> [30]. For grid search, hyperparameters o and
v are selected from [10~4,1073,...,10%] and [0.01, 0.05, 0.1], re-
spectively. For comparison, we compare the proposed method with
seven state-of-the-art OCSVM hyperparameter selection methods:
Hyper-cube [1] (HC), Hyper-sphere [12] (HS), Consistency [13] (CS),
Skewness [15] (SK), Min#SV+MaxL [20] (MSML), MIES [21] and
QMS+RDMMS [22] (QR). For HC and HS method, an important
hyperparameter—the number of generated pseudo outlier data N,
should be appointed, which depends on dimension of feature space
and is still hard to be determined exactly as discussed in [12].
Since the number of pseudo outlier data |X,,qier| generated by the
proposed SDS method is constantly less or equal to the number of
given target data, i.e. [X,ysier| < [Xtargee|, we simply set No = |X¢arger|
for HC and HS (which suggests they always generate more or equal
number of pseudo outliers to the proposed method) as a reference.
By contrast, SK and the proposed SDS method avoid the trouble to
set hyperparameter N,. Besides, the degree of skewness « is set to
be 2 as the experiments in [15]. The variance threshold of Consis-
tency is set to be 2 and 5-fold cross-validation is adopted, which
are the default settings in [13]. The trade-off hyperparameter A of
MIES is set to 1 as the authors suggest. All experiments are con-
ducted in the MATLAB 2016a environment of a PC with Intel i7
6700HQ processor and 8 GB RAM.

4.1. Results on synthetic datasets

We first test the proposed method on 6 synthetic 2-D datasets
generated by different priorly known distributions: banana, sine,
ring, spiral, four gauss, twin banana, in order to provide a conve-
nient demonstration of the proposed method. The yielded OCSVM
decision boundary, generated pseudo outlier and target data on 6
synthetic datasets by the proposed method are all visualized in
Fig. 7.

As shown in Fig. 7, by virtue of the proposed hyperparameter
selection method, OCSVM can obtain both smooth and accurate de-

T http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html.
2 http://www.prtools.org/prtools/.
3 http://www.prlab.tudelft.nl/david-tax/dd_tools.html.
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Fig. 7. Experiments on synthetic 2-D datasets.

cision boundary to flexibly describe target data with various chal-
lenging distributions. Although only a relatively small number of
pseudo outliers (in green) are generated, we can observe that by
negative shifting they are scattered self-adaptively and compactly
around the target data domain to regulate the decision boundary

of OCSVM. In the meantime, the generated pseudo target data (in
red) have perfectly preserved the distributions of the original given
target data (in blue) by positive shifting (even though the origin
data distributions can be complicated, such as Fig. 7a and 7d),
which effectively prevents OCSVM from selecting the overfitting
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Table 1
Details of benchmark datasets.
Dataset Feature dim.  # of data  Dataset Feature dim.  # of data
Adult 122 6414 Abalone 8 4177
Australian 14 690 Balance 4 625
Diabetes 8 768 Glass 9 214
Heart 13 303 Landsat 36 2000
Letter 16 5000 Msplice 240 3175
Segment 18 2310 Sonar 60 208
SVMguidel 4 3089 Vehicle 18 846
Vote 16 435 Vowel 10 528
Waveform3 21 5000 Winequality 1 1599
Table 2
Average hyperparameter values selected on benchmark datasets.
Dataset SDS HC HS cS SK MSML  MIES QR
Adult v 0.088 0.010 0.010 0.063 0.100 0.010 0.010  0.797
o 0.0001 0.0001  0.0001  0.0001 91.00 0.235 0.235  0.010
Abalone v 0.100 0.021 0.010 0.058 0.045 0.016 0.042  0.005
o 3250 0.595 0.550 0.470 9.100 100.0 0.026  0.087
Australian v 0.100 0.091 0.012 0.088 0.012 0.022 0.090 0.031
o 0.065 0.090 0.0001 0.0001 0.0001 1.000 0.031 0.100
Balance v 0.095 0.019 0.021 0.098 0.017 0.009 0.086  0.190
o 1000 0.100 0.100 0.0001 0.050 10.00 0.072  0.100
Diabetes v 0.091 0.028 0.026 0.073 0.019 0.021 0.028  0.018
o 1.000 0.160 0.115 0.0001 1.550 10.00 0.075  0.100
Glass v 0.098 0.030 0.015 0.010 0.100 0.017 0.045  0.147
o 0.805 0.110 0.0001  0.0001 0.0001 5.950 0.053  0.100
Heart v 0.100 0.010 0.010 0.010 0.100 0.013 0.077  0.182
o 0.0001 0.0001  0.0001  0.0001 0.0001 1.000 0.035  0.100
Landsat v 0.098 0.010 0.010 0.085 0.068 0.023 0.059  0.006
o 1.000 0.100 0.005 0.081 25.00 10.00 0.014  0.010
Letter v 0.048 0.010 0.010 0.042 0.048 0.017 0.010  0.052
o 1000 0.100 0.100 0.050 256.5 10.00 0.050  0.100
Msplice v 0.059 0.032 0.010 0.100 0.071 0.014 0.039  0.984
o 0.0006 0.910 0.0001  0.0001 230.0 0.006 0.002  0.001
Segment v 0.034 0.010 0.010 0.055 0.010 0.012 0.051 0.006
o 1.000 0.100 0.050 0.005 10.00 10.00 0.017 0.100
Sonar v 0.100 0.033 0.010 0.100 0.010 0.026 0.051 0.074
o 0.0001 0.0001  0.0001  0.0001 0.0001  0.145 0.013 0.010
SVMguidel v 0.072 0.053 0.025 0.060 0.027 0.016 0.096  0.003
o 10.00 0.750 0.650 0.150 7.000 100.0 0.011 0.100
Vehicle v 0.095 0.012 0.010 0.055 0.046 0.017 0.024 0.016
o 1000 0.100 0.016 0.0006 1505 9.100 0.024  0.051
Vote v 0.088 0.082 0.010 0.098 0.014 0.017 0.035  0.111
o  0.070 0.080 0.0001  0.0001 1.500 1.000 0.025  0.100
Vowel v 0.098 0.012 0.012 0.098 0.017 0.011 0.061 0.067
o 1.000 0.010 0.010 0.0001 0.050 8.200 0.062  0.100
Waveform3 v 0.100 0.010 0.012 0.050 0.058 0.006 0.054  0.003
o 0.500 0.046 0.100 0.046 0.006 10.00 0.052  0.100
Winequality v 0.058 0.051 0.026 0.058 0.019 0.018 0.014  0.009
o 1.000 0.095 0.085 0.010 572.0 10.00 0.061 0.100

model with many “holes” inside the decision boundary. In particu-
lar, as we have discussed in Section 3.3, we can discover that obvi-
ous noises in the given target data are “positively” shifted back to
the target data domain when generating pseudo target data for val-
idation, and the resulting OCSVM decision boundary can soundly
exclude such noise (see Fig. 7a, 7e and 7f). In the meantime, our
qualitative and quantitative comparison show that the proposed
SDS method is able to yield equivalent or fairly close results to the
approximated optimal solutions (yielded by a very fine-grained HC
method) on all of the synthetic 2-D datasets, which is reported in
the supplementary material.

In addition, we also compare the proposed method with 7
state-of-the-art OCSVM hyperparameter methods on 6 synthetic
datasets both qualitatively and quantitatively (more detailed re-
sults and discussion are presented in the supplementary material
due to the limit of article length). By the comparison, we draw
several conclusions: (1) Heuristics based methods (MSML, MIES,

QR) typically perform worse than pseudo outlier generation based
methods (SDS, HC, HS, SK) on synthetic 2-D datasets with rela-
tively complex distributions, as the prior observations of heuris-
tics based methods are often not satisfied when dealing with com-
plex data distributions. (2) On those synthetic 2-D datasets, classic
pseudo outlier generation methods (HC and HS) can yield equiva-
lently good or marginally worse results to the proposed SDS, be-
cause generating enough random pseudo outliers to fill in the en-
tire data space is still easy for the 2-D situation. (3) Although SK
method does not need to specify number of generated outlier data
as HC and HS, its performance is unstable (SK yields very poor re-
sults on banana and spiral dataset). (4) CS method performs well
with datasets with simple distributions, but it is sensitive to noise
and cannot deal with datasets with complex distributions like sine
and spiral.
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Average f1-score and MCC on benchmark datasets (p-value in the bracket). Boldface means no statistical
difference from the best value (p > 0.05).

Dataset SDS HC HS cs SK MSML MIES QR
Adult fl 0537 0515 0515 0529 0061 0389 0523  0.066
(1.00) (0.00) (0.00) (0.02) (0.00) (0.01) (0.00) (0.00)

MCC 0179 0092 0092 0162 0034 0177 0121  0.057

(1.00) (0.00) (0.00) (0.07) (0.00) (0.00) (0.81)  (0.00)

Abalone fl 0402 0511 0510 0504 0497 0296 0498  0.512
(0.00) (0.22) (0.00) (0.00) (0.01) (0.00) (0.00) (1.00)

MCC 0171 0114 0113 0128 0151 0135 0084  0.089

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)  (0.00)

Australian fl 0592 0588 0527 0574 0527 0356 0576 0570
(1.00) (0.54) (0.00) (0.03) (0.01) (0.00) (0.01) (0.01)

MCC 0335 0331 0198 0292 0198 0299 0302 0293

(1.00) (070) (0.01) (0.06) (0.01) (0.04) (0.02) (0.03)

Balance fl 0.808 0471 0471 0592 0456 NaN 0614 0513
(1.00) (0.00) (0.00) (0.00) (0.00) (-) (0.00)  (0.00)

MCC 0739 0329 0329 0332 0293 NaN 0378 0322

(1.00) (0.00) (0.00) (0.00) (0.00) (-) (0.00)  (0.00)

Diabetes fl 0508 0422 0421 0499 0348 NaN 0499  0.501
(1.00) (0.04) (0.04) (0.03) (0.03) (-) (0.10)  (013)

MCC 0168 0096 0082 0062 0094 NaN 0054  0.061

(1.00) (0.00) (0.00) (0.00) (0.00) (-) (0.00)  (0.00)

Glass fl 0577 NaN NaN 0520 NaN 0346 0598  0.634
(010) (- “) (0.00) () (0.00)  (0.01) (1.00)

MCC 0495 NaN NaN 0300 NaN 0351 0410 0477

(1.00) (- ) (0.00) () (001) (012) (0.72)

Heart fl 0567 0376 0376 0568 0376 0138 0565 0559
(034) (0.00) (0.00) (1.00) (0.00) (0.00) (0.52) (0.61)

MCC 0282 0305 0305 0286 0305 0206 0278 0336

(0.02) (0.24) (0.24) (0.03) (0.24) (0.00) (0.00) (1.00)

Landsat f1 0711 0665 0645 0713 0695 NaN 0658  0.636
(074) 000  (0.00) (1.00) (0.04) (-) (0.00)  (0.00)

MCC 0611 0471 0457 0547 0523  NaN 0467  0.442

(1.00) (0.00) (0.00) (0.00) (0.00) (-) (0.00)  (0.00)

Letter fl 0601 0519 0519 0515 0068 0058 0514 0494
(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

MCC 0349 0145 0145 0123 0079 0140 0120 0138

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Msplice fl 0609 0072 0.693 0580 0287 0266 0524 0027
(0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00)  (0.00)

MCC 0385 0150 0366 0381 0087 0151 0371  0.083

(1.00) (0.00) (011) (0.85) (0.00) (0.00) (0.01)  (0.00)

Segment fl 0769 0589 0588 0576 0431 0436 0581  0.589
(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

MCC 0644 0348 0346 0309 0441 0444 0325 0348

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)  (0.00)

Sonar fl 0506 0422 0407 0506 0407 0394 0505 0498
(1.00) (0.01) (0.00) (1.00) (0.00) (0.00) (0.89) (0.29)

MCC 0141 0095 0067 0141 0067 0232 0151 0142

(0.00) (0.00) (0.00) (0.00) (0.00) (1.00)  (0.00) (0.01)

SVMguidel  f1 0838 0720 0662 0727 0741 0217 0755 0610
(1.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

MCC 0764 0568 0460 0590 0634 0277 0622 0345

(1.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

Vehicle fl 0651 0564 0501 0497 0442 NaN 0505 0523
(1.00)  (0.00) (0.00) (0.00) (0.00) (-) (0.00)  (0.00)

MCC 0542 0276 0055 0032 0033 NaN 0078 0129

(1.00) (0.00) (0.00) (0.00) (0.00) (-) (0.00)  (0.00)

Vote fl 0733  0.696 0512 0690 0430 0362 0678 0.676
(1.00) (0.21) (0.00) (0.01) (0.00) (0.00) (0.01) (017)

MCC 0540 0523 0323 0476 0281 0398 0463 0536

(1.00) (0.63) (0.01) (0.02) (0.00) (0.00) (0.02) (0.78)

Vowel fl 0648 0340 0340 0617 0338 0169  0.661 0648
(024) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)  (0.70)

MCC 0552 0209 0209 0380 0210 0207 0460  0.469

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.04)

Waveform3 1 0674 0615 0632 0639 0627 NaN 0637  0.629
(1.00) (0.00) (0.00) (0.00) (0.00) (-) (0.00)  (0.00)

MCC 0455 0269 0291 0327 0329 NaN 0326 0276

(1.00)  (0.00) (0.00) (0.00) (0.00) (-) (0.00)  (0.00)

Winequality ~ f1 0519 0500 0500 0497 0226 0241 0501 0501
(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

MCC 0154 0053 0046 0044 0182 0181 0037 0039

(0.07) (0.00) (0.00) (0.00) (1.00) (0.88) (0.00)  (0.00)
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Table 4
f1-score and MCC on MNIST datasets. Boldface denotes the best results expect OPT.
Digit SDS HC HS cs MIES QR cv OPT
Digit 0 f1 0.765 0.313 0.313 0492 0441 0309 0389  0.765
MCC 0771 0304 0304 0495 0437 0305 0382 0.771
Digit 1 f1 0938 0580 0580 0.836 0.627 0273 0.720 0.938
MCC 0933 0565 0565 0.820 0.611 0230 0.694 0.933
Digit2  f1 0601 0344 0344 0483 0360 0330 0424 0.601
MCC 0.635 0.331 0.331 0479 0349 0322 0411 0.635
Digit 3 f1 0723 0385 0385 0.547 0524 0403 0482 0.723
MCC 0735 0381 0.381 0.545 0512 0.408 0471 0.735
Digit 4 f1 0564 0.431 0.431 0564 0470 0.391 0.519 0.726
MCC 0558 0429 0429 0558 0468 0400 0.507 0.730
Digit 5  f1 0465  0.341 0.341 0465 0375 0324 0437 0.677
MCC 0474 0348 0348 0474 0385 0336 0440 0.699
Digit 6  f1 0762 0644 0644 0835 0818 0646 0.784 0.890
MCC 0769 0637 0637 0821 0.800 0645 0.765 0.879
Digit 7 f1 0.757 0482 0482 0573 0507 0440 0552 0.757
MCC 0.747 0474 0474 0562 0498 0444 0532 0.747
Digit 8  f1 0380 0296 0296 0380 0373 0295 0350 0.719
MCC 0378 0280 0280 0378 0365 0285 0339 0.731
Digit9  f1 0829 0458 0458 0.576 0474 0236 0546  0.829
MCC 0.825 0456 0456 0571 0.471 0.191 0.534 0825

4.2. Results on benchmark datasets

To further compare the proposed method with other OCSVM
hyperparameter selection methods, we conduct experiments on 18
benchmark datasets downloaded from the popular UCI Machine
Learning Repository* and LIBSVM Data webpage® (the dataset de-
tails are summarized in Table 1). Since the benchmark datasets
are usually designed for classification, we follow the experimen-
tal setup of [17,21] to test the OCSVM performance with hyperpa-
rameters selected by different methods: The values of features are
normalized into the interval [-1, 1]. For each benchmark dataset,
the data from the former half of classes are used as data of tar-
get class first, while data from the latter half of classes are viewed
as data of outlier class. Data of the target class are randomly par-
titioned into a training target set and a testing target set. OCSVM
is trained using the training target set only, and the testing target
set is combined with the data from outlier class as the final test-
ing set for OCC performance evaluation. The random partition is
repeated for 10 times to yield the mean OCC performance. Then,
the target class and the outlier class are switched and repeat the
above procedure to obtain the OCC performance on data from the
latter half of classes. Finally, we average the OCC performance on
two halves of classes as the final OCC performance of this bench-
mark dataset. As to the evaluation metrics, we adopt the widely-
used f1-score and Matthews Correlation Coefficient (MCC) [17]. For
a rigorous comparison, we perform paired Student’s t-test to com-
pare the results yielded by the proposed method and other meth-
ods. A p-value less than 0.05 is considered statistically significant.
Those results whose differences from the highest value are not sta-
tistically significant are shown in bold for each dataset. The aver-
age hyperparameter values selected by different methods on each
dataset in Table 2, and the results on benchmark datasets are re-
ported in Table 3 (“NaN” in the table means “Not a number”, which
suggests that the trained OCSVM trivially classifies all testing data
as outliers).

As Table 3 shows, the proposed SDS based method is able to
select proper hyperparameters to yield superior or favorably com-
parable OCC performance to other state-of-the-art hyperparame-
ter selection methods on benchmark datasets. Compared with ex-
isting pseudo outlier generation based methods (HC, HS and SK),

4 http://[www.archive.ics.uci.edu/ml/datasets.html.
5 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

the proposed SDS based method almost constantly outperforms
them. In the meantime, it can be seen that hyperparameter selec-
tion based on random outliers generated by HC, HS and SK some-
times lead to a trivial solution that simply classifies all testing
data into outliers, and their performance is usually poorer than
the implicit outlier generation based CS method. As to heuristics
based methods, MIES and QR can perform relatively satisfactorily
on most datasets, but sometimes their performance can signifi-
cantly deteriorate since their underlying assumptions on the tar-
get data may not hold in such cases. However, MSML yields rel-
atively bad performance and often leads to trivial solution when
compared with other methods. To sum up, the proposed method
enables OCSVM to achieve fairly good OCC performance on various
benchmark datasets, which makes it a promising OCSVM hyperpa-
rameter selection method in practical applications.

4.3. Results on MNIST handwritten digit dataset

In addition to the benchmark datasets, we also compare the
proposed method with its counterparts on another commonly-used
dataset in OCC performance evaluation: MNIST handwritten digit
dataset. MNIST dataset provides a labelled training set with 60,000
hand-written digit images (digit 0 — 9) with a resolution of 28 x 28
pixels, as well as a separated labelled testing set with 10,000
images. For feature extraction, we calculate a 512-D Gist feature
[31] to describe each image. For each time, images of one digit
from 0 —9 in the training set are used as the target class to train
one OCSVM. For OCC performance evaluation, the trained OCSVM
is used to discriminate this digit from other digits (outliers) in the
separated testing set. To further validate the effectiveness of the
proposed method, we also compare the proposed method with the
standard cross-validation (CV) and a “cheating” method (OPT) by
directly using the data from the test set for model validation (the
performance of which is therefore the optimal performance that
OCSVM can obtain). In our experiments, SK and MSML perform
poorly on MNIST dataset and almost constantly yield trivial solu-
tions (f1 and MCC are both “NaN”), so we omit the comparison
with them in this table. The results are summarized in Table 4 be-
low:

As can be seen in Table 4, the proposed SDS based method
yields the best OCC performance for 9 out of 10 digits. Specifi-
cally, the proposed method evidently outperforms CV method and
obtains optimal results for 6 out of 10 digits (digit O, 1, 2, 3, 7,
9). For other digits that the optimal results are not reached, our


http://www.archive.ics.uci.edu/ml/datasets.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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method yields the best sub-optimal results among the compared
hyperparameter selection methods for 3 digits (digit 4, 5, 8). The
implicit outlier generation based method CS obtains equally or
slightly worse results than the proposed method. Two classic ex-
plicit outlier generation methods HC and HS yield evidently worse
OCC performance than the proposed SDS method on each digit. In-
terestingly, we notice that HC and HS obtain exactly the same re-
sults on each digit, which suggest that in fact the random outliers
generated by them do not make a difference in a relatively high-
dimensional feature space (512-D). When it comes to heuristics
based methods, MIES and QR yield comparable or only marginally
better OCC performance than random outlier based methods. Con-
sequently, the proposed SDS based method is again proved as an
effective method for OCSVM hyperparameter selection.

5. Conclusions

This paper proposes a data shifting based method to automati-
cally select proper hyperparameters of OCSVM, which are vital for
OCSVM performance. By self-adaptive negative shifting and posi-
tive shifting mechanism, the proposed method can efficiently gen-
erate high-quality pseudo outlier and target data to estimate the
error on outlier class and target class respectively, without intro-
ducing any new hyperparameters to be tuned by users. It also
soundly avoids two major difficulties, determining the number and
locations of generated pseudo outlier data, in previous outlier gen-
eration based hyperparameter selection methods. Experiments on
various synthetic and benchmark datasets verify the effectiveness
of the proposed method in comparison with 7 state-of-the-art
OCSVM hyperparameter selection methods.

Our future research directions include: (1) Exploring better
searching strategy like Bayesian Optimization in the hyperparame-
ter space. (2) Since the proposed method can generate new data by
self-adaptive data shifting, we will explore its application to imbal-
anced classification by generating more data for minority classes
with insufficient training data.
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