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Abstract— We propose a method that obtains a discriminative
visual dictionary and a nonlinear classifier for visual tracking
tasks in a sparse coding manner based on the globally linear
approximation for a nonlinear learning theory. Traditional
discriminative tracking methods based on sparse representation
learn a dictionary in an unsupervised way and then train a classi-
fier, which may not generate both descriptive and discriminative
models for targets by treating dictionary learning and classifier
learning separately. In contrast, the proposed tracking approach
can construct a dictionary that fully reflects the intrinsic manifold
structure of visual data and introduces more discriminative
ability in a unified learning framework. Finally, an iterative
optimization approach, which computes the optimal dictionary,
the associated sparse coding, and a classifier, is introduced.
Experiments on two benchmarks show that our tracker achieves
a better performance compared with some popular tracking
algorithms.

Index Terms— Global linear approximation, local coordinate
coding (LCC), nonlinear learning, object tracking.

I. INTRODUCTION

ISUAL tracking is a popular topic in computer vision,

and numerous tracking methods [1]-[3], [26], [43], [54]

have been proposed to deal with challenges, such as illu-
mination variation [12], [16], global or partial occlusion,
shape deformation, in-plane rotation, and background clutters.
To evaluate the performance of different tracking algorithms
quantitatively, several tracking data sets, such as visual track-
ing benchmark [4] and VOT2014 [5], have been established.
Among current tracking approaches, much attention has
been attracted by sparse representation-based approaches
because of their robust performances in vision tasks [6],
[36], [41]. Many sparse coding-based tracking methods [7]
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have been proposed by researchers. Broadly speaking, a given
candidate sample can be encoded by a linear combination of a
few atoms spanning an overcomplete dictionary that is learned
from a training set of samples in sparse coding-based meth-
ods. Different dictionary learning approaches [8]-[10], [47],
[49], [52], [55] based on sparse coding have been proposed
for signal reconstruction and classification in the audio and
image processing domains. In visual tracking, the learning and
updating of a dictionary are crucial steps to handle and adapt
to appearance variation during tracking procedure as well.
Therefore, a suitable dictionary selection carries significant
importance. Mei and Ling [11] constructed a dictionary to
encode the candidate targets by employing the global target
templates. Bao et al. [13] introduced the accelerated proximal
gradient approach to promote the real time /1 tracker with
the same dictionary learning strategy. Zhong et al. [14] intro-
duced a sparsity-based collaborative model with a generative
and a discriminative model. The discriminative classifier was
trained by a dictionary with holistic templates, while the
generative model was based on a local dictionary from local
patches by k-means. This method performs well under drastic
appearance changing. Most sparse coding-based discriminative
object tracking methods [15] learn dictionary and train clas-
sifier using a separated mechanism. To acquire the dictionary
for coding, some unsupervised clustering methods, such as
k-means, are usually adopted, but the produced dictionary may
not be suitable for tracking task. Yang et al. [17] proposed an
online discriminative dictionary learning approach for visual
tracking. But this method leaves the locality of sparse codes
out, and has no consideration on the underlying manifold
geometry structure of neither labeled samples nor unlabeled
samples during dictionary learning.

A classification function learning using visual data is
restricted to be nonlinear as a necessity because of the target
appearance variation during the tracking process. In principle,
the so-called “curse of dimensionality”” may arise due to high-
dimensional feature for modeling target appearance changing.
This phenomenon is seldom observed during a practical track-
ing procedure. Moreover, a satisfying tracking performance
could be obtained using only a handful of visual training
samples. One possible reason is that typically, visual data rep-
resented by high-dimensional vectors reside in a low dimen-
sionality embedding manifold of the high-dimensional space
that they lie in. Based on this inference, a nonlinear learn-
ing theory using local coordinate coding (LCC) is proposed
in [18] and [19]. LCC is a general coding framework that
approximates any nonlinear Lipschitz smooth function using
linear functions. It consists of a sparse coding scheme that
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are presented in the legend.

defines the local coordinates and a dictionary that contains
the local coordinates. It shows that under some Lipschitz con-
tinuity assumption, the computational complexity for learning
a nonlinear classification function relies on the dimensionality
of inherent manifold sample space. Considering the manifold
geometry structure of sample space, we think that those dictio-
nary items close to samples to be encoded should be activated.
LCC could keep locality of codes while reconstructing original
samples using the learned dictionary items. Impressive per-
formance is exhibited on nonlinear learning using LCC [20].
It also shows high classification accuracies on large-scale
image classification [21] and object recognition [22], [24].
However, those methods formulate their visual dictionary with
a simple unsupervised way. And they all treat dictionary
learning and classifier learning as a separated way, and take a
two-stage learning strategy. It may not generate an optimal dic-
tionary that owns discriminative power and reflects the spatial
geometry structure of sample space. Even so, the nonlinear
theory using LCC endows a firm theoretical foundation to
promote the sparse coding-based discriminative visual tracking
algorithm.

In this paper, we present a well-designed tracking algorithm
that aims to learn visual dictionary and nonlinear classification
function jointly enlighten by the above-mentioned nonlinear
learning theory under a semisupervised framework. The dic-
tionary is learned to describe the embedded manifold structure
constructed by samples with and without labels, and it is
also expected to maintain approving discriminative power.
Therefore, the proposed method could overcome several
limitations arisen in most of the existing visual tracking
approaches efficiently. Furthermore, it employs the localized
sparse representation to provide the guidance for discrimi-
native visual tracking, which has a solid theoretical basis.
The final discriminative dictionary, classification function,
and sparse codes are calculated by an iterative optimization
algorithm. One preliminary version of this paper was presented
in [23], and this paper is significantly different. First, more the-
oretical foundations about the theory of globally linear approx-
imation to nonlinear learning are introduced (see Section II-A).
Second, the theoretical analysis of each item is added and
explained concretely, such as the semisupervised learning
item (3) and the discriminative item (4). Third, a new analysis
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about the relationships between the classifier and the learned
dictionary in our optimization algorithm is explained in
Section II-B. Fourth, drifting often occurs during long-term
tracking due to occlusion and deformation in many track-
ing tasks. In order to alleviate this issue, a target redetec-
tion method is introduced to relocate target once tracking
fails (see Section III-D). Fifth, a center refining scheme is
introduced in the experiments (see Section IV-A) to fur-
ther improve the tracking performance. Finally, we compare
this paper with more recent tracking methods on OTB2013
(see Fig. 1 and Table I). And more experimental analysis
(see Section I'V-C) and experiments on visual object tracking
challenge 2015 (VOT2015) (see Fig. 2) are added as well. Our
source code will be available online.'

II. GLOBALLY LINEAR APPROXIMATION
TO NONLINEAR LEARNING

A. Problem Description

Given a set of labeled samples X; = {x1,...,Xn} with
their labels ¥ = {y1,..., yn}, Where xj € RY and a group
of unlabeled samples X;, = {Xp+1,--.,Xn+u}, Our goal is
to learn a nonlinear classification function, a discriminative
dictionary, and sparse coefficients for samples represented
under dictionary. We aim to learn a nonlinear classifier on
a very high-dimensional sample space originated from visual
tracking problem. In view of the traditional statistical theory,
the performance decreases when dimensionality of sample
feature exceeds an optimal number. Thus, learning a nonlinear
function from this sample space is inaccurate. Fortunately, the
theory of globally linear approximation to nonlinear learning
shows that a nonlinear function f(x) could be approximated
by a linear function with regard to local coordinate coefficients
of samples under manifold assumption [18]

D

f®) =D aif@)| < Bllx—y ®|
i=1
[D|

+ 0 laillld; —y "7 (1)

i=1

1 http://github.com/shenjianbing/LLCtracking.
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Results on VOT2015. Left: expected overlap curves. Middle: expected overlap graph with the ranked trackers. The right-most tracker is the

top-performing according to the VOT2015 expected average overlap values. The horizontal axis denotes the orders of different trackers. Right: accuracy
robustness (AR) plot for experiment baseline, where the sensitive S = 100. For more details, please refer to [31].

where y (x) Do, D [di,...,d,] € R ig the
dictionary, and « is the code of sample x. This equation means
that a very high-dimensional nonlinear learning problem can
be translated into a much simpler linear learning problem.
By minimizing the upper bound, we could obtain a much
simpler approximated linear function with the codes of original
samples as its input instead of original complicated nonlinear
function. The upper bound of the approximation error is
bounded by the reconstruction error of a sample and the affin-
ity between the sample and dictionary items. For a sample x;,
LCC, which is just the upper bound, is approximated as

m
. 2 j 2
min [x; — Do > + 1 D o] [11d; — xill
D,o; ‘
J=l1
st. 1Te; =1

2

where u is a constant factor to balance reconstruction error
and locality, aij denotes the jth element of ¢;, which is the
local coordinate code of sample x; under dictionary D, and
each element in vector 1 is a set to one.

Considering both labeled and unlabeled samples, we
extend (2) as

u+n m )
. 2 J 2
min: > | Ixi —Dety P+ 3 e [11dj — x|
i=1 j=1
st. 1Ta; =1, i=1,....,n+u. 3)

We denote A = [«1,...,0,44] € Rm*nt1) a5 the code
matrix of all training samples. The locality of LCC brings
sparsity, but it is not true contrarily. The globally linear
approximation of f(x;) is formulated as f(x;) ~ aiT w under
the nonlinear learning theory using LCC. And the labeled
samples should be considered for discriminative dictionary

learning. Therefore, we introduce the discriminative item as

&mg IATw -y, st 1Ta;=1,i=1,....n (4

S A
where code matrix A; = [ey,..
labeled samples.

We intend to assign similar labels to those neighbor samples
considering the geometry spatial structure constructed by
samples. In LCC, a sample could be sparsely constructed by
the bases in advance with a linear combination manner, such as

., 0,] corresponds to the

other sparse coding approaches. For simplicity, a novel sparse
coding method is introduced as an approximation of LCC [21].
It encodes a sample with k dictionary items, which are the
nearest neighbors of the sample. And the corresponding sparse
code is obtained by solving a least squares problem with some
equality constraints. It will reach our objective obviously, since
neighbor samples will be encoded by several same dictionary
items. Therefore, we introduce a Laplacian regularization item
to handle it. More theoretical analysis about Laplacian regu-
larization refers to [25]. Finally, the proposed semisupervised
learning method for dictionary, sparse codes, and classification
function is formulated as

u+n m )
Jnin. > ||xi—Dai||2+uzl\a,-’\||d,»—xi||2
= j=
5 n—+u n+u 5
+ h|Afw =y + 222> el —alw| By
i=1 j=1
st.1Ta; =1, i=1,...,n4u (3)

where the last item is the Laplacian constraint with B;; =
ala; and 1| and > are two preset constants that balance the
discriminative ability and manifold spatial constraint.
Manifold regularization has been used in several earlier
works [51]. But there are significant differences between our
method and [51] and [53]. First, our method aims to track a
single general object in one video clip, while [51] performs
tracking for multiple persons in multiple videos using person
detection and face recognition techniques. Thus, these two
methods belong to different topics of visual tracking tasks.
Second, our tracking method is solved as a regression problem,
and the label of a sample is represented by a regression value,
while the label of sample in [51] is represented by a label
vector, and the tracking problem is treated as a multiclass clas-
sification problem. Third, the proposed optimization algorithm
utilizes a linear regression model with respect to LCC codes of
samples to predict the labels of samples. The linear regression
model is a globally linear approximation of original nonlinear
function under the nonlinear learning theory using LCC.
But [51] and [53] predict the labels vectors of data points using
a linear regression model with respect to original samples,
which does not satisfy the basic theory assumption of our
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approach. All the Laplacian matrices in our method and
theirs consider the manifold structure of samples, and the
main idea behind them assumes that neighbor samples should
have similar labels. However, the Laplacian matrix in our
method includes a variable (sparse code matrix A) to be solved
iteratively, while the Laplacian matrices in [51] and [53] are
constant matrices. Additionally, the distance between different
samples [B;; in (5)] in our method has been continuously
updated during the iteration. The learned sparse code for each
sample reflects its real spatial position in the manifold space
according to both discriminative information and local geom-
etry structures of all data points. The optimization algorithm
of the proposed model is introduced in Section II-B, and the
proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Proposed Learning Algorithm

Input: {(Xia yi)};l:17 {Xl'};l::_Fl? lua j*1 and j'2'

Output: D, A and w.
1: Initialization: D is achieved using k-means algorithm, A; =
MD'D)~"'(DTX), and X = [xy, ..

. Xn+u]~

2.1t =1;

3: while r < T do

4:  Classifier learning: Solve w using (7) with fixed D, A;
5:  Coding: Solve A by Algorithm 2 with fixed D, w;

6: Dictionary learning: Learn D with fixed A, w by (17);
7. t=t+1.

8: end while

B. Optimization Algorithm

Equation (5) could be solved directly, since it is not convex
jointly over variables D, w, and A. In this paper, we seek
to optimize one variable while fixing the other two ones.
To this end, the objective function is decomposed into three
subproblems, and the optimal results will be acquired using
an iterative way.

1) Subproblem A (Classifier Learning): By fixing dictio-
nary D and sparse code matrix A, the following optimization
problem is presented to learn classification function:

5 n+u n+u )
min A1 [Afw =y + 2> > el w—aw| B;
i=1 j=I

st. 1Ta; =1, i=1,...,n. (6)

The optimal solution of w could be achieved by setting the
derivative of (6) to zero. And the final closed-form solution is
calculated as

w=(LWAA] + LA —ATAHAT) LAy (D)

where A = diag(A1, Aa, ..., Aysy) with A; = z;‘;’; Bj;.
2) Subproblem B (Coding): To obtain the sparse codes
matrix A, we solve the objective function with D and w fixed.
In fact, the resulting minimization problem is just (5). But it
could not be solved directly by derivation, since this function
is nondifferentiable with regard to sparse codes matrix. Thus,
locality-constrained linear coding [20] is introduced as an
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approximate formulation of (5), which could be solved ana-
lytically. In this paper, we neglect the Laplacian regularization

term here for simplicity. Let ¢; = [cl.l, e, cf”]T, where ¢/ =

i
Ix; —d;|l denotes the Euclidean distance between dictionary
entry d; and sample x;. The approximated minimization

problem could be formulated as
u+n 5
. 2 2 T
min Zl (IIxi = Detil|* + elle; © eil1?) + 21 [Af w — ]|
i=

st. 1Ta; =1, i=1,...,n+u (8)

where O represents the Hadamard product. This minimization
problem could be solved by calculating one column of A
with fixed others. The solving procedure is iterated until
convergence. Then, each o; could be calculated analytically
with a closed-form solution

1’p-1Q1 -1

17p-11 '
For the a; values corresponding to sample x; values with
labels

a; =P! (Q )

P=D'D+ ,udiag(ciz) + Ayww!
Q =D"x; + 1wy

(10)
Y
J

where (c; )2 is the jth element of diagonal matrix diag(ciz).

For those a; values corresponding to samples without labels
P = D'D + pdiag(c}) (12)
Q =D'x;. (13)
The detailed derivation of subproblem A is given in

Appendix A. Algorithm 2 summarizes the proposed coding
algorithm.

Algorithm 2 Coding Algorithm

Input: {(x;, y)} ;. (x;}/52 |, u, 21, D and w.
Output: A
1:t=1;

2: while r < T do
3: fori=1:n+4+udo

4: P=D'D+ ,udiag(ciz);
5: Q= DTX,';

6: if i < n then

7: P=P+ /. ,ww!;

8: Q=Q+ Liwy;;

9: end if

_ 17P-1Q1-1
10: (Zl‘:P I(Q_Tgll)’
11: end for

122 t=1t+1.

13: end while

3) Subproblem C (Dictionary Learning): To learn the dic-
tionary D, we aim to minimize the following problem with
fixed A and w:

u+n m

min 3" [ l1x; = Deil> + 1 > [ [[a; — x| ).
i=1 Jj=1
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After derivation (refer to [22] for more details), the above
minimization problem is equivalent to

ml%n tr(D'DG) — 2tr(DT'S) (14)
n—+u

G= Z (a,-ocl-T + pdiag(le|)) (15)
i=1
n+u

S = Z (xioe] + uxile|") (16)

i=1
where the trace operator tr(-) acts on a square matrix. The
block-coordinate descent algorithm in [22] can be a viable

approach to obtain the optimal dictionary. But in this paper,
it exists a closed-form formulation, which could be written as

D=SG L. (17)

The detailed derivation of subproblem B is given in
Appendix B. Actually, the dictionary entry could be regarded
as a labeled item, and the sign of its corresponding element
in classifier w is just its label.

III. TRACKING APPROACH
A. Samples Collection

Generally, the initial state of an interesting object in tracking
methods is annotated in the first frame manually. In this paper,
we crop a group of holistic templates {x;}?_, within a certain
scope of the object region randomly according to a Gaussian
distribution as the labeled samples. Most discriminative visual
tracking methods are usually seen as a binary classification
problem, and the label of each sample is annotated as a discrete
value, such as 0 or 1. For more accurate annotation, we set the
labels of samples using continuous values, which lie in [0, 1]
in our method. The label of a sample x; is computed as

B Arg N Ary
" Ary UAr

where Ar; is the area of object region and Ary is the area of a
template. It is observed that the similarity between the target
and the sample increases with the rise of the sample label
value. The value of the label is 1 for a sample overlapped
with the target region completely, and O if no overlap exists
between them. It is reasonable, because the samples drifting
from the target are between target and nontarget, and we could
not assign them to 1 or O crudely. Thus, continuous labels are
a good choice.

The optimization of (5) needs n labeled samples and
u unlabeled samples, and we assign similar labels for neighbor
samples in the manifold space. Thus, unlabeled samples are
also needed to the proposed method. The target candidates
{x,-}?:r'l‘ 41 selected in the current frame within a certain scope
of the previous target state are treated as unlabeled ones. Then,
we train a classifier to assign labels for target candidates using
all these samples in an online manner.

Vi (18)

B. Confidence Calculation

The training samples containing labeled and unlabeled
ones collected in Section III-A will be utilized to train the

proposed model in (5), and then, the optimal dictionary D,
LCC matrix A of samples, and the linear classifier w will
be obtained. The regression value of a target candidate x; is
calculated as f(x;) = O[iTW, where o; is the LCC of x;. It
measures the affinity similarity of a candidate target to real
object. Thus, we could obtain all the confidences of candidates.

Nevertheless, only global template considered in tracking
is inadequate to cope with partial occlusion problem arisen
in tracking. To handle that, the target region is separated to
several small blocks, and several groups of samples of the
blocks are obtained. We assign the label of different blocks as
the way mentioned in Section III-A. Meanwhile, we divide the
target candidates in current frame into several blocks as well,
and they are used as unlabeled samples of different blocks.
Denote fg(x;) and { fé (x{ )}lj’,:1 by the regression values of
holistic candidate template x; and its corresponding blocks,
respectively. Each block classifier fé is trained using the
block samples extracted from all the jth blocks of holistic
templates, and thus, different block dictionaries will be learned
for different classifiers. Finally, the confidence value of a
sample x; is calculated as

b
o) = v+ =02 > ) ()

J=1

where xlj is the jth block of sample x; and v is the balance
weight between holistic candidates and partial candidate tem-
plates. Those classifiers are retained every a few frames for
computational efficiency. And the sparse codes of samples are
obtained by executing (2) using the learned dictionary.

C. Particle Filter Framework

The proposed tracking algorithm is implemented under the
particle filter framework. Given the observation 01.; = {oi}§:1
up to time 7, the maximum a posterior estimation of object
state s, can be estimated by

argmsax p(s; | 01:4) (20)
t

which is inferred based on the Bayesian theorem

p(silor,) o P(01|St)/P(St|St—1)P(St—1|01:t—1)dSt—1 2D

where p(s;|s;—1) is the motion model and p(o;|s;) is the
likelihood function. The posterior p(s;|0;:;) is approximated
by a set of samples {s!,s?,...,s"} with their corresponding
weights {w}, w?,..., wN}. The candidates are sampled from
a proposal distribution g (s¢|S1:r—1,01:¢) = p(s¢|s;—1). In our
tracking algorithm, the target motion between two consecutive
frames is modeled by an affine image warp. And the state s;
is modeled by (&x, &y, 0,5, 1, @), where (¢, &y) is the target
center coordinate in the image and 6,s,#, and ¢ are the
parameters of rotation angle, scale, aspect ratio, and skew,
respectively. Without loss of generality, a Gaussian distribu-
tion is used to model the motion model with p(s;|s;—1) =
N(s;; 81, £), where X is a diagonal covariance matrix.

The likelihood function p(y;|s;) of candidate x; is con-
structed by

p(oilsi) o f(xi). (22)
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Fig. 3. Updating scheme. The new training sample set is obtained from labeled and unlabeled pools. The samples collected from the first frame are involved

in calculation all the time.

The target candidate with highest probability is determined
as current estimated target state.

D. Target Redetection

It is common that drifting occurs during long-term tracking
and causes tracking failure. Especially, when a target is fully
occluded by background, trackers are difficult to locate where
a target is, and the estimated targets in these frames are
almost random. Therefore, a target redetection algorithm is
necessary once the target reappears in new frames. Thus,
we introduce the target redetection strategy [27] to handle
this problem. Different from [27], we train an support vector
machine (SVM) classifier [28] based on the initial target
appearance instead of an online random fern classifier [29].
The redetector is activated in case that the maximum response
of the target center location is below a predefined threshold z,
which means that tracking fails in the current frame. With
this redetection strategy, the performance of our tracker is
promoted as we can see in Section IV.

E. Update Strategy

Target appearance changes continuously caused by illumi-
nation variations, occlusions, and deformation during tracking.
The manifold geometry structure constructed with samples
will be different with the changing of appearance. Thus, we
should reupdate the dictionary, linear classifiers, and sparse
codes to adapt to appearance variation. The target redetector
should also be updated.

1) Dictionary Updating: We retain two sample pools,
as shown in Fig. 3, during tracking. The labeled samples
are stored in the labeled pool, and the unlabeled samples
are contained in unlabeled ones. The labeled samples will be
cropped based on the current target location and then added
into labeled pool when the confidence value of current target
is greater than a constant . Otherwise, we will consider the
candidates in a current frame to be unlabeled samples and
place them into unlabeled pool. Then, a certain amount of
samples will be selected from these pools randomly every a
few frames, and they are regarded as a new training sample
set. The discriminative dictionary and classifier will be recal-
culated by Algorithm 1. To alleviate the pollution of current
training set, we remain the samples collected from the first
frame in our new training sample set, which is efficient for
long-term tracking. The updating scheme is applied on both
holistic and block templates.

2) Redetector Updating: In order to get more accurate
redetecting results, the redetector should be updated during
tracking as well. An online passive-aggressive algorithm [30]
is applied to update the SVM redetector using features sampled
in the current frame. More details about the online SVM
algorithm can be found in [30].

IV. EXPERIMENTS

The proposed object tracking approach is verified on two
challenging tracking benchmarks, including OTB2013 [4] and
VOT2015 [31]. We set the number of particles (600) to the
same number of these tracking algorithms under framework
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TABLE I
PERFORMANCE SCORES FOR THE POPULAR TRACKERS ON OTB2013

[ [ HDT | DSSMJ Struck | FST | CNN-SVM |

ODDL | KCF[ TGPR | WDL | LNLT | Ours |

DP| 0.873 | 0.533 0.654 0.770 0.842
OP| 0594 | 0414 0.472 0.547 0.590

0.561 0.742] 0.762 0.689 0.737 0.840
0.410 0.516| 0.528 0.493 0.508 0.598

of particle filters. The affine parameters of particle filters
are set to [10, 10,0.04, 0, 0.001, 0]. The number of positive,
negative, and unlabeled samples is set to 20, 200, and 200,
respectively, for the proposed learning algorithm. We then
intended to separate the holistic template into four parts, which
were located in the top-left, top-right, bottom-left, and bottom-
right of the template. Thus, the block size was set to half of the
template size. We normalize the size of holistic templates to
24 x 24, and the block size and the step size are set to 12 x 12
and [12 12], respectively. The number of dictionary items for
global templates is 20. The parameters u, A1, and 1> in (5)
are set to 0.03, 0.09, and 0.1, respectively. The balance factor
is set to 0.8 to determine the impact of holistic and block
classifiers. We set the threshold # = 0.65 for pool updating.

A. Implementation Details

We combine the three channels of CIE Lab color fea-
tures [32] and the histograms of oriented gradients (HOGs)
feature [33] of samples as the final template feature vector.
The feature in our experiments for each template is a vector
combined by the three channels of CIE Lab color features [32]
stretched row by row of the target and the HOGs’ feature [33]
of samples.

The final confidence in (19) of a target candidate is influ-
enced by the weight v. Thus, some inaccuracy may exist in the
center location of the estimated target. To refine the estimated
target state, we train a correlation filter [3], [34] using the
holistic target template cropped in the initial frame. Different
from their methods, the correlation filter is trained using only
the target template without any background information in
our implementation. Then, once a candidate state is chosen
as the state of the current estimated target by (22), we resize
the current target as the same size with a target template and
calculate a refined center location of confidence response map

using the correlation filter learned ahead. The refined center
location is determined as the position corresponding to the
maximum response in this map. Other parameters, such as
rotation angle, scale, aspect ratio, and skew, in the estimated
target state are then transferred to the refined target. The
correlation filter updating method is the same as [3].

B. Convergence Analysis

To verify the convergence of the proposed globally linear
approximation to nonlinear learning algorithm intuitively, the
iterations of the proposed algorithm are calculated. To verify
the convergence of the coding algorithm with the increase
of iteration number, we show the difference between two
iterations on the experimental data in Fig. 4 (left). It can be
found that the proposed algorithm converges rapidly. In fact,
four rounds of iteration are enough for the experiments.
Fig. 3 (right) shows the convergence curve of the whole learn-
ing algorithm, which is used to calculate the discriminative
dictionary, sparse codes, and linear classifier. All of these
variables converge rapidly, and eight rounds of iterations are
needed at most. The values of these parameters are set to
w =0.03, 11 =0.09, and 1, = 0.1 in our experiments.

C. Experimental Results on OTB2013

OTB2013 is a tracking benchmark [4] with 51 videos,
where different difficulties encountered in visual tracking
are contained. Our tracker is compared with ten popular
tracking methods, including Struck [35], KCF [3], FST [38],
TGPR [39], two related methods (discriminative sparse simi-
larity map (DSSM) [37] and online discriminative dictionary
learning (ODDL) [17]), and two deep learning trackers (convo-
lutional neural network-support vector machine (CNN-SVM)
[40], hedged deep tracking (HDT) [42]), and our original ver-
sion linearization nonlinear learning tracking (LNLT) [23] is
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In precision plots, Struck obtains the best score except for a
few other popular tracking methods, which does good work
on these image sequences. However, these trackers have no
consideration on the embedding manifold spatial structure.
Besides, dictionary learning is crucial for tracking methods,
and ODDL obtains comparable tracking performance on this
benchmark. The proposed tracking approach performs well on
the benchmark and even better than the newly proposed works,
such as KCF and TGPR. The location error performance

redetector, our tracker with the random fern redetector [27], and the LNLT
tracker [23].

score is 0.840, and the overlap performance score is 0.598.
In addition, all performance scores of the mentioned trackers
are listed in the first two rows of Table I. It verifies the effec-
tiveness of the proposed joint learning algorithm. Those deep
learning-based [57] trackers (such as CNN-SVM and HDT)
generally learn their classifiers with a large number of training
samples from different image data sets. These methods are
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easy to obtain appearance models with more discriminative
power than that in other method, while our method only trains
the proposed model with samples from several frames. In spite
of this, our tracker still performs comparable results with
CNN-SVM and HDT and even better than them according
to the overlap evaluation in Fig. 1.

2) Attributes-Based  Estimation:  Different  attributes
encountered during tracking are annotated for these videos in
the benchmark. Eleven attributes, such as background clutters,
deformation, fast motion, illumination variation, in-plane
rotation, motion blur, occlusion, out-of-plane rotation, low
resolution, out-of-view, and scale variation, are designed
based on different challenging situations. The performance
scores of different tracking methods estimated on this
attributes to prove the effectiveness of them. As shown in
Fig. 5, the success plots of all tracking algorithms under these
challenges are presented in the precision plots. The proposed
tracking method performs well on most of these factors.

3) Analysis of Dictionary Learning: Our tracker is also
compared with ourselves without dictionary learning (WDL)
to further prove the validation of discriminative dictionary
learning. The parameter setting is consistent with the proposed
tracking method. The performance scores of WDL are shown
in Table I. The DP and OP of this method are 0.689 and 0.493,

respectively, which are inferior to the scores of the proposed
tracking approach without target redetection, which are 0.737
and 0.508, respectively. It is observed that the performance
of the tracking method with discriminative dictionary learning
performs better than the version without discriminative dictio-
nary learning.

4) Redetector Comparison: We compare our tracking
performances using the introduced redetection method
and the random fern redetector used in [27], respectively.
As shown in Fig. 6, the DP value of our tracking algorithm
on OTB2013 is 84%, which is also better than the one
using random fern classifier (81%). Compared with our
original tracker (LNLT) [23], the introduced redetection
method improves the DP performance about 10%, while the
random fern redetector promotes about 8%. Thus, these two
redetection methods both improve the final performance.

5) Effectiveness of Block Classifiers: We have also tested
our tracker with only holistic templates. As shown in Fig. 7,
our method with both holistic and block templates achieves
a better performance than the one with only holistic target
templates. The DP score of our method is higher than that
with only holistic templates about 10% and the OP score is
higher than that about 12%. Thus, the block classifiers improve
the final tracking performance.
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Visual comparison. These sequences are “Boy,” “Car4,” “CarDark,” “Crossing,” “David3,” “Deer,” “Faceocc2,” “Fish,” “Jogging-1,” “Jumping,”

“Lemming,” “Mhyang,” “MotorRolling,” “MountainBike,” and “Singer1” from left to right and top to bottom.

We further test our tracking approach on a more challeng-
ing benchmark, the VOT2015 [31]. The performance of our
tracker is compared with IVT [44], KCF2 [3], LIAPG [13],
MDNet [45], MIL [46], MatFlow [48], STC [50], TGPR [39],
and Zhang (see [31, A.4]) reported in this benchmark. In these
experiments, each tracker is initialized with the ground truth
bounding box, and it is also initialized by a perturbed bounding
box centered around the ground truth bounding box randomly.
The estimation toolkit> reports the final tracking results,
including accuracy and robustness. The accuracy measures the
bounding box overlap ratio with ground truth, and the robust-
ness assesses the number of failures that indicate when the
overlap measure equals zero. As shown in Fig. 2, we compare
our tracking method with 16 popular tracking approaches in
VOT2015 by the expected overlap curves, scores, and AR plots
of all these trackers. Our method performs better than these
popular trackers on this more challenging data set.

D. More Experiments and Visual Comparisons

1) Experiments With Deep Features: We have also applied
the deep feature to our method. We extract convolutional
feature from ResNet [57] for each particle, including
holistic and block templates. The pertained ResNet model
“imagenet-resnet-50-dag” is used as deep features. Under

Zhttp://www.votchallenge.net/vot2015/

the particle filter tracking framework, the computational
complexity is related to the particle numbers. Two video
clips, including “Basketball” and “Bolt,” are randomly tested
to verify the effectiveness of deep feature. As shown in Fig. §,
deep feature improves the tracking performance. However,
the average tracking speed of the deep feature version is
1200 s/frame, while our original tracking speed is about
3 s/frame. Our method is much faster than the one with deep
feature.

We further show a part of the tracking results obtained by
the proposed tracking approach and other trackers in Fig. 9.
In the “Car4,” “CarDark,” and “Singerl” sequences from
OTB2013, the illumination of these targets changes drastically.
Benefiting from the discriminative appearance model, the
proposed tracker is robust to illumination changes and can
track these targets all the time. In “David3” and “Faceocc2,”
we show the tracking results on the videos where targets
are confronted with heavy global and partial occlusions. For
example, in “David3,” the pedestrian suffers from global
occlusion when he walks behind a tree (#83). TLD and CXT
fail to track the target even when he is occluded by a lamp
pole (#24). Struck and SCM also fail after the pedestrian walks
away from the tree (#141). Only our tracker and TGPR could
track the pedestrian in the whole sequence successfully. The
appearances of some targets change caused by scale variation,
such as “Singerl.”
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V. CONCLUSION

Based on the theory of globally linear approximations to
nonlinear learning, a principled method has been presented
to learn sparse codes, discriminative dictionary, and nonlinear
classifier jointly for visual tracking. We then introduce an
optimization algorithm to calculate the discriminative dictio-
nary, sparse codes, and classifier iteratively. We develop a
visual tracking method under the particle filter framework and
adopt an online updating scheme to adapt to target appear-
ance changes. To further improve the tracking performance,
the target redetection strategy is introduced. Experiments on
challenging video clips demonstrate the superior performance
of the proposed method in comparison with popular trackers.
In the future, we will attempt to extend our method to multiple
target tracking with multitask spare learning [56].

APPENDIX A
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By substituting G and S in the above equation, the original
objective is equivalent to minimizing

min tr(D'DG) — 2tr(DTS).

The minimization problem has a closed-form solution by
setting the derivative of the above equation to zero. Finally,
we get the final solution

D=SG .
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