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a b s t r a c t 

With flexible data description ability, one-class Support Vector Machine (OCSVM) is one of the most pop- 

ular and widely-used methods for one-class classification (OCC). Nevertheless, the performance of OCSVM 

strongly relies on its hyperparameter selection, which is still a challenging open problem due to the ab- 

sence of outlier data. This paper proposes a fully automatic OCSVM hyperparameter selection method, 

which requires no tuning of additional hyperparameter, based on a novel self-adaptive “data shifting”

mechanism: Firstly, by efficient edge pattern detection (EPD) and “negatively” shifting edge patterns along 

the negative direction of estimated data density gradient, a constrained number of high-quality pseudo 

outliers are self-adaptively generated at more desirable locations, which readily avoids two major diffi- 

culties in previous outlier generation methods. Secondly, to avoid time-consuming cross-validation and 

enhance robustness to noise in the given training data, a pseudo target set is generated for model valida- 

tion by “positively” shifting each given target datum along the positive direction of data density gradient. 

Experiments on synthetic and benchmark datasets demonstrate the effectiveness of the proposed method. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

One-class classification (OCC) [1] describes training data from a

single class (called “target class”) as a normalcy model and aims

to detect data from any other class (called “outlier class”) as out-

liers. OCC has numerous applications, especially when training data

from outlier class are hard or even impossible to obtain. To deal

with OCC, existing methods basically fall into three categories: (i)

Density based methods . Density based methods, like one-class Gaus-

sian Mixture Model (OCGMM) [2] and Parzen density estimation

[3] , estimate the density of the target class and detect data in low-

density area as outliers. (ii) Reconstruction based methods . Recon-

struction methods, such as auto-encoder network [4] , assume that

target data can be reconstructed by a network with low recon-

struction error, while outliers cannot. (iii) Boundary based meth-

ods . Boundary based methods, such as One-class Support Vector

Machine (OCSVM) [5] and Support Vector Data Description (SVDD)

[6] , are able to learn a tight and smooth boundary that encloses

target data by introducing non-linear kernel tricks, which makes

boundary based methods particularly popular in OCC. As a preva-

lent boundary based OCC method, OCSVM has been studied and
∗ Corresponding author. 
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pplied actively in numerous realms of academic research and in-

ustrial applications, such as fault detection [7] , video abnormal

vent detection [8] , media classification [9] , network intrusion de-

ection [10] , video summarization [11] , etc. Besides, another repre-

entative OCC method SVDD is shown to be equivalent to OCSVM

hen stationary kernel is used [5] (e.g. standard Gaussian kernel). 

However, a pivotal issue to apply OCSVM is the hyperparame-

er selection, which has a significant influence on its performance.

o be more specific, with the standard Gaussian kernel, two hyper-

arameters of OCSVM need to be properly tuned: the regulariza-

ion coefficient ν and the Gaussian kernel width σ (details will

e reviewed in Section 2.1 ). ν controls the upper bound of re-

ected target data [5] , which is often tuned to reject noise in the

arget data during training OCSVM, while σ controls the smooth-

ess of decision boundary. To illustrate this, we show the decision

oundary of OCSVM with different hyperparameter settings on a

oisy 2-D “banana” dataset (see Fig. 1 ): what we expect OCSVM

o obtain is the decision boundary in Fig. 1 b, which is both tight

nough to detect outliers effectively and smooth enough to gen-

ralize on unseen target data. An overly large σ or small σ will

ause underfitting (see Fig. 1 a) and overfitting (see Fig. 1 c) respec-

ively. Meanwhile, choosing a proper ν enables OCSVM to properly

xclude noisy training data in the target set (see Fig. 1 b), while im-

roper ν will make the decision boundary distorted by noisy target

http://dx.doi.org/10.1016/j.patcog.2017.09.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.09.012&domain=pdf
mailto:wangsiqi10c@gmail.com
mailto:405976789@qq.com
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Fig. 1. The influence of hyperparameters on OCSVM decision boundary for “banana” dataset. 
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ata (see Fig. 1 d) or reject excessive target data. Hence, hyperpa-

ameter selection plays a fundamental role in the application of

CSVM [12] . While the tuning of OCSVM hyperparameters is not

traightforward, a more thorny issue is that standard hyperparam-

ter selection schemes like leave-one-out (LOO) or cross-validation

ill be problematic for OCC due to the absence of data from outlier

lass, and the model error on outlier class can longer be obtained

irectly [12,13] . As a result, hyperparameter selection of OCSVM re-

ains a challenging open problems and many attempts have been

ade to tackle this problem, which will be reviewed in Section 2.2 .

In this paper, we enable fully automatic OCSVM hyperparam-

ter selection by a novel self-adaptive data shifting (SDS) based

ethod, which consists of two contributions: Firstly, based on

n efficient edge pattern detection (EPD) method, pseudo outliers

re generated by “negatively” shifting the detected edge patterns

or model error estimation on outlier class. The proposed method

an generate a controllable number of high-quality determinis-

ic pseudo outliers at more desirable locations in the data space,

hich can effectively regulate the decision boundary of OCSVM for

 more accurate target data description. More importantly, negative

hifting avoids two major difficulties in previous outlier generation

ethods (discussed in Section 2.2 ). Secondly, a pseudo target data
et is generated by an efficient “positive shifting” mechanism for

odel validation on target class, which can avoid time-consuming

ross-validation. The generated pseudo target data can perfectly

reserve the original target data distribution, so as to soundly eval-

ate the generalization performance on target class and prevent

verfitting. Meanwhile, it can enhance the robustness to noise in

he given target data by generating normal pseudo target data from

oise for model validation. Unlike many previous methods, both

egative and positive shifting are self-adaptive and leave no addi-

ional hyperparameter for users to tune during OCSVM hyperpa-

ameter selection. Experimental results demonstrate that the pro-

osed method enables OCSVM to accurately describe target data

ith complex data distributions and achieve satisfactory OCC per-

ormance. 

The rest of paper is organized as follows: Section 2 revisits

he basics of OCSVM ( Section 2.1 ) and then briefly reviews ex-

sting hyperparameter selection methods for OCSVM ( Section 2.2 ).

ection 3 presents the proposed data shifting based OCSVM hyper-

arameter selection method in detail. Section 4 reports the exper-

mental results of the proposed method on both synthetic datasets

nd benchmark datasets in comparison with existing OCSVM hy-

erparameter selection methods. Section 5 concludes this paper. 
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2. Related work 

2.1. One-class support vector machine (OCSVM) 

Before we discuss the hyperparameter selection of OCSVM, it

is necessary to review the basics of OCSVM first. As an extension

of the standard binary SVM, Schölkopf et al. [5] proposed OCSVM

to handle OCC problems. Formally, suppose that the target data to

be described by OCSVM is X target = { x 1 , x 2 , · · · , x N } , and an implicit

mapping φ( · ) that can map target data from their original feature

space to a new feature space H. OCSVM intends to seek such a

hyper-plane � in H: the hyper-plane � : w 

T · φ(x ) − ρ = 0 ( w is

a normal vector of �) has the largest distance to the origin, while

all mapped target data φ( x i ) lie at the opposite side of hyper-plane

to the origin. This goal can be formulated as the following primal

optimization problem: 

min 

w , ξ,ρ

1 

2 

|| w || 2 + 

1 

νN 

N ∑ 

i =1 

ξi − ρ

s.t. w 

T · φ(x i ) − ρ + ξi ≥ 0 , ξi ≥ 0 , ∀ i 

(1)

where ν is the regularization coefficient mentioned in Section 1 ,

which trades off model complexity and training error, and ξ i is the

slack variable that enables OCSVM to have soft matgin so as to

exclude some noisy training data. It is proved that, hyperparameter

ν controls the upper bound of the training data that are excluded

by the decision boundary of OCSVM [5] . Since the mapping φ( · ) is

usually implicit, the above optimization problem is usually solved

by its dual form: 

max 
α

−1 

2 

N ∑ 

i, j=1 

αi α j K(x i , x j ) 

s.t. 

N ∑ 

i =1 

αi = 1 , 0 ≤ αi ≤
1 

νN 

, ∀ i 

(2)

where K(x i , x j ) = φ(x i ) 
T · φ(x j ) is the inner product of mapped

data, while αi is the dual variable. In practice, one usually di-

rectly specifies kernel function K ( x i , x j ) instead of the mapping

φ( x ), which may be indefinite, and Gaussian kernel K(x i , x j ) =
exp(−|| x i −x j || 2 

σ 2 ) is usually the standard choice ( σ is the Gaus-

sian kernel width). With selected kernel function and its hyper-

parameter, the above dual optimization problem can be solved

as a quadratic programming problem. Having solved αi by the

dual optimization problem, ρ can be obtained by choosing any x i 
that its corresponding αi satisfies 0 < αi < 

1 
νN and calculate ρ =∑ N 

j=1 α j K(x i , x j ) . In the meantime, any x i that has a correspond-

ing αi > 0 is called a support vector, which supports the decision

boundary of OCSVM. An incoming new datum x t is determined as

an outlier if it satisfies: 

f (x t ) = 

∑ 

αi > 0 

αi K(x t , x i ) − ρ < 0 (3)

In this paper, we will focus on the hyperparameter selection of

standard Gaussian kernel based OCSVM, but the applicability of the

proposed method is not limited to Gaussian kernel. Existing meth-

ods on OCSVM hyperparameter selection are reviewed in next sec-

tion below. 

2.2. Existing OCSVM hyperparameter selection methods 

Since the very beginning, researchers have noticed the dramatic

influence of hyperparameters on the performance of OCSVM/SVDD.

Schölkopf et al. [5] analyzed the influence of hyperparameter ν and

σ from a theoretical view, but did not provide specific guidelines
o their selection. Afterwards, a host of methods are proposed and

e roughly classify them into two categories: 

(1) Pseudo outlier generation based methods . The motivation of

his type of methods is straightforward as they intend to tackle

he essence of OCC problem: the absence of outlier data. An early

ttempt is Fan et al. [14] , who replaced the feature value that ap-

ears most frequently with a randomly chosen value to generate

rtificial anomalies. However, this method can only deal with fea-

ure with discrete values. Tax et al. [1] studied an intuitive so-

ution: generating uniformly distributed random outliers in the

yper-cube that encloses the target data to guide hyperparame-

er selection, and they further improved the hyper-cube into a

yper-sphere to better fit the target data [12] . Unfortunately, as

12] pointed out by themselves, such simple random outlier gen-

ration faces two major difficulties: Firstly, outliers are not guar-

nteed to be generated at desirable locations due to random-

ess [6] discovered that pseudo outliers inside or overly far from

he target data are not contributing, and they may even lead to

electing poor hyperparameters. Secondly, as a small number of

andomly located outliers cannot deliver an accurate error esti-

ation on outlier class, such methods require generating mas-

ive random outliers to fill in the entire data space, so as to

ield a relatively good estimation of the model error on outlier

lass, [12] pointed out that the number of pseudo outliers re-

uired for filling can grow exponentially as the feature dimen-

ion increases, which makes it particularly difficult to know the

xact number of outliers sufficient for a good outlier error esti-

ation. In other words, such methods actually introduce another

on-intuitive hyperparameter to specify: the amount of generated

utliers N o . Some other improved outlier generation methods are

roposed: Deng et al. [15] proposed a “skewness” based outlier

eneration method, which generates outliers by randomly “skew-

ng” each target datum from its original location. However, the de-

ree of skewness α is another sensitive hyperparameter for users

o specify. Banhalmi et al. [16] detect boundary points and gen-

rate outliers by a transformation between each given datum and

ts nearest boundary point, but it requires training one SVM for

ach datum for boundary detection, which is extremely expen-

ive. Besides, it introduces two additional hyperparameters dist and

urv . Desir et al. [17] improved pseudo outlier distribution by us-

ng a complementary histogram to indicate the probability of out-

ier generation. In addition, Tax et al. [13] proposed a “consistency”

ased method to avoid the difficulties of explicit outlier generation.

t starts with the most underfitting OCSVM model, and gradually

ightens the model boundary until the model no longer satisfies

he defined “consistency” criteria, which is set under an implicit

niform outlier distribution assumption. Nevertheless, the perfor-

ance of this method is actually very sensitive to the “consistency”

riteria, which depends on the threshold of variance, a tunable hy-

erparameter. 

(2) Heuristics based methods. Due to the difficulties of pseudo

utlier generation, heuristics based OCSVM hyperparameter tuning

as gained increasing popularity over the years. Generally speak-

ng, heuristics based methods assume that good hyperparameters

f OCSVM typically satisfy some intuitive observations or empir-

cal prior knowledge, and some corresponding heuristic rules are

dopted to provide guidance on OCSVM hyperparameter selection.

pecifically, Evangelista et al. [18] proposed to select good σ by

aximizing the ratio between the variance and average value of

ernel matrix’s off-diagonal elements. Khazai et al. [19] proposed

o determine σ by the maximal distance between target data and

arget data number. Xiao et al. [7] proposed two heuristics to tune

based on maximal-minimal distance between target data and

he statistics of distance to nearest neighbor, respectively. However,

ll methods above need to pre-specify ν , which can sometimes be

ifficult. Wang et al. [20] proposed a method named Min # SV+MaxL
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Algorithm 1: EPD Algorithm. 

Input : Taregt dataset X target = { x 1 , x 2 , · · · , x N } 
Output : Edge pattern set X edge 

1 calculate k = � 5 log 10 N	 ; 
2 set threshold T = 0 . 1 ; 

3 set X edge = ∅ ; 
4 for i = 1 to N do 

5 calculate k -nn direction vector v i j = 

(x i −x i j ) 

|| x i −x i j || , j = 1 , 2 , · · · k ; 

6 approximate normal vector n i = 

∑ k 
j=1 v i j ; 

7 calculate θi j = v T 
i j 

· n i , j = 1 , 2 , · · · k ; 

8 calculate l i = 

1 
k 

∑ k 
j=1 I(θi j ≥ 0) ; 

9 if l i ≥ 1 − T then 

10 X edge = X edge ∪ x i ; 

11 return X edge ; 
o tune both ν and σ based on a trade-off between minimizing

upport vector number and maximizing objective value. Xiao et al.

21] put forward an interesting method named MIES: by calculat-

ng normalized distance (ND) from target data to OCSVM’s deci-

ion boundary, MIES is based on the following observation: good

CSVM hyperparameters can maximize the difference between ND

f data inside the target set (called “interior patterns”) and the

D of data on the boundary area of the target set (called “edge

atterns”). A more recent work by Ghafoori et al. [22] proposed

o estimate ν and σ efficiently and unsupervisedly by seeking the

knee-point” with the largest curvature in the sorted density mea-

ure of target data and a revised Duplex Max-margin Model Se-

ection (RDMMS) method. Heuristics based methods can avoid the

ifficulties of pseudo outlier generation, but they sometimes per-

orm poorly since the underlying observations do not hold. In addi-

ion, the application of heuristics based methods are often limited

o certain kernel functions like Gaussian kernel. 

. Methodology 

As we discussed in Section 2.2 , existing outlier generation based

yperparameter selection methods are faced with two major un-

olved difficulties, and usually introduce additional hyperparam-

ters that need to be specified by users. This paper proposes a

elf-adaptive OCSVM hyperparameter selection method based on

 novel “data shifting” mechanism, which can readily avoid the

forementioned difficulties in previous outlier generation methods

nd leave no tuning of additional hyperparameter to users. 

.1. Self-adaptive data shifting 

Our hyperparameter selection method for OCSVM based on

elf-adaptive data shifting is composed of three components: (1)

seudo outlier data generation by negative shifting. By employ-

ng edge pattern detection (EPD) [23] method and calculating the

egative data density gradient [24] , we develop a new “negative

hifting” mechanism to obtain pseudo outlier data by shifting the

etected edge patterns of the target data along the direction of

egative data gradient. (2) Pseudo target data generation by pos-

tive shifting. With the calculated data density gradient of each

iven target datum, we develop a novel “positive shifting” mech-

nism to generate pseudo target data by shifting each target da-

um slightly along the direction of positive data density gradient.

3) Grid search. With the generated pseudo outlier and target data

s validation data, we use grid search to select good hyperparame-

ers for OCSVM. The proposed positive shifting and negative shift-

ng mechanism will be introduced in detail by Section 3.2 and

ection 3.3 respectively, and the whole algorithm will be shown

y Section 3.4 . 

.2. Pseudo outlier data generation by negative shifting 

.2.1. Edge pattern detection (EPD) 

The proposed method is inspired by the working mechanism

f SVM [25] : the decision boundary of SVM can be supported only

sing the exterior patterns in each data class, which are called sup-

ort vectors. Motivated by this, we discover that it is actually un-

ecessary to generate massive random outliers to fill in the entire

ata space like [12] . To regulate the OCSVM decision boundary for

n accurate target data description, we can simply generate a small

umber of high-quality pseudo outliers that tightly surround the

omain of target data, serving as pseudo “supports” from the out-

ier class. Thus, a novel solution is proposed to generate such high-

uality outliers: we shift the data at the exterior surface of target

lass (denoted as “edge patterns”) outwards into pseudo outliers
see Fig. 3 a), which is called “negative shifting” and will be dis-

ussed in the next section. Before we generate outliers by negative

hifting, we will show how to locate the edge patterns at the exte-

ior of target class efficiently in the first place, which is called edge

attern detection (EPD). 

Instead of previous time-consuming and complicated boundary

etection methods, Li et al. [23] proposed a simple and efficient

PD method by exploiting local geometrical and statistical infor-

ation within data. The idea of EPD is intuitive: For an edge pat-

ern x i , suppose v i j = 

(x i −x i j ) 

|| x i −x i j || , j = 1 , 2 , · · · k, denotes the unit direc-

ion vector from its j th k -nearest neighbor ( k -nn) x ij to itself. EPD

pproximates the normal vector n i of the data exterior surface’s

angent plane at x i by the sum of v ij , and detects edge pattern x i 
ased on the following fact: for an edge pattern x i , all or most

f v ij should satisfy v T 
i j 

· n i ≥ 0 (see Fig. 2 a). A detailed EPD algo-

ithm is shown in Algorithm 1 , in which the indicator function

(·) = 1 if the statement in the bracket is true, otherwise I(·) = 0 .

t should be noted that two parameters of the EPD algorithm, the

umber of nearest neighbors k and the decision threshold T , have

een thoroughly studied by Li et al. , and we simply fix them as the

ecommended values from [23] in Algorithm 1 . Therefore, the EPD

rocess does not require user to specify any parameter. As an il-

ustration, EPD is performed on the banana dataset and the results

re displayed in Fig. 2 b, which shows EPD can effectively detect

he edge patterns of a given target data set. 

.2.2. Negative shifting 

With detected edge patterns, we will introduce how to shift

hem into pseudo outliers to regulate the OCSVM decision bound-

ry and provide guidance on selecting good hyperparameters. Since

he edge patterns are shifted “away” from the target data, this pro-

ess is called “negative shifting” (see Fig. 3 a). 

To generate high-quality outliers, two key elements need to be

etermined for negative shifting: the shifting direction and shifting

agnitude. We will discuss the shifting direction first. Theoreti-

ally, we should shift edge patterns along the direction of target

ata density’s negative gradient, in which the target data density

rops at the fastest rate. In other words, it is the easiest direction

or edge patterns to be shifted to the nearby region that has no

xistence of target data and become valid high-quality pseudo out-

iers. Formally speaking, with the density of target data at a point

 denoted as p ( x ), the ideal shifting direction is −∇p( x ) . We fol-

ow the method in [24] (p. 534) to derive the approximation of

∇p( x ) : for any given x , we define a sufficiently small local re-

ion centered at x with radius r : L (x ) = { y |‖ x − y ‖ 2 ≤ r 2 } . As the

ata density at y is p ( y ), the total amount of data covered by L ( x )



202 S. Wang et al. / Pattern Recognition 74 (2018) 198–211 

Fig. 2. EPD (left) and detected edge patterns on banana dataset (right). 

Fig. 3. Negative shifting (left) and pseudo outliers on banana dataset (right). 
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is: 

a = 

∫ 
L (x ) 

p(y ) dy (4)

The direction vector from the center x to a point y in L ( x ) is

(y − x ) . The expectation of such direction vectors in L ( x ) is: 

E{ (y − x ) | L (x ) } ∼= 

∫ 
L (x ) 

(y − x ) 
p(y ) 

a 
dy (5)

As L ( x ) is a small enough local region centered at x , we can

approximate a by the equation below: 

a = 

∫ 
L (x ) 

p(y ) dy ∼= 

p(x ) u (6)

where u is the volume of L ( x ). By Taylor expansion, we have p(y ) ∼=
p(x ) + (y − x ) T ∇p(x ) . Therefore, with Taylor expansion of p ( y ) and

Eq. (6) , Eq. (5) can be transformed into: 

E{ (y − x ) | L (x ) } ∼= 

∫ 
L (x ) 

(y − x ) 
1 

u 

dy 

+ 

∫ 
L (x ) 

(y − x )(y − x ) T 
1 

u 

dy 
∇p( x ) 

p( x ) 
(7)

Since L ( x ) is a symmetric region, we have 
∫ 

L (x ) (y − x ) 1 u dy = 0 .

By the conclusion from [24] (Appendix B.6), Eq. (7) can be con-
erted to: 

{ (y − x ) | L (x ) } ∼= 

∫ 
L (x ) 

(y − x )(y − x ) T 
1 

u 

dy 
∇p( x ) 

p( x ) 

= 

r 2 

D + 2 

∇p( x ) 

p( x ) 
(8)

here D is the dimension of x . Finally, with the scalar value
D +2 

r 2 
p( x ) � s, the desired shifting direction −∇p( x ) can be approx-

mated by: 

∇p( x ) ∼= 

sE{ (x − y ) | L (x ) } ∼= 

s 

k 

k ∑ 

j=1 

(x − x j ) (9)

here x j is the j th k -nn of x . Eq. (9) suggests that the negative

ata density gradient direction can be approximated by the direc-

ion vectors from the k -nn data of x to itself. However, the ap-

roximation in Eq. (9) has a practical problem: since the given

eal-world target data near the data exterior surface are usually

on-uniform and noisy, the estimated −∇p( x ) is often dominated

y some noisy k -nn with very large magnitude ‖ x − x i ‖ . To en-

ance the robustness to k -nn noise, we adopt the same solution

n [16,23] to normalize the k -nn direction vector by its magnitude.

his makes the estimated −∇p( x ) exactly coincide with the nor-

al vector n calculated during EPD, which facilitates us to deter-
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Fig. 4. Implementation time comparison on CV and the proposed SDS with varying 

number of training data generated by banana distribution. 
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ine both edge patterns and their shifting directions by EPD: 

∇p( x ) ∼= 

n = 

k ∑ 

j=1 

x − x j 

‖ x − x j ‖ 

(10) 

here the scalar s 
k 

in Eq. (9) is dropped since we are only inter-

sted in the direction of −∇p( x ) . The second consideration is the

egative shifting magnitude l ns . A proper shifting magnitude is vi-

al: overly large l ns will generate outliers that cannot regulate the

CSVM decision boundary, while overly small l ns will make out-

iers too close to target data, which may lead to overfitting de-

ision boundary. However, it is not easy to manually set a good

hifting magnitude for different target data. To automatically de-

ermine a proper l ns , it is assumed that a functioning pseudo out-

ier has a l ns that is equal to the average distance of k -nn data to

his edge pattern. The assumption is intuitive: it ensures the gen-

rated outlier to be no further than the furthest k -nn data of an

dge pattern, which avoids an overly distant outlier, while it also

nsures that the generated outlier to be no closer than some k -nn

ata of an edge pattern, which avoids an overly close outlier, i.e.

in j ‖ x − x j ‖ ≤ l ns ≤ max j ‖ x − x j ‖ (see Fig. 3 a). As we mentioned

bove, the k -nn of a single edge pattern is often noisy, so we aver-

ge the mean k -nn distance of all edge patterns as a more robust

 ̄ns : 

 ̄ns = 

1 

| X edge | 
∑ 

x i ∈ X edge 

1 

k 

k ∑ 

j=1 

‖ x i − x i j ‖ (11)

Finally, we can generate a pseudo outliers set by negative shift-

ng as follows: 

 outlier = { x 

(i ) 
o | x 

(i ) 
o = x i + 

n i 

‖ n i ‖ 

· l̄ ns , ∀ x i ∈ X edge } (12)

Since both k -nn distance and n i have been calculated during

PD, the outlier generation calls for minimal computation. We vi-

ualize the generated outliers for banana dataset in Fig. 3 b as an

xample. Compared with previous outlier generation methods, the

seudo outlier data generated above enjoy the advantages below:

1) As Fig. 3 b shows, the generated pseudo outliers can compactly

urround the target data domain while keeping a moderate dis-

ance to target data, which soundly addresses the first difficulty

iscussed in Section 2.2 : generating good outliers at desirable loca-

ions. (2) Since each pseudo outlier is yielded by negatively shift-

ng the detected edge patterns, the number of generated pseudo

utlier is always smaller or equal to the number of target data,

.e. | X outlier | = | X edge | ≤ | X target | , which avoids the second difficulty

o generate exponentially-growing pseudo outliers in the high-

imensional space. (3) A prominent merit of the proposed negative

hifting process is self-adaptiveness: it requires no tuning of addi-

ional hyperparameters by users. Both the shifting direction and

agnitude are automatically derived from the target data without

uman effort, and the number of generated pseudo outliers needs

ot to be specified as well. In addition, it is worth noting the gen-

rated outliers are only for model validation purpose, i.e. they are

ot used as training data. Using those outliers as negative training

ata will make the decision boundary shift towards the outliers to

over redundant marginal space and accepts more outliers. 

.3. Pseudo target data generation by positive shifting 

Having obtained pseudo outliers to estimate the error on out-

ier class, we also need to estimate the error on target class, so

s to preserve generalization performance and avoid an overfitting

odel like Fig. 1 c. To estimate error on target class, leave-one-

ut (LOO) or cross-validation (CV) are usually adopted, which of-

en leads to intolerable long hyperparameter selection time [6,22] .

he problem is further exacerbated when dealing with a relatively
arge number of training data. For example, since the training com-

lexity of OCSVM is usually O ( N 

3 ) [5] , applying a standard 10-fold

V to validating a certain hyperparameter combination requires

oughly a complexity of O (10 × ( 9 
10 N) 3 ) ≈ O (7 . 29 N 

3 ) . However, if

e can generate a separated pseudo target data set as the val-

dation set, it only requires training OCSVM once with all given

arget data, i.e. a complexity of O ( N 

3 ), which can be much faster

han usual CV. To illustrate this, we compare the implementation

ime of 10-fold CV and the proposed SDS method with a sepa-

ated pseudo target set for validation when the number of training

ata varies in Fig. 4 . Besides, there is another problem with real-

orld datasets: the given training data are usually noisy, and such

oise will degrade the performance of model validation on target

lass. Therefore, we are supposed to reduce the influence of target

ata noise during model validation. Motivated by reasons above,

e propose to generate a pseudo target data set using a novel pos-

tive shifting mechanism, in order to achieve a more efficient and

obust model validation on target class. 

The idea to generalize existing training data into new ones is

ot new. For example, Li et al. [26] viewed the points on the line

assing any two data from the same class (called “feature line”) as

ew data of this class, and then use them for model generalization.

uszczak et al. [27] improved the feature lines into the edges of a

inimal spanning tree. However, existing methods have obvious

aws: they either generate pseudo data that lie outside the target

omain and sabotage the original data distribution, or require rel-

tively large additional computation. To overcome those flaws, we

ropose a highly efficient and self-adaptive alternative based on

he following idea: pseudo target data can be generated by slightly

hifting each given target data along the positive direction of tar-

et data density gradient, ∇p ( x ), which is the direction that target

ata density grows most rapidly. Specifically, for given target data

 i and their k -nn neighbors x i j , j = 1 , 2 , · · · , k, the pseudo target

ata set X 

′ 
target is generated by: 

 

′ 
target = 

{
x 

(i ) 
t | x 

(i ) 
t = x i + 

〈 ∇p(x i ) 

‖∇p(x i ) ‖ 

, x 

min + 
i j 

− x i 

〉
· ∇p(x i ) 

‖∇p(x i ) ‖ 

, 

∀ x i ∈ X target 

}
(13) 
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Fig. 5. Positive shifting (left) and pseudo target data of banana (right). 
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where < · > denotes inner product and x min + 
i j 

is defined by: 

x 

min + 
i j 

= argmin x i j ∈ 	+ 
i 

{〈 ∇p(x i ) 

‖∇p(x i ) ‖ 

, x i j − x i 

〉}
(14)

where 	+ 
i 

is the set of k -nn data of x i that satisfy〈 ∇p(x i ) ‖∇p(x i ) ‖ , x i j − x i 

〉 
> 0 ( 	−

i 
can be defined as the opposite),

and ∇p ( x i ) can be estimated by Eq. (10) as we discussed in last

section. For an intuitive interpretation, we show the process of

positive shifting by Fig. 5 a: the term 

〈 ∇p(x i ) ‖∇p(x i ) ‖ , x i j − x i 

〉 
represents

the projection length of (x i j − x i ) on the direction of ∇p ( x i ).

Eq. (13) actually indicates that a new pseudo target datum is gen-

erated by the k -nn datum that has the smallest positive projection

distance to the original target datum (the red point in Fig. 5 a),

which explains the name “positive shifting”. 

We will explain why the generated pseudo target data have

very high confidence to be data from the target class: since the

pseudo target data are generated by shifting each given target da-

tum along the direction ∇p ( x i ) by a small distance (we will ex-

plain why the distance is small later), we have two good reasons to

believe that the generated data belong to the target class: Firstly,

it is on the direction that target data density rises most rapidly

( ∇p ( x i )); Secondly, if a given target datum is not noise, the gen-

erated datum will be guaranteed to stay very closely to the origi-

nal target datum. To prove this, suppose the nearest k -nn data to

x i in the set 	+ 
i 

is denoted by x n + 
i j 

(denoted by the orange point

in Fig. 5 a, and x n −
i j 

is similarly defined), the generated datum (red

point) will be strictly confined to the small region centered at x i 
with radius ‖ x n + 

i j 
− x i ‖ (denoted by the orange dashed circle in

Fig. 5 a), which can be proved easily by the definition of x min + 
i j 

in

Eq. (14) : 

‖ x 

(i ) 
t − x i ‖ = 

〈
x 

min + 
i j 

− x i , 
∇p(x i ) 

‖∇p(x i ) ‖ 

〉
≤

〈
x 

n + 
i j 

− x i , 
∇p(x i ) 

‖∇p(x i ) ‖ 

〉

≤ ‖ x 

n + 
i j 

− x i ‖ (15)

By Eq. (15) , for edge patterns on convex surface of the tar-

get data ( l i = 1 in EPD, e.g. the edge pattern shown in Fig. 2 a),

we have ‖ x n + 
i j 

− x i ‖ = min j ‖ x i j − x i ‖ because 	+ 
i 

contains all k -nn

data, which yields: 

‖ x 

(i ) 
t − x i ‖ ≤ min 

j 
‖ x i j − x i ‖ (16)
For edge patterns on non-convex surface and target data that

re not edge patterns ( l i < 1), since the vector ∇p ( x i ) points to the

egion with denser data, ‖ x n + 
i j 

− x i ‖ ≤ ‖ x n −
i j 

− x i ‖ is usually satis-

ed (though not always), Eq. (16) can often be satisfied as well.

herefore, if x i is not noise, x (i ) 
t stays very closely to x i , i.e. often

loser than the nearest neighbor of x i . In the meantime, by defini-

ion of 	+ 
i 
, we have: 

 x 

(i ) 
t − x i ‖ = 

〈
x 

min + 
i j 

− x i , 
∇p(x i ) 

‖∇p(x i ) ‖ 

〉
> 0 (17)

Consequently, each x (i ) 
t is definitely different from the given x i 

y Eq. (17) , but it is guaranteed to stay closely to the original x i 
y Eq. (16) (the distance in most cases is less than the distance

o x i ’s nearest neighbor). Thus, the proposed pseudo target data

eneration method enjoys the following merits: 

(1) Each pseudo target datum, if not noise, is generated through

hifting the original target datum off its original location by a prov-

ble small distance, so the generated pseudo target data can per-

ectly preserve the data distribution of the given target data (e.g.

ee the generated pseudo target data on banana dataset in Fig. 5 b).

hus, the generated pseudo target data can provide a favorable es-

imation on the model error of target class to prevent overfitting.

2) Like negative shifting, the proposed positive shifting can gen-

rate pseudo target data in an efficient and self-adaptive manner.

s Eq. (13) suggests, the k -nn and data density gradient ∇p ( x ) can

oth be obtained during the EPD process in Section 3.2.1 , and little

dditional computation is needed. Meanwhile, the positive shifting

rocess leaves no hyperparameter for users to tune, which is self-

daptive as well. (3) More importantly, the designed positive shift-

ng scheme can encourage robustness to noise in the given target

ata by generating noise-free pseudo target data for model valida-

ion. To encourage a smooth and tight boundary, noise should be

ncouraged to be excluded by OCSVM decision boundary. The pro-

osed positive shifting enables training data noise to generate a

ormal pseudo target datum that is not noise by attracting it back

o data-dense region (see Fig. 6 ). In this way, an error of noise is

o longer regarded as an error on target class during model val-

dation, which enhances the robustness to noise. As an example,

n Fig. 5 b, the training data noise of banana dataset (in blue tri-

ngle) generates a normal pseudo target datum (in red triangle)

or validation. This encourages OCSVM decision boundary not to

e spoiled by the noise like Fig. 1 d. 
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Fig. 6. Positively shifting the noise back to target data domain. 
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Finally, the generated pseudo target data are only used for

odel validation as well: they prevent OCSVM from selecting an

verfitting decision boundary. 

.4. The whole algorithm 

As we have generated pseudo outlier and target data for OCSVM

odel validation, the hyperparameter ν and σ can be simply se-

ected by the grid search, which is still the most widely-used hy-

erparameter search method. The whole algorithm of OCSVM hy-

erparameter selection based on adaptive data shifting is summa-

ized in Algorithm 2 . It is worth noting that in Algorithm 2 , the

mplementation of line 1, 2, 3 can actually be finished by running

ne EPD process, because the information needed by line 2, 3 ( k -

n, edge patterns, normal vectors) has been calculated as interme-

iate results during EPD. 

In terms of time complexity, the major computation of the pro-

osed method is incurred by EPD. A naive implementation of EPD

eeds to calculate the distance matrix of the given target data

 O ( N 

2 )) and find the k -nn data of each target datum ( O ( N 

2 · log N )).

ince generating pseudo outlier and target data utilize the re-

ults that are already calculated by EPD, they require negligible

omputation. Therefore, considering no speed-up technique with

dvanced data structure like kd-tree, the overall complexity for

 naive implementation of the proposed method is O ( N 

2 · log N ),
Algorithm 2: OCSVM hyperparameter selection. 

Input : Taregt dataset X target , hyperparameter range νrange , 

σrange 

Output : Optimal hyperparameter combination (νopt , σopt ) 

1 implement EPD in Algorithm 1 ; 

2 generate pseudo outlier set X outlier by Eq. 12 ; 

3 generate pseudo target set X 

′ 
target by Eq. 13 ; 

4 set Err best = ∞ ; 

5 for each hyperparameter combination (ν, σ ) from νrange , σrange 

do 

6 train an OVSVM model M(ν, σ ) with hyperparameter 

(ν, σ ) ; 

7 estimate the error rate on the outlier class Err o by X outlier ; 

8 estimate the error rate on the target class Err t by X 

′ 
target ; 

9 calculate current overall error rate 

Err = 0 . 5 · Err o + 0 . 5 · Err t ; 

10 if E rr best > E rr then 

11 (νopt , σopt ) = (ν, σ ) ; 

12 return (νopt , σopt ) ; 
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hich is favorably acceptable when compared with the standard

ross-validation (see Fig. 4 ). 

. Experiments 

In this section, we report experimental results of the proposed

elf-adaptive data shifting (SDS) based OCSVM hyperparameter se-

ection. The implementation of OCSVM is from LibSVM toolbox 1 

28] , and the OCC framework is borrowed from PRTools 2 [29] and

d_tools toolbox 3 [30] . For grid search, hyperparameters σ and

are selected from [10 −4 , 10 −3 , · · · , 10 4 ] and [0.01, 0.05, 0.1], re-

pectively. For comparison, we compare the proposed method with

even state-of-the-art OCSVM hyperparameter selection methods: 

yper-cube [1] (HC), Hyper-sphere [12] (HS), Consistency [13] (CS),

kewness [15] (SK), Min # SV+MaxL [20] (MSML), MIES [21] and

MS+RDMMS [22] (QR). For HC and HS method, an important

yperparameter—the number of generated pseudo outlier data N o 

hould be appointed, which depends on dimension of feature space

nd is still hard to be determined exactly as discussed in [12] .

ince the number of pseudo outlier data | X outlier | generated by the

roposed SDS method is constantly less or equal to the number of

iven target data, i.e. | X outlier | ≤ | X target |, we simply set N o = | X target |
or HC and HS (which suggests they always generate more or equal

umber of pseudo outliers to the proposed method) as a reference.

y contrast, SK and the proposed SDS method avoid the trouble to

et hyperparameter N o . Besides, the degree of skewness α is set to

e 2 as the experiments in [15] . The variance threshold of Consis-

ency is set to be 2 and 5-fold cross-validation is adopted, which

re the default settings in [13] . The trade-off hyperparameter λ of

IES is set to 1 as the authors suggest. All experiments are con-

ucted in the MATLAB 2016a environment of a PC with Intel i7

700HQ processor and 8 GB RAM. 

.1. Results on synthetic datasets 

We first test the proposed method on 6 synthetic 2-D datasets

enerated by different priorly known distributions: banana, sine,

ing, spiral, four gauss, twin banana, in order to provide a conve-

ient demonstration of the proposed method. The yielded OCSVM

ecision boundary, generated pseudo outlier and target data on 6

ynthetic datasets by the proposed method are all visualized in

ig. 7 . 

As shown in Fig. 7 , by virtue of the proposed hyperparameter

election method, OCSVM can obtain both smooth and accurate de-
1 http://www.csie.ntu.edu.tw/ ∼cjlin/libsvm/index.html . 
2 http://www.prtools.org/prtools/ . 
3 http://www.prlab.tudelft.nl/david-tax/dd _ tools.html . 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
http://www.prtools.org/prtools/
http://www.prlab.tudelft.nl/david-tax/dd_tools.html
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Fig. 7. Experiments on synthetic 2-D datasets. 
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cision boundary to flexibly describe target data with various chal-

lenging distributions. Although only a relatively small number of

pseudo outliers (in green) are generated, we can observe that by

negative shifting they are scattered self-adaptively and compactly

around the target data domain to regulate the decision boundary
f OCSVM. In the meantime, the generated pseudo target data (in

ed) have perfectly preserved the distributions of the original given

arget data (in blue) by positive shifting (even though the origin

ata distributions can be complicated, such as Fig. 7 a and 7 d),

hich effectively prevents OCSVM from selecting the overfitting
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Table 1 

Details of benchmark datasets. 

Dataset Feature dim. # of data Dataset Feature dim. # of data 

Adult 122 6414 Abalone 8 4177 

Australian 14 690 Balance 4 625 

Diabetes 8 768 Glass 9 214 

Heart 13 303 Landsat 36 20 0 0 

Letter 16 50 0 0 Msplice 240 3175 

Segment 18 2310 Sonar 60 208 

SVMguide1 4 3089 Vehicle 18 846 

Vote 16 435 Vowel 10 528 

Waveform3 21 50 0 0 Winequality 11 1599 

Table 2 

Average hyperparameter values selected on benchmark datasets. 

Dataset SDS HC HS CS SK MSML MIES QR 

Adult ν 0.088 0.010 0.010 0.063 0.100 0.010 0.010 0.797 

σ 0.0 0 01 0.0 0 01 0.0 0 01 0.0 0 01 91.00 0.235 0.235 0.010 

Abalone ν 0.100 0.021 0.010 0.058 0.045 0.016 0.042 0.005 

σ 32.50 0.595 0.550 0.470 9.100 100.0 0.026 0.087 

Australian ν 0.100 0.091 0.012 0.088 0.012 0.022 0.090 0.031 

σ 0.065 0.090 0.0 0 01 0.0 0 01 0.0 0 01 1.0 0 0 0.031 0.100 

Balance ν 0.095 0.019 0.021 0.098 0.017 0.009 0.086 0.190 

σ 1.0 0 0 0.100 0.100 0.0 0 01 0.050 10.00 0.072 0.100 

Diabetes ν 0.091 0.028 0.026 0.073 0.019 0.021 0.028 0.018 

σ 1.0 0 0 0.160 0.115 0.0 0 01 1.550 10.00 0.075 0.100 

Glass ν 0.098 0.030 0.015 0.010 0.100 0.017 0.045 0.147 

σ 0.805 0.110 0.0 0 01 0.0 0 01 0.0 0 01 5.950 0.053 0.100 

Heart ν 0.100 0.010 0.010 0.010 0.100 0.013 0.077 0.182 

σ 0.0 0 01 0.0 0 01 0.0 0 01 0.0 0 01 0.0 0 01 1.0 0 0 0.035 0.100 

Landsat ν 0.098 0.010 0.010 0.085 0.068 0.023 0.059 0.006 

σ 1.0 0 0 0.100 0.005 0.081 25.00 10.00 0.014 0.010 

Letter ν 0.048 0.010 0.010 0.042 0.048 0.017 0.010 0.052 

σ 1.0 0 0 0.100 0.100 0.050 256.5 10.00 0.050 0.100 

Msplice ν 0.059 0.032 0.010 0.100 0.071 0.014 0.039 0.984 

σ 0.0 0 06 0.910 0.0 0 01 0.0 0 01 230.0 0.006 0.002 0.001 

Segment ν 0.034 0.010 0.010 0.055 0.010 0.012 0.051 0.006 

σ 1.0 0 0 0.100 0.050 0.005 10.00 10.00 0.017 0.100 

Sonar ν 0.100 0.033 0.010 0.100 0.010 0.026 0.051 0.074 

σ 0.0 0 01 0.0 0 01 0.0 0 01 0.0 0 01 0.0 0 01 0.145 0.013 0.010 

SVMguide1 ν 0.072 0.053 0.025 0.060 0.027 0.016 0.096 0.003 

σ 10.00 0.750 0.650 0.150 7.0 0 0 100.0 0.011 0.100 

Vehicle ν 0.095 0.012 0.010 0.055 0.046 0.017 0.024 0.016 

σ 1.0 0 0 0.100 0.016 0.0 0 06 1.505 9.100 0.024 0.051 

Vote ν 0.088 0.082 0.010 0.098 0.014 0.017 0.035 0.111 

σ 0.070 0.080 0.0 0 01 0.0 0 01 1.500 1.0 0 0 0.025 0.100 

Vowel ν 0.098 0.012 0.012 0.098 0.017 0.011 0.061 0.067 

σ 1.0 0 0 0.010 0.010 0.0 0 01 0.050 8.200 0.062 0.100 

Waveform3 ν 0.100 0.010 0.012 0.050 0.058 0.006 0.054 0.003 

σ 0.500 0.046 0.100 0.046 0.006 10.00 0.052 0.100 

Winequality ν 0.058 0.051 0.026 0.058 0.019 0.018 0.014 0.009 

σ 1.0 0 0 0.095 0.085 0.010 572.0 10.00 0.061 0.100 
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odel with many “holes” inside the decision boundary. In particu-

ar, as we have discussed in Section 3.3 , we can discover that obvi-

us noises in the given target data are “positively” shifted back to

he target data domain when generating pseudo target data for val-

dation, and the resulting OCSVM decision boundary can soundly

xclude such noise (see Fig. 7 a, 7 e and 7 f). In the meantime, our

ualitative and quantitative comparison show that the proposed

DS method is able to yield equivalent or fairly close results to the

pproximated optimal solutions (yielded by a very fine-grained HC

ethod) on all of the synthetic 2-D datasets, which is reported in

he supplementary material. 

In addition, we also compare the proposed method with 7

tate-of-the-art OCSVM hyperparameter methods on 6 synthetic

atasets both qualitatively and quantitatively (more detailed re-

ults and discussion are presented in the supplementary material

ue to the limit of article length). By the comparison, we draw

everal conclusions: (1) Heuristics based methods (MSML, MIES,
R) typically perform worse than pseudo outlier generation based

ethods (SDS, HC, HS, SK) on synthetic 2-D datasets with rela-

ively complex distributions, as the prior observations of heuris-

ics based methods are often not satisfied when dealing with com-

lex data distributions. (2) On those synthetic 2-D datasets, classic

seudo outlier generation methods (HC and HS) can yield equiva-

ently good or marginally worse results to the proposed SDS, be-

ause generating enough random pseudo outliers to fill in the en-

ire data space is still easy for the 2-D situation. (3) Although SK

ethod does not need to specify number of generated outlier data

s HC and HS, its performance is unstable (SK yields very poor re-

ults on banana and spiral dataset). (4) CS method performs well

ith datasets with simple distributions, but it is sensitive to noise

nd cannot deal with datasets with complex distributions like sine

nd spiral. 
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Table 3 

Average f 1-score and MCC on benchmark datasets ( p -value in the bracket). Boldface means no statistical 

difference from the best value ( p ≥ 0.05). 

Dataset SDS HC HS CS SK MSML MIES QR 

Adult f 1 0.537 0.515 0.515 0.529 0.061 0.389 0.523 0.066 

(1.00) (0.00) (0.00) (0.02) (0.00) (0.01) (0.00) (0.00) 

MCC 0.179 0.092 0.092 0.162 0.034 0.177 0.121 0.057 

(1.00) (0.00) (0.00) (0.07) (0.00) (0.00) ( 0.81 ) (0.00) 

Abalone f 1 0.402 0.511 0.510 0.504 0.497 0.296 0.498 0.512 

(0.00) ( 0.22 ) (0.00) (0.00) (0.01) (0.00) (0.00) ( 1.00 ) 

MCC 0.171 0.114 0.113 0.128 0.151 0.135 0.084 0.089 

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Australian f 1 0.592 0.588 0.527 0.574 0.527 0.356 0.576 0.570 

(1.00) ( 0.54 ) (0.00) (0.03) (0.01) (0.00) (0.01) (0.01) 

MCC 0.335 0.331 0.198 0.292 0.198 0.299 0.302 0.293 

( 1.00 ) ( 0.70 ) (0.01) (0.06) (0.01) (0.04) (0.02) (0.03) 

Balance f 1 0.808 0.471 0.471 0.592 0.456 NaN 0.614 0.513 

( 1.00 ) (0.00) (0.00) (0.00) (0.00) (-) (0.00) (0.00) 

MCC 0.739 0.329 0.329 0.332 0.293 NaN 0.378 0.322 

( 1.00 ) (0.00) (0.00) (0.00) (0.00) (-) (0.00) (0.00) 

Diabetes f 1 0.508 0.422 0.421 0.499 0.348 NaN 0.499 0.501 

( 1.00 ) (0.04) (0.04) (0.03) (0.03) (-) ( 0.10 ) ( 0.13 ) 

MCC 0.168 0.096 0.082 0.062 0.094 NaN 0.054 0.061 

( 1.00 ) (0.00) (0.00) (0.00) (0.00) (-) (0.00) (0.00) 

Glass f 1 0.577 NaN NaN 0.520 NaN 0.346 0.598 0.634 

( 0.10 ) (-) (-) (0.00) (-) (0.00) (0.01) (1.00) 

MCC 0.495 NaN NaN 0.300 NaN 0.351 0.410 0.477 

( 1.00 ) (-) (-) (0.00) (-) (0.01) ( 0.12 ) ( 0.72 ) 

Heart f 1 0.567 0.376 0.376 0.568 0.376 0.138 0.565 0.559 

( 0.34 ) (0.00) (0.00) (1.00) (0.00) (0.00) (0.52) ( 0.61 ) 

MCC 0.282 0.305 0.305 0.286 0.305 0.206 0.278 0.336 

(0.02) ( 0.24 ) ( 0.24 ) (0.03) ( 0.24 ) (0.00) (0.00) ( 1.00 ) 

Landsat f 1 0.711 0.665 0.645 0.713 0.695 NaN 0.658 0.636 

(0.74) 0.00 (0.00) (1.00) (0.04) (-) (0.00) (0.00) 

MCC 0.611 0.471 0.457 0.547 0.523 NaN 0.467 0.442 

(1.00) (0.00) (0.00) (0.00) (0.00) (-) (0.00) (0.00) 

Letter f 1 0.601 0.519 0.519 0.515 0.068 0.058 0.514 0.494 

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

MCC 0.349 0.145 0.145 0.123 0.079 0.140 0.120 0.138 

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Msplice f 1 0.609 0.072 0.693 0.580 0.287 0.266 0.524 0.027 

(0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

MCC 0.385 0.150 0.366 0.381 0.087 0.151 0.371 0.083 

(1.00) (0.00) (0.11) (0.85) (0.00) (0.00) (0.01) (0.00) 

Segment f 1 0.769 0.589 0.588 0.576 0.431 0.436 0.581 0.589 

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

MCC 0.644 0.348 0.346 0.309 0.441 0.4 4 4 0.325 0.348 

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Sonar f 1 0.506 0.422 0.407 0.506 0.407 0.394 0.505 0.498 

(1.00) (0.01) (0.00) (1.00) (0.00) (0.00) (0.89) (0.29) 

MCC 0.141 0.095 0.067 0.141 0.067 0.232 0.151 0.142 

(0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.01) 

SVMguide1 f 1 0.838 0.720 0.662 0.727 0.741 0.217 0.755 0.610 

(1.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) 

MCC 0.764 0.568 0.460 0.590 0.634 0.277 0.622 0.345 

(1.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) 

Vehicle f 1 0.651 0.564 0.501 0.497 0.442 NaN 0.505 0.523 

(1.00) (0.00) (0.00) (0.00) (0.00) (-) (0.00) (0.00) 

MCC 0.542 0.276 0.055 0.032 0.033 NaN 0.078 0.129 

(1.00) (0.00) (0.00) (0.00) (0.00) (-) (0.00) (0.00) 

Vote f 1 0.733 0.696 0.512 0.690 0.430 0.362 0.678 0.676 

(1.00) (0.21) (0.00) (0.01) (0.00) (0.00) (0.01) (0.17) 

MCC 0.540 0.523 0.323 0.476 0.281 0.398 0.463 0.536 

(1.00) (0.63) (0.01) (0.02) (0.00) (0.00) (0.02) (0.78) 

Vowel f 1 0.648 0.340 0.340 0.617 0.338 0.169 0.661 0.648 

( 0.24 ) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.70) 

MCC 0.552 0.209 0.209 0.380 0.210 0.207 0.460 0.469 

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.04) 

Waveform3 f 1 0.674 0.615 0.632 0.639 0.627 NaN 0.637 0.629 

(1.00) (0.00) (0.00) (0.00) (0.00) (-) (0.00) (0.00) 

MCC 0.455 0.269 0.291 0.327 0.329 NaN 0.326 0.276 

(1.00) (0.00) (0.00) (0.00) (0.00) (-) (0.00) (0.00) 

Winequality f 1 0.519 0.500 0.500 0.497 0.226 0.241 0.501 0.501 

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

MCC 0.154 0.053 0.046 0.044 0.182 0.181 0.037 0.039 

(0.07) (0.00) (0.00) (0.00) (1.00) (0.88) (0.00) (0.00) 
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Table 4 

f 1-score and MCC on MNIST datasets. Boldface denotes the best results expect OPT. 

Digit SDS HC HS CS MIES QR CV OPT 

Digit 0 f 1 0.765 0.313 0.313 0.492 0.441 0.309 0.389 0.765 

MCC 0.771 0.304 0.304 0.495 0.437 0.305 0.382 0.771 

Digit 1 f 1 0.938 0.580 0.580 0.836 0.627 0.273 0.720 0.938 

MCC 0.933 0.565 0.565 0.820 0.611 0.230 0.694 0.933 

Digit 2 f 1 0.601 0.344 0.344 0.483 0.360 0.330 0.424 0.601 

MCC 0.635 0.331 0.331 0.479 0.349 0.322 0.411 0.635 

Digit 3 f 1 0.723 0.385 0.385 0.547 0.524 0.403 0.482 0.723 

MCC 0.735 0.381 0.381 0.545 0.512 0.408 0.471 0.735 

Digit 4 f 1 0.564 0.431 0.431 0.564 0.470 0.391 0.519 0.726 

MCC 0.558 0.429 0.429 0.558 0.468 0.400 0.507 0.730 

Digit 5 f 1 0.465 0.341 0.341 0.465 0.375 0.324 0.437 0.677 

MCC 0.474 0.348 0.348 0.474 0.385 0.336 0.440 0.699 

Digit 6 f 1 0.762 0.644 0.644 0.835 0.818 0.646 0.784 0.890 

MCC 0.769 0.637 0.637 0.821 0.800 0.645 0.765 0.879 

Digit 7 f 1 0.757 0.482 0.482 0.573 0.507 0.440 0.552 0.757 

MCC 0.747 0.474 0.474 0.562 0.498 0.4 4 4 0.532 0.747 

Digit 8 f 1 0.380 0.296 0.296 0.380 0.373 0.295 0.350 0.719 

MCC 0.378 0.280 0.280 0.378 0.365 0.285 0.339 0.731 

Digit 9 f 1 0.829 0.458 0.458 0.576 0.474 0.236 0.546 0.829 

MCC 0.825 0.456 0.456 0.571 0.471 0.191 0.534 0.825 

4
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.2. Results on benchmark datasets 

To further compare the proposed method with other OCSVM

yperparameter selection methods, we conduct experiments on 18

enchmark datasets downloaded from the popular UCI Machine

earning Repository 4 and LIBSVM Data webpage 5 (the dataset de-

ails are summarized in Table 1 ). Since the benchmark datasets

re usually designed for classification, we follow the experimen-

al setup of [17,21] to test the OCSVM performance with hyperpa-

ameters selected by different methods: The values of features are

ormalized into the interval [ −1 , 1] . For each benchmark dataset,

he data from the former half of classes are used as data of tar-

et class first, while data from the latter half of classes are viewed

s data of outlier class. Data of the target class are randomly par-

itioned into a training target set and a testing target set. OCSVM

s trained using the training target set only, and the testing target

et is combined with the data from outlier class as the final test-

ng set for OCC performance evaluation. The random partition is

epeated for 10 times to yield the mean OCC performance. Then,

he target class and the outlier class are switched and repeat the

bove procedure to obtain the OCC performance on data from the

atter half of classes. Finally, we average the OCC performance on

wo halves of classes as the final OCC performance of this bench-

ark dataset. As to the evaluation metrics, we adopt the widely-

sed f 1-score and Matthews Correlation Coefficient (MCC) [17] . For

 rigorous comparison, we perform paired Student’s t-test to com-

are the results yielded by the proposed method and other meth-

ds. A p -value less than 0.05 is considered statistically significant.

hose results whose differences from the highest value are not sta-

istically significant are shown in bold for each dataset. The aver-

ge hyperparameter values selected by different methods on each

ataset in Table 2 , and the results on benchmark datasets are re-

orted in Table 3 (“NaN” in the table means “Not a number”, which

uggests that the trained OCSVM trivially classifies all testing data

s outliers). 

As Table 3 shows, the proposed SDS based method is able to

elect proper hyperparameters to yield superior or favorably com-

arable OCC performance to other state-of-the-art hyperparame-

er selection methods on benchmark datasets. Compared with ex-

sting pseudo outlier generation based methods (HC, HS and SK),
4 http://www.archive.ics.uci.edu/ml/datasets.html . 
5 https://www.csie.ntu.edu.tw/ ∼cjlin/libsvmtools/datasets/ . 

y  

c  

o  

9  
he proposed SDS based method almost constantly outperforms

hem. In the meantime, it can be seen that hyperparameter selec-

ion based on random outliers generated by HC, HS and SK some-

imes lead to a trivial solution that simply classifies all testing

ata into outliers, and their performance is usually poorer than

he implicit outlier generation based CS method. As to heuristics

ased methods, MIES and QR can perform relatively satisfactorily

n most datasets, but sometimes their performance can signifi-

antly deteriorate since their underlying assumptions on the tar-

et data may not hold in such cases. However, MSML yields rel-

tively bad performance and often leads to trivial solution when

ompared with other methods. To sum up, the proposed method

nables OCSVM to achieve fairly good OCC performance on various

enchmark datasets, which makes it a promising OCSVM hyperpa-

ameter selection method in practical applications. 

.3. Results on MNIST handwritten digit dataset 

In addition to the benchmark datasets, we also compare the

roposed method with its counterparts on another commonly-used

ataset in OCC performance evaluation: MNIST handwritten digit

ataset. MNIST dataset provides a labelled training set with 60,0 0 0

and-written digit images (digit 0 − 9 ) with a resolution of 28 × 28

ixels, as well as a separated labelled testing set with 10,0 0 0

mages. For feature extraction, we calculate a 512-D Gist feature

31] to describe each image. For each time, images of one digit

rom 0 − 9 in the training set are used as the target class to train

ne OCSVM. For OCC performance evaluation, the trained OCSVM

s used to discriminate this digit from other digits (outliers) in the

eparated testing set. To further validate the effectiveness of the

roposed method, we also compare the proposed method with the

tandard cross-validation (CV) and a “cheating” method (OPT) by

irectly using the data from the test set for model validation (the

erformance of which is therefore the optimal performance that

CSVM can obtain). In our experiments, SK and MSML perform

oorly on MNIST dataset and almost constantly yield trivial solu-

ions ( f 1 and MCC are both “NaN”), so we omit the comparison

ith them in this table. The results are summarized in Table 4 be-

ow: 

As can be seen in Table 4 , the proposed SDS based method

ields the best OCC performance for 9 out of 10 digits. Specifi-

ally, the proposed method evidently outperforms CV method and

btains optimal results for 6 out of 10 digits (digit 0, 1, 2, 3, 7,

). For other digits that the optimal results are not reached, our

http://www.archive.ics.uci.edu/ml/datasets.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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method yields the best sub-optimal results among the compared

hyperparameter selection methods for 3 digits (digit 4, 5, 8). The

implicit outlier generation based method CS obtains equally or

slightly worse results than the proposed method. Two classic ex-

plicit outlier generation methods HC and HS yield evidently worse

OCC performance than the proposed SDS method on each digit. In-

terestingly, we notice that HC and HS obtain exactly the same re-

sults on each digit, which suggest that in fact the random outliers

generated by them do not make a difference in a relatively high-

dimensional feature space (512-D). When it comes to heuristics

based methods, MIES and QR yield comparable or only marginally

better OCC performance than random outlier based methods. Con-

sequently, the proposed SDS based method is again proved as an

effective method for OCSVM hyperparameter selection. 

5. Conclusions 

This paper proposes a data shifting based method to automati-

cally select proper hyperparameters of OCSVM, which are vital for

OCSVM performance. By self-adaptive negative shifting and posi-

tive shifting mechanism, the proposed method can efficiently gen-

erate high-quality pseudo outlier and target data to estimate the

error on outlier class and target class respectively, without intro-

ducing any new hyperparameters to be tuned by users. It also

soundly avoids two major difficulties, determining the number and

locations of generated pseudo outlier data, in previous outlier gen-

eration based hyperparameter selection methods. Experiments on

various synthetic and benchmark datasets verify the effectiveness

of the proposed method in comparison with 7 state-of-the-art

OCSVM hyperparameter selection methods. 

Our future research directions include: (1) Exploring better

searching strategy like Bayesian Optimization in the hyperparame-

ter space. (2) Since the proposed method can generate new data by

self-adaptive data shifting, we will explore its application to imbal-

anced classification by generating more data for minority classes

with insufficient training data. 
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