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Abstract—We tackle the challenge of constructing 64 pixels
for each individual pixel of a thumbnail face image. We show
that such an aggressive super-resolution objective can be attained
by taking advantage of the global context and making the best
use of the prior information portrayed by the image class.
Our input image is so small (e.g., 16x16 pixels) that it can
be considered as a patch of itself. Thus, conventional patch-
matching based super-resolution solutions are unsuitable. In
order to enhance the resolution while enforcing the global context,
we incorporate a pixel-wise appearance similarity objective into
a deconvolutional neural network, which allows efficient learning
of mappings between low-resolution input images and their high-
resolution counterparts in the training dataset. Furthermore,
the deconvolutional network blends the learned high-resolution
constituent parts in an authentic manner where the face structure
is naturally imposed and the global context is preserved. To
account for the possible artifacts in upsampled feature maps,
we employ a sub-network composed of additional convolutional
layers. During training, we use roughly aligned images (only eye
locations), yet demonstrate that our network has the capacity to
super-resolve face images regardless of pose and facial expression
variations. This significantly reduces the requirement of precisely
face alignments in the dataset. Owing to the network topology
we apply, our method is robust to translational misalignments.
In addition, our method is able to upsample rotational unaligned
faces with data augmentation. Our extensive experimental anal-
ysis manifests that our method achieves more appealing and
superior results than the state-of-the-art.

Index Terms—Face hallucination, deconvolutional neural net-
work, super-resolution.

I. INTRODUCTION

HE human face is perhaps the most powerful channel of

nonverbal communication. It provides valuable clues to
our own feelings and those of the people around us. Even in
the most simple interaction, our attention naturally gravitates
to the face, seeking to read some of the vital information is
“written” there. Faces also play an important role in physical
attractiveness.

Naturally, face perception is possible if the face is visible
in sufficient detail and resolution. When the face image is
imperceptibly small, its resolution has to be super-resolved
with a large upscaling factor. However, conventional super-
resolution (SR) methods are mostly limited up to 2 ~ 4x
upscaling factors. As reported in [1], when the upscaling
factor increases to 8 x, the performance of most SR techniques
decreases rapidly, rendering them unsuitable for this challenge.

Existing state-of-the-art SR methods highly rely on a variety
of assumptions about the quality of the given low-resolution
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Fig. 1. Comparison of our method with the CNN based super-resolution. (a)
The input 16 x 16 LR image. (b) The original 128 x 128 HR image. (c)
The corresponding HR version of the nearest neighbor of (a) in the training
set. (d) Bicubic interpolation of (a). (¢) The image generated by the CNN
based super-resolution [10]. Notice that, the CNN based approach is further
fine-tuned with a large corpus of face images. (f) Our result.

(LR) image and the availability of an associated set of high-
resolution (HR) images. They are applicable only when (i)
accurate facial features and landmarks can be found in LR
images [2], [3], (ii) similar appearances of the “same” person
are included in the reference HR dataset [4], and (iii) the
exemplar HR face images are “densely” aligned in order to
derive a representative subspace [5], [6], [7], [8], [9]. When the
input image resolution is inadequately small, the performance
of the face SR methods that require detection of precise
landmarks for a dense alignment degrades dramatically due
to the problematic localization of such refined features and
landmark points. This is a consequence of the fact that there is
little margin for error or flexibility when the LR image is tiny.
Typical pose, facial expression and illumination differences
between the input LR image and exemplary HR images hinder
the ability of subspace-based face SR methods in capturing
local variations and lead to unavoidable ghosting artifacts in
the reconstructed HR images.

Several super-resolution methods based on deep neural
networks have been proposed [11], [12], [13], [14], [15], [16],
[10] recently. However, these methods are all patch based and
ignore image class information. As shown in Fig. 1(e), the
Convolutional Neural Network (CNN) based network [10],
even when it has been retrained with face images, fails to
produce authentic facial details.

When super-resolving an LR image with an 8% upscaling
factor, 98.5% of the original information is missing. Halluci-
nating such a significant chunk of missing information is an
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ill-posed problem without a competent regularization term and
efficient exploitation of strong priors.

As a solution, we exploit a variant of deconvolutional
neural networks [17] to learn the mappings between the LR
facial patterns and HR facial details across individual samples
while maintaining the underlying global structure of face
images by taking advantage of the collective representation
power of large-scale face datasets [18], [19]. Deconvolutional
layers, also known as backwards-convolutional layers, are
convolutional layers where the forward and backward passes
are reversed. In other words, for a stride larger than 1, the
output of such a deconvolutional layer has larger resolution
than its inputs. They are first utilized in [20], [17] to visualize
the features a CNN has learned by back-projecting activations
in the low-dimensional feature maps to the high-dimensional
image domain. Rather than projecting feature activations to the
image domain, Long et al. [21] use a deconvolutional network
to upsample heat maps while Fischer et al. [22] upsample
optical flow fields. However, the upsampling results of these
methods tend to be over-smoothed without pronounced high-
frequency details. To enhance image details, Shi et al. [23]
present a variant of deconvolutional networks that rearranges
multiple LR feature maps into an HR image as its output.
These deconvolutional networks do not formulate the super-
resolution task on class-specific settings; hence, they fail to
model and generate valuable class-specific cues. Furthermore,
since our deconvolutional layers are not used for back-
projecting activations of feature maps, our method does not
require unpooling layers for super-resolution.

Our intuition is that, deconvolutional networks can be
trained to generate certain HR image patterns given specific
LR activations by presenting the network with a set of well-
structured LR-HR image pairs. Such well-structured data con-
veniently exists for the face class. Our analysis in section III-C
demonstrates that deconvolutional networks can be trained to
recognize particular facial patterns.

In the training stage of our deconvolutional neural network,
we feed the entire images, i.e., not patches but whole faces,
into our network. This allows maintaining the global structure
of faces while reconstructing instance specific details. As
a result, our deconvolutional network produces realistic HR
facial components that seamlessly blend into an HR face
image. Since the filters in each layer of our deconvolutional
neural network architecture are applied to the entire image,
our method achieves robustness to spatial translations and
deformations of input faces. For training, we use approxi-
mately frontal HR face images that are only aligned at eye
locations, which is readily available for most face datasets. We
do not make any assumption on facial landmarks and facial
expressions.

Overall, our contributions are fourfold:

e We present a novel method to super-resolve with an 8x

upscaling factor a very small (16 x 16 pixels) face image.

e Our method consolidates a deconvolutional network for

hallucinating face images. We demonstrate that without
using an adversarial loss, our network is still able to
super-resolve realistic HR face images and achieves an
impressive 1.16 dB PSNR improvement over the state-

of-the-art.

e Since only convolution operations are used in our net-
work, our method is not sensitive to translational mis-
alignments, which significantly reduces the accuracy re-
quirement of the face localization in the LR image. This
means, even when the face detector response may not be
accurate since the face region is very small, our network
can still super-resolve it.

e When training our network, we only require approxi-
mately frontal and roughly aligned images regardless of
pose and facial expression variations, which makes the
training datasets more attainable.

II. RELATED WORK

Image super-resolution methods aim to magnify an LR im-
age to its HR version that comprises authentic high-frequency
details. In general, there are three categories of generic super-
resolution approaches: interpolation based techniques, image
statistics based schemes [24], [25] and example/patch based
methods [26], [27], [28], [8], [29], [30]. Interpolation based
techniques such as bilinear and bicubic upsampling are com-
putationally efficient. However, they fail to establish high-
frequency details since they generate overly smooth edges as
the upscaling factor increases. Image statistics based schemes
employ image priors to reconstruct HR images with sharper
edges, but they are still limited to smaller scaling factors [31].

Example based methods have the potential to break this
limitation. They can be further classified into two groups:
internal and external example methods depending on how the
reference samples are derived. The first group of methods [28],
[32], [33], [30] exploit self-similarity of patches in the input
image. Alternatively, several methods [26], [27], [8] aim to
learn mappings between LR and HR patches from external ref-
erence datasets, and then utilize the learned correspondences to
upsample LR images. Nevertheless, when the input image size
is very small, it is difficult for internal example based methods
to find similar patches across different scales. When the scaling
factor is large, it is hard for external example based methods
to determine the correct correspondences between LR and HR
patches because many different HR patches can correspond to
a single LR patch, which induces artifacts at intensity edges.

Recently, many generic super-resolution methods based
on deep neural networks have been proposed [11], [12],
[14], [15], [16], [10], [23], [34]. For instance, SRCNN [11]
applies cascaded convolutional layers to obtain a mapping
function between LR and HR patches from a large-scale
dataset, while Kim et al. [15] learn to upsample the residuals
between the HR and interpolated LR patches. To improve
the performance of super-resolution without introducing extra
parameters of the networks, Kim et al. [16] employ recursive
convolutional layers to increase the depth of the convolutional
layers. Mao et al. [10] apply symmetric-skip connections
between convolutional layers and deconvolutional layers to
pass information to the latter layers, thus mitigating the
difficulty of training their very deep network. Shi et al. [23]
employ convolutional layers to extract LR features and then
rearrange the LR feature maps into HR images by a sub-pixel
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convolutional layer, which can be considered as a variant of
deconvolutional layers. Dong et al. [12] use convolutional and
deconvolutional layers with smaller filter sizes to speed up
SRCNN [11]. Ledig et al. [34] exploit an adversarial loss
and a perceptual loss [35] to obtain more realistic upsampled
results. Bruna ef al. [14] extracts statistical priors using CNN
to regularize the super-resolution process. Since these generic
SR methods based on neural networks do not consider class-
specific priors, they cannot achieve high performance when
they are employed for super-resolving faces. Retraining (fine-
tuning) of these networks with face image patches cannot
capture the global structure of faces either.

Related to face hallucination, the work in generative ad-
versarial networks (GAN) [36], [37] and variational auto-
encoders [38] exploit neural networks to generate an entirely
new image that endows similar properties to the training data
distribution, from a random noise input.

Unlike generic SR methods, class-specific super-resolution
approaches, such as face hallucination [39], [40], [41], [5],
(6], [71, [42], [4], (2], [43], [44], [9], [45], [3], [46], explore
the underlying patterns of a certain class, thus leading to
better performance. Baker and Kanade [39] transfer high-
frequency details from a face dataset by building the rela-
tionships between LR and HR patches. Due to the possible
inconsistency of the transferred HR patches, their method
tends to produce artifacts. Eigen-transformation is employed
to hallucinate face images by establishing a mapping between
the LR and HR face subspaces in [5]. Similarly, Liu et al. [6]
employ a subspace that is learned from the training set via
Principle Component Analysis (PCA) as a linear constraint for
HR face images and proposes a patch-based Markov Random
Field (MRF) to reconstruct the missing high-frequency details.
Kolouri et al. [9] use optimal transport in combination with
subspace learning to morph an HR image from the LR input.
Since the subspace based face hallucination methods require
the HR images in the reference dataset to be precisely aligned
and the LR test image to have the same pose and facial
expression as the reference ones, they are overly sensitive to
the misalignments of LR images. In particular, methods that
depend on PCA based holistic appearance models suffer from
ghosting artifacts.

Rather than imposing global constraints, Ma er al. [42]
construct a super-resolved HR patch by multiple reference HR
patches at the corresponding spatial position. Li er al. [47]
model the local structures of faces as a sparse representation
problem. Jin and Bouganis [45] process multiple LR face
images to recover an HR image by exploiting a patch-wise
mixture of probabilistic PCA prior instead of the holistic PCA
prior in [6]. Hence, face hallucination methods that constrain
the spatial positions of patches may avoid ghosting artifacts
caused by PCA, but their performance degrades dramatically
when LR image is not aligned precisely to the reference HR
images. To handle various poses and expressions, [4] integrates
the SIFT flow to align images. By exploiting local patterns,
Yang et al. [2] present a structured face hallucination method.
It first detects facial components in the given LR image and
then transfers the corresponding HR facial components in the
reference dataset to the LR input. Zhu er al. [3] present a

deep bi-network to super-resolve LR faces. It uses a CNN
to localize facial components and then recovers the high-
frequency of the localized facial components by another CNN.
Nevertheless, these facial component based methods may
fail to produce authentic HR face images due to potentially
inaccurate landmark localization. Zhou and Fan [43] propose
a bi-channel CNN to hallucinate face images in wild scenes.
Since they require extraction of local features from the input
images, the smallest input image size is limited to 48 x 48
pixels. Yu and Porikli [46] extend the framework of GAN
for very low-resolution face super-resolution. Their follow-
up works [48], [49] employ an adversarial loss to distinguish
whether super-resolved HR faces are realistic, and use spatial
transformer networks (STN) [50] in their deconvolutional
networks to compensate for misalignments. When LR face
images are aligned and in low noise levels, [49] super-
resolves face images similar to the results of [46] because
they employ similar architectures for upsampling. Due to the
sensitive training procedure of GAN, artifacts may appear in
the HR outputs; as a result, their high-frequency details may
be inconsistent with the ground-truth data.

III. OUR FACE SUPER-RESOLUTION NETWORK

As shown in Fig. 2, our complete network consists of two
parts: an upsampling part (deconvolutional), and an image
enhancement part (convolutional).

In the upsampling part, we employ deconvolutional layers,
as our upsampling part, to super-resolve the LR face images
as well as we exploit convolutional layers, as our enhance-
ment part, to remove the blocking artifacts caused by the
deconvolutional layers [51]. We utilize the /5 regression loss,
also known as the Euclidean distance loss, as the objective
of the entire network to attain appearance similarity between
the reconstructed images and the original HR images in the
training stage.

We first feed the input LR images into a convolutional layer
to extract low-level patterns (features). Since the resolution
of input images is very small, i.e., 16x16, the filter size is
set to 3x3. The reason for applying a convolutional layer
to LR inputs is to mitigate the artifacts introduced by the
following deconvolutional layers. As reported in [51], a direct
application of deconvolutional layers to input images may lead
to severe blocking artifacts due to the overlapping regions
between the receptive fields. We exploit deconvolutional layers
to upsample feature maps, in which most of the activations
are close to zero, and thus the artifacts can be mitigated.
After the feature extraction, three deconvolutional layers are
employed to upsample the feature maps. Each layer upsamples
the previous feature maps by an upscaling factor of 2. Since
upsampling images is an under-determined problem, we intend
to increase the capacity of the network as the neural network
goes deeper, i.e., the resolutions of feature maps become larger.
Hereby, we double the channel numbers of feature maps of
previous layers. The filter sizes of these three deconvolutional
layers are 3x3x64, 5x5x128, and 5x5x256, respectively.
We apply batch normalization [52] after each deconvolutional
layer to accelerate the convergence behavior of the network.
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Fig. 3. Blocking artifacts caused by the deconvolutional layers are effectively
removed by the enhancement part. (a) LR input images. (b) Results upsampled
only by the deconvolutional layers (the upsampling part). (¢c) The close-ups
of (b). (d) Results upsampled by the entire network. (¢) The close-ups of (d).

Since deconvolutional layers introduce aliasing artifacts in
the output images, we incorporate convolutional layers as a
subsequent enhancement subnetwork to remove such artifacts.
We use three convolutional layers with the filter sizes of
5x5x64, 5x5%32 and 3x3x3 in the enhancement part. We
note that Dong et al. [53] indicate adding more convolutional
layers does not suppress artifacts (in their case compression
artifacts) but makes the training convergence of the network
more difficult. This phenomenon also appears in SRCNN [11],
where they show that using more than three layers does
not provide a significant improvement in the super-resolution
performance. Moreover, a larger network cannot be fed into the
GPU memory, either. Hence, we employ a three convolutional
layers network to remove aliasing artifacts rather than using a
deeper enhancement network.

To illustrate the effectiveness of the two parts of our net-
work, we present the outputs of each part separately in Fig. 3.
For visualization of the images that are super-resolved only
by the upsampling part, we switch the output channel of the
last deconvolutional layer to 3 and remove the enhancement
part from the entire network. To retrain the upsampling part,
we employ the ¢ regression loss between the upsampled
images and the HR ground-truth as the object function. As
shown in Fig. 3(b), the upsampling part generates HR facial
details, but the results suffer from the blocking and aliasing
artifacts. As shown in Fig. 3(d), the artifacts are significantly
suppressed, and the facial details are sharpened by the image

enhancement part when we train the entire network comprised
of the upsampling and enhancement parts. Additionally, the
output of the entire network obtains almost 1.3 dB PSNR
improvement over the output of the upsampling part on the
test dataset. Notice that, the upsampling part produces a total
of 256 feature maps.

A. Training of the Entire Network

We use LR-HR face image pairs {x;,y;} as our training
data. Since the output of the entire network ¢; is imposed to
be similar to the corresponding HR image y;, a pixel-wise {5
regularization term is integrated to induce similarity. The loss
E of the complete network for a mini-batch of N face image
pairs becomes

N
— 1 . 112
B = oy o 12 - ulb (1)

where ®(z;) = y; denotes the output of the entire network.
Here, A and C represent the area and the number of the
channels of the training HR images.

The loss E in Eqn. 1 is back-propagated to update the
parameters of the complete network. Since each layer of our
network is differentiable, RMSprop [54] is used for back-
propagation. In RMSprop, we set the learning rate to 1073
and the decay rate o to 0.9. In addition, the learning rate 7 is
multiplied by 0.99 after each epoch.

B. Super-Resolution of an LR Face Image

We input the LR image x into our network to construct
its upsampled HR image ¢. In our previous work [46], we
used a discriminative network to enforce the final results
to be similar to typical face images, yet that discriminative
network has potential to inject ringing artifacts in the final
results. To improve the overall visual quality, we also apply
an unsharp filtering [55] to the upsampled HR results, which
is an image enhancement technique and widely used in low-
level image processing tasks, such as super-resolution [56]
and deblurring [57]. Specifically, unsharp filtering is used to
generate a sharp image by adding an difference image, which
is obtained from subtracting an image a blurred version of
itself, to the original version. In this way, we preserve the
visual fidelity while avoiding the artifacts introduced by the
discriminative network.

Since only convolutional operations are used in the network,
our end-to-end mapping can maintain the global structure of
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Fig. 4. Illustrations of influence of occlusions. Top row: the LR images, bottom row: the results of our deconvolutional network. (a) Result without occlusions.
(b) Results for partially occluded input images. (c) Result when the upper-lower parts are altered.

(c) Translations along the horizontal direction (from -4 to +4 pixels)

Fig. 5. Our method is robust against the translational misalignments of the LR image.

HR face images while infusing rich and localized details. It
is also robust to translational misalignments of LR images.
As illustrated in Fig. 5, our method can accurately reconstruct
the corresponding HR face images even if the LR images are
shifted in horizontal and vertical directions.

Thanks to its feed-forward architecture, our method runs in
real-time on GPU when it super-resolves an LR image.

C. What does the Deconvolutional Network Learn?

In our deconvolutional network, the hallucination of the
entire face and the formation of individual facial components
are implemented seamlessly. To dissect what our deconvolu-
tional network learns, we apply a set of masks to occlude
different parts and facial components of the input image. Our
assumption here is that a holistic face model based neural
network can still generate a complete face without missing
parts, even if the reconstructions of the originally occluded
parts may be not realistic. Otherwise, it is more likely that the
network learns face components.

Figure 4 suggests that our deconvolutional network learns
facial components and their relative local arrangements. Fig-
ure 4(b) shows that the visible parts of the input images are
super-resolved well while the masked parts are not recovered.
Even when we switch the upper and lower parts of the face
as shown in Fig. 4(c), which does not look like a face, the
corresponding parts can be super-resolved by our network. As
presented in Fig. 5, our network can reconstruct the translated
versions of the HR face images consistent with the LR face
images when the input face undergoes large translations. This
also indicates that our network learns the facial components
rather than a rigid holistic face model, and generates HR facial
components given specific LR facial patterns.

D. Differences Between Our Network and CNN based Nets

One major difference between our network and CNN
based super-resolution networks, such as SRCNN [11] and
RED [10], lies on the network architecture. Our method em-
ploys deconvolutional layers for upsampling LR face images,
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Fig. 6. Comparison with fine-tuned SRCNNs [11] and REDs [10]. (a) The LR image. (b) The original HR image. (c) Result of the original SRCNN applying
an upscaling factor of 2x three times. (d) Result of the SRCNN fine-tuned and retrained with whole face images. (¢) Result of the SRCNN retrained with
patches with an upscaling factor of 8 x. (f) Result of the original RED applying an upscaling factor of 2x three times. (g) Result of the RED fine-tuned and

retrained with whole face images. (h) Result of the RED retrained with patches with an upscaling factor of 8. (i) Our result.

while CNN based super-resolution networks apply convolu-
tional layers. For instance, [11] and [10] firstly upsample
the input LR patches by bicubic interpolation and then use
convolutional layers to enhance the corresponding details of
the interpolated LR patches. Since the corresponding receptive
fields of the filters in the HR images are just the same as
the filter sizes, only local information is incorporated in the
generated high-frequency details. As shown in Fig. 6(c), when
SRCNN is directly applied to the face hallucination task, the
output HR face image is severely blurred due to the small size
of the input image and the large upscaling factor. The same
phenomenon for the RED can be seen in Fig. 6(f) as well.
Another difference is that generic super-resolution meth-
ods [11], [10] are patch based while our method uses the
entire image. Since SRCNN released its training code, we can
compare its variants more objectively. To achieve the most
objective comparison, we not only assess the performance of
the original SRCNN but also its possible adaptations for face
hallucination. The original SRCNN does not provide a direct
upscaling factor of 8x but requires 2x upsampling of the
input image three times. When sequentially upsampling, facial
components that appear in different scales cannot be learned
by the original SRCNN. Hence, we first retrain SRCNN with
face patches with an upscaling factor 8x. We use the same
architecture and hyperparameters of SRCNN and retrain the
network by using face patches with the scaling factor 8x. As
shown in Fig. 6(e), SRCNN cannot produce an HR face image
with authentic high-frequency details. Because the scaling
factor is large, the interpolated LR images are too smooth for
SRCNN to manage. In other words, local neighbors provide
little information in enhancing the details. Moreover, when
retraining SRCNN with entire face images, the large size
of training patches, i.e., 128x128 pixels, introduces more
ambiguity in learning of the parameters, compared with the
33x33 pixels patch size the original SRCNN employs. During
the training, the weights of SRCNN gets stuck into erroneous
local minima and decrease to zero, thus produce a zero-valued
image. As shown in Fig. 6(d), the SRCNN retrained with entire
face images fails to provide high-quality HR face images.
One factor that affects the super-resolution performance
is the depth of neural networks. Since SRCNN only has 3
convolutional layers, its performance may be limited. We also
compare with another CNN based method, RED, which con-
sists of 15 convolutional layers and 15 deconvolutional layers,
much deeper than our network and trained on image patches
of size 50x50 pixels. Note that, the deconvolutional layers
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Fig. 7. Comparisons of the training and validation errors with and without
using batch normalization.

employed in RED are different from our deconvolution layers;
the deconvolutional layers in RED only implement backward
convolutional operations without increasing the output resolu-
tions. To tackle the vanishing gradient problem and obtain an
efficient training scheme, RED passes information from the
convolutional layers to their corresponding deconvolutional
layers by exploiting skip connections. Similar to SRCNN,
RED firstly upsamples inputs by bicubic interpolation and then
enhances details. As shown in Fig. 6(f), directly applying RED
to the LR face by an upscaling factor 2x three times cannot
achieve realistic facial details, e.g., the LR eye regions only
consist of dark colors. It only enhances edges and textures
rather than generating semantically new pixels, such as the
white color in the eyeballs. As presented in Fig. 6(h), retraining
RED with face patches by an upscaling factor 8x cannot
obtain authentic facial details since the large upscaling factor
introduces severe ambiguity between LR and HR patches. We
also retrain RED with the whole face images as well as the
same training protocol that we use. As seen in Fig. 6(g),
RED fails to generate realistic facial details; instead, it out-
puts ringing artifacts. Hence, simply increasing the depth of
convolutional networks cannot super-resolve LR faces either.

In contrast to SRCNN and RED, our deconvolutional net-
work upsamples the LR face images gradually without any
bicubic interpolation. This strategy can be regarded as leverag-
ing the image pyramid to address the under-determined task of
8% super-resolution. In a hierarchical manner, we hallucinate
facial details, thus mitigating the ambiguity between LR and
HR face images. In contrast, bicubic interpolation employed
in CNN based super-resolution methods cannot reduce the
ambiguity between the interpolated LR and HR faces since it
only relies on upsampling of pixels without any hallucination.
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Furthermore, the receptive field of the filters of our first
deconvolutional layer is 24 x 24 pixels in the HR images, which
is much larger than the largest receptive field of the filters in
SRCNN, i.e., 9x9 pixels. As a result, our network can better
capture LR facial patterns, and it can access expanded spa-
tial neighborhood to generate HR faces. Our deconvolutional
layers are able to project the low-dimensional feature maps
to the high-dimensional image domain and the learned feature
patterns are embedded in the weights of the network. Hence,
our deconvolutional network is more suitable to construct a
mapping from LR face images to their HR versions.

Generic CNN based super-resolution methods, such as
SRCNN and RED, do not incorporate batch normalization
either. Batch normalization is originally invented to reduce
internal covariate shift by whitening feature maps and widely
used for classification tasks. Since batch normalization will
change the intensity distributions of feature maps in each
layer, it may distort the mapping relationships between LR
and HR patches in the super-resolution problem. Specifically,
generic CNN based SR methods construct a nonlinear mapping
between different LR and HR patches on image intensities.
Considering the intensity distributions of different patches
may vary dramatically, the distributions of their corresponding
feature maps in each layer would be significantly different
because image patches are not normalized when they are fed
into super-resolution networks. Thus, the mean and variance
for each layer vary in a mini-batch. Using a statistical mean
and variance to normalize the feature maps in each layer will
shift activations of input patches. This effect will increase
the ambiguity in super-resolution, thus increasing the train-
ing loss. As a result, the intensity of the reconstructed HR
patches would be distorted. This phenomenon that embedding
batch normalization into the CNN based super-resolution,
e.g., SRCNN and VDSR [15], degrades the super-resolution
performance is also observed in the very recent works [58],
[59]. Therefore, it is not suitable to use batch normalization in
generic patch based super-resolution convolutional networks.

Since our inputs are class-specific, the feature maps share
similar distributions in each layer. Using batch normalization
allows speeding up the training phase without shifting the
reconstructed faces in our network. In Fig. 7, we compare the
training errors with and without using batch normalization. As
seen in the first 50 epochs, our network achieves lower training
and validation errors by using batch normalization. It indicates
that batch normalization speeds up the learning process of our
network. Even though after 50 epochs the training errors of the
network without using batch normalization become lower than
the one using batch normalization, their validation errors stop
decreasing and the validation errors of the network without
using batch normalization are higher than the one using batch
normalization. It implies that batch normalization facilitates
the generalization ability of our network.

IV. EXPERIMENTAL ANALYSIS

We compare our method with a large set of eleven
state-of-the-art methods [6], [8], [2], [11], [42], [15], [16],
[10], [45], [3], [46] both qualitatively and quantitatively.

Liu et al. [6] employ a subspace based face hallucination
method. Yang et al. [8] use sparse representations to super-
resolve HR images by constructing LR and HR dictionar-
ies. The method in [2] hallucinates face images by using
facial components from an exemplar image dataset while
CBN [3] super-resolves facial components by deep cascaded
bi-networks. SRCNN [11], VDSR [15], DRCN [16], and
RED [10] apply CNNs to upsample images. Ma et al. [42]
use same position reference patches to reconstruct HR images.
Jin and Bouganis [45] exploit multiple LR faces to recover an
HR version by a patch-wise mixture of probabilistic PCA prior
(MPPCA).

A. Datasets

Our network is trained on the Celebrity Face Attributes
(CelebA) dataset [19]. There are more than 200K face images
in this dataset where only the similarity transformation is
employed to align the locations of eye centers [19]. The
images cover different pose variations and facial expressions.
We simply use all available data regardless of these variations
and do not require grouping the face images into different pose
and facial expression subcategories.

We randomly select 30K cropped face images from the
CelebA dataset, and then resize them to 128 x 128 pixels as HR
images. We downsample the HR face images to 16x 16 pixels
to obtain the LR counterparts. We use 29K images for the
training, 1K images for validation and 1K images for testing.

Our network never sees the test LR images in the training
phase. The test and training images are substantially different.
To illustrate this, we find the best matching LR image in the
training data for a random input test LR image. As shown in
Fig. 1, the corresponding HR version of the best match has
significant differences from the original HR version of the LR
test image. (All the protocol details, data, and code for this
paper will be released.)

B. Qualitative Comparisons

We perform side-by-side comparisons with eleven state-of-
the-art face hallucination methods. In case an approach does
not allow an 8x scaling factor directly, e.g., [8], [11], [15],
[16], [10], we repeatedly apply a scaling factor of 2x three
times. For fair comparisons, we use the same CelebA dataset
for the training of all other algorithms. As another baseline,
we present the bicubic interpolation results.

Comparison with Yang ef al.’s method [8]: As depicted
in Fig. 8(d), Fig. 9(d), Fig. 10(d) and Fig. 11(d), Yang et
al.’s method does not recover high-frequency facial details.
Besides, irregular over-emphasized edge artifacts appear in the
results. As the scaling factor increases, the correspondence
between LR and HR patches becomes ambiguous. Therefore,
the results suffer from exaggerated pixelation patterns.

Comparison with Dong et al.’s method [11]: SRCNN
applies convolutional layers to learn a generic patch-based
mapping function. Even though we retrain their CNN on face
images, SRCNN cannot generate high-frequency facial details
in the HR images as shown in Fig. 8(e), Fig. 9(e), Fig. 10(e)
and Fig. 11(e). This demonstrates that our deconvolutional
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Fig. 8. Comparison with the state-of-the-art on frontal face images. (a) LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d) Yang et al.’s
method [8]. (e) Dong et al.§ method (SRCNN) [11]. (f) Kim et al.’s method (VDSR) [15]. (g) Kim ef al.’s method (DRCN) [16]. (h) Mao et al.’s method
(RED) [10]. (i) Liu ef al.’s method [6]. (j) Yang et al.’s method [2]. (k) Ma et al.’s method [42]. (1) Jin and Bouganis’s method (MPPCA) [45]. (m) Zhu et al.’s
method (CBN) [3]. (n) Yu and Porikli’s method (URDGN) [46]. (0) Our method. (Please see the electronic version for fine-grained details)
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Fig. 9. Comparison with the state-of-the-art on images with facial expressions. (a) LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d)
Yang et al.’s method [8]. (e) Dong et al.§ method (SRCNN) [11]. (f) Kim ef al.’s method (VDSR) [15]. (g) Kim et al.’s method (DRCN) [16]. (h) Mao et al.’s
method (RED) [10]. (i) Liu et al.’s method [6]. (j) Yang et al.’s method [2]. (k) Ma et al.’s method [42]. (1) Jin and Bouganis’s method (MPPCA) [45]. (m)
Zhu et al.’s method (CBN) [3]. (n) Yu and Porikli’s method (URDGN) [46]. (0) Our method.



JOURNAL OF KX CLASS FILES 10

i

\

EIEL)

.
- |

(a) LR (b) HR (C) bicubic (d) [8] (o) [11]

I@Ilmu' ]

o
&

(@) [6] () 2] (k) [42] ) [45] (m) [3] (n) [46] (0) Ours
Fig. 10. Comparison with the state-of-the-art on different pose face images. (a) LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d) Yang ef al.’s
method [8]. (e) Dong et al.§ method (SRCNN) [11]. (f) Kim et al.’s method (VDSR) [15]. (g) Kim ef al.’s method (DRCN) [16]. (h) Mao et al.’s method
(RED) [10]. (i) Liu ef al.’s method [6]. (j) Yang ef al.’s method [2]. (k) Ma et al.’s method [42]. (1) Jin and Bouganis’s method (MPPCA) [45]. (m) Zhu et al.’s
method (CBN) [3]. (n) Yu and Porikli’s method (URDGN) [46]. (0) Our method.
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Comparison with the state-of-the-art on translational misaligned face images. (a) LR inputs. (b) Original HR images. (c) Dong et al.’s method

(SRCNN) [11]. (d) Mao er al.’s method (RED) [10]. (¢) Yang er al’s method [2]. (f) Zhu et al.’s method (CBN) [3]. (g) Jin and Bouganis’s method

(MPPCA) [45]. (h) Ma et al.’s method [42]. (i) Our method.
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Fig. 12. Comparison with the state-of-the-art on rotational misaligned face images. (a) LR inputs. (b) Original HR images. (c) Mao et al.’s method (RED) [10].
(d) Yang et al.’s method [2]. (e) Zhu et al.’s method (CBN) [3]. (f) Jin and Bouganis’s method (MPPCA) [45]. (g) Ma et al.’s method [42]. (h) Our method.

(i) Our method with rotated face augmentation.

network is more suitable to address the face hallucination
task. In contrast to SRCNN, our deconvolutional network
incorporates class-specific information to induce fine-grained
patterns authentic to faces, thus leads to better performance.

Comparison with Kim et al.’s method [15]: Kim et
al. propose a very deep convolutional network for generic
image super-resolution, known as VDSR, where they increase
the number of the convolutional layers to 20 while SRCNN
uses only 3. To accelerate the training of its network, VDSR
learns the high-frequency residuals between the upsampled
input patches and their HR ground truths instead of producing
HR patches directly. Similar to SRCNN, VDSR also firstly
upsamples LR input patches by bicubic interpolation and
then reconstructs high-frequency details by a deep CNN. As
shown in Fig. 8(f), Fig. 9(f) and Fig. 10(f), VDSR fails to
output realistic facial details and over-enhances edges of the
upsampled LR facial patterns. This also indicates that just
increasing the depth of traditional convolutional networks may
not necessarily generate authentic facial details.

Comparison with Kim et al.’s method [16]: Kim er al.
develop a deeply recursive convolutional network (DRCN) to
super-resolve generic images. DRCN employs 16 recursive
convolutional layers followed by ReLU layers to increase
the super-resolution performance without introducing extra
parameters. Similar to VDSR, the high-frequency residuals
are learned from the neural network. As shown in Fig. 8(g),
Fig. 9(g) and Fig. 10(g), DRCN over-emphasizes edges and

cannot hallucinate authentic high-frequency facial textures,
i.e., eyes and mouths. In contrast, our network can reconstruct
realistic facial details.

Comparison with Mao et al.’s method [10]: Mao et
al. employ a very deep residual encoder-decoder network to
upsample images, named as RED, which has 15 convolu-
tional and 15 deconvolutional layers to recover the missing
high-frequency contents in LR patches. Different from our
deconvolutional layers, the deconvolutional layers in RED do
not increase the resolution of feature maps. RED is a patch-
based generic super-resolution method, and it is trained with
generic image patches. As shown in Fig. 8(h), Fig. 9(h),
Fig. 10(h), Fig. 11(d) and Fig. 12(c), RED cannot produce
authentic HR face images either. Hence, we conclude that
directly upsampling LR inputs by bicubic interpolation and
then generating image details from the interpolated images by
CNN s is not suitable for the face hallucination task.

Comparison with Liu et al.’s method [6]: Since Liu et al.’s
method requires the face images in the dataset to be precisely
aligned, it is difficult for their method to learn a representative
subspace from the CelebA dataset where large variations exist.
Therefore, the global model of the input LR image cannot
be represented by the learned subspace, and its local model
leads to patchy artifacts in the results. As shown in Fig. 8(i),
Fig. 9(i) and Fig. 10(i), this method cannot recover face details
correctly, and noisy artifacts appear in the final results.

Comparison with Yang ef al.’s method [2]: This method
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Fig. 13. Our method can hallucinate face images regardless of the racial profiles
of the input images. Top row: the original HR face images. Middle row: the
input LR face images. Bottom row: our results.

(a) LR

(b) SRCNN

(c) Ours

Fig. 15. Hallucinating face images without detecting and cropping faces. (a)
The input LR image. (b) The result of SRCNN. (c) Our result. Note that the
face region upsampled by our method contains much richer high-frequency
details, such as the eyes and mouth. (please see electronic version for details)

requires landmarks of facial components. It reconstructs LR
images by transferring high-resolution facial components. In
a 16 x 16 input image, it is extremely difficult to localize
landmarks. Hence, this method cannot correctly transfer facial
components as shown in Fig. 8(j), Fig. 9(j), Fig. 10(j) and
Fig. 12(d). Moreover, as seen in Fig. 11(e), facial details
cannot be recovered either due to the very large upscaling
factor. To our advantage, our method does not need landmark
localization and still preserves the global structure of the faces.

Comparison with Ma et al.’s method [42]: This method
requires the reference images to be precisely aligned. As
shown in Fig. 8(k), Fig. 9(k) and Fig. 10(k), it suffers from
obvious blocking artifacts and uneven over-smoothing as a
result of unaligned reference patches in the training dataset
and the large scaling factor. As illustrated in Fig. 11(h) and
Fig. 12(g), this method mixes the magnified input face with
a reference positioned ghost face due to translational and
rotational misalignments. Our method, on the other hand, can
still upsample the misaligned LR face images with rich high-
frequency details.

Comparison with the method of Jin and Bouganis [45]:
Instead of generating a holistic face model by PCA, this
method, also known as MPPCA, super-resolves each patch of

Fig. 14. Hallucinating face images with eyeglasses. Top row: the input LR
face images. Bottom row: our results.

an LR face by exploiting a prior of the mixture probabilistic
principal component analysis [60]. MPPCA uses multiple LR
images to recover an HR face. As reported in their experi-
mental part, MPPCA utilizes multiple LR images synthesized
from a single HR image to evaluate its performance. Hence,
following its experimental protocol, we also generate multiple
LR faces from an HR ground-truth image and then apply
MPPCA to reconstruct the HR face. Because MPPCA needs
to estimate the motion transformations between LR images,
any error in transformation parameter estimation causes recon-
struction errors. To prevent from this, we use the ground-truth
motion transformation parameters to align LR images in our
experiments. Since each pixel of the LR inputs corresponds to
an MPPCA model and the upscaling factor is large, i.e., 8%,
inconsistency may appear along the boundaries of generated
HR patches. As seen in Fig. 8(1), Fig. 9(1), Fig. 10(1), Fig. 11(g)
and Fig. 12(f), MPPCA suffers visible blocking artifacts and
produces overly smooth HR faces due to the large upscaling
factor.

Comparison with Zhu et al.’s method [3]: Zhu et al.’s
method, called as CBN, first detects the facial components
and then applies a deep neural network to super-resolve facial
components. Since the resolution of the input faces is very
small, it is difficult to detect and localize facial components
accurately. Such errors directly lead to ghosting artifacts. As
illustrated in Fig. 8(m), Fig. 9(m) and Fig. 10(m), CBN fails
to output authentic HR faces when erroneous localization of
the LR facial components occurs. As shown in Fig. 11(f) and
Fig. 12(e), the upsampled facial details are inconsistent with
the LR faces. CBN firstly aligns the LR inputs to its predefined
coordinates and then generates high-frequency details. When
we transform the hallucinated faces back onto the original
coordinates, the black regions appear in the final results.

Comparison with the method of Yu and Porikli [46]:
Yu and Porikli’s method, also known as URDGN, exploits
the framework of the generative adversarial network [36] to
super-resolve HR faces. Its discriminator network enforces the
generated HR face images to be similar to the real ones, but it
may also introduce artifacts and thus distorts the hallucinated
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facial details. As shown in Fig. 8(n), Fig. 9(n) and Fig. 10(n),
although the results of URDGN are sharp, the high-frequency
details may not comply with the HR ground-truth as indicated
in the quantitative evaluation. In contrast, our method can
recover facial details more faithfully to the ground-truth faces.
Note that the artifacts caused by deconvolutional layers as well
as the adversarial loss are not suppressed by URDGN while
they are significantly reduced by our convolutional layers.
Furthermore, URDGN employs the procedure of generative
adversarial networks (GAN) to train its entire network, and it
is difficult to maintain the balance between the generative and
discriminative networks. Thus, the convergence of URDGN is
not as stable as our method.

C. Quantitative Comparisons

We also measure the performance by the average PSNR
and the structural similarity (SSIM) scores on the entire test
dataset. Table I shows that our method achieves the best
performance with an impressive 1.16 dB PSNR improvement.
In Tab. I, we also compare the PSNR and SSIM scores without
using batch normalization, as indicated by Ours™. Benefiting
from batch normalization, our method is able to achieve higher
PSNR and SSIM scores.

Notice that, the bicubic interpolation explicitly builds on
pixel-wise intensities without any hallucination, and attains
better performance than several state-of-the-art methods. This
implies that either the high-frequency details reconstructed by
the state-of-the-art methods are not authentic or the artifacts
caused by those methods severely degrade their quantitative
results.

Unlike the existing approaches, our method consistently
provides visually appealing super-resolved HR face images
that contain rich details, and at the same time, exhibit close
similarity to the original ones (not used in the training). Since
our method takes the input LR image as a whole and learns
facial components in a data-driven manner, it reduces the
ambiguity of the correspondence between LR and HR patches,
leading to superior results both qualitatively and quantitatively.

D. Sensitivity to Translational Misalignments

Since the low-resolution of the input face images is very
small, state-of-the-art face detectors may not localize the
face precisely. In particular, when the translational alignments
occur, the previous face hallucination methods may fail as seen
in Fig. 11. By contrast, our method is able to upsample the LR
face images without any degradation. In our method the trans-
lational alignment requirement is significantly relaxed. Even
when the face detector fails to localize LR faces accurately,
our method can still upsample the face images that have the
similar sizes as the faces in the training dataset.

E. Sensitivity to Rotational Misalignments

As shown in Fig. 5 and Fig. 11, our method significantly
reduces the requirement of face alignment, in particular, it can
tolerate the translational misalignments of LR face images.
Having said that, our network is trained with only upright

face images; thus its performance would decrease when LR
face images undergo large rotations as shown in Fig. 12(h).
The rotated facial parts are not explicitly learned in the
training stage. Therefore, our network may not recognize the
corresponding low-dimensional features. As a result, we crop
the HR faces from CelebA, randomly rotate HR faces and
then downsample the HR faces to 16 x 16 pixels as LR faces.
We augment our training and testing datasets with the rotated
faces and then retrain our network on the augmented dataset.
Notice that, the ground-truth images may not be upright due
to the data augmentation. As shown in Fig. 12(i), our method
can super-resolve LR faces with rotational misalignments as
well.

F. Face Super-Resolution without a Face Detector

In Fig. 15, we present an example where the face region in
the LR image is directly super-resolved without a face detector,
i.e., the face region is not detected and cropped before it is
applied to our network. As visible, the face region is restored
with sufficient and pleasant high-frequency facial details while
the background regions are also upsampled without artifacts.
Our method can efficiently remove the blocking artifacts along
the edges in the background. In comparison, the CNN based
super-resolution not only fails to generate authentic facial
features such as mouth and eyes but also injects faulty checker-
board patterns (around fingers, hair, etc.) and overemphasized
edges (around the black dress).

This example demonstrates that our deconvolutional net-
work allows generating high-frequency details for faces with-
out creating artifacts in the generic regions. Our method can
recognize and super-resolve the LR facial features regardless
of the locations of the features. We can upsample the LR faces
without using a face detector when the LR faces approximately
have the size of 16x 16 pixels while the existing face halluci-
nation methods rely on face detectors to crop faces in advance.

G. Different Racial Profiles

When training our deconvolutional network, we do not
partition the training face images into different training sets
based on their racial profiles. Instead, we use all available
face images. We observe that our network can still conceive
the shared characteristics of each race and upsample LR input
images without requiring different models for different races.
In other words, our method does not need a face attribute for
the input image. As shown in Fig. 13, our method can super-
resolve while maintaining the original racial profiles without
mixing different racial characteristics.

H. Glasses

There are three cases around the super-resolution of faces
with eyeglasses. The first one is the people wearing sunglasses,
as shown in the first column of Fig. 14. In this case, eyes
are occluded by the sunglasses. Obviously, the eyes cannot
be super-resolved while the other facial parts including the
sunglasses can be well reconstructed. The second case is
that the frames of eyeglasses are thin and invisible in the
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PSNR 23.15 21.29 2225 20.17 20.75 20.11 21.54 23.05 23.09 2296 20.27 23.88 24.39 25.04
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