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Abstract—We introduce a semi-supervised video segmentation approach based on an efficient video representation, called as
“super-trajectory”. A super-trajectory corresponds to a group of compact point trajectories that exhibit consistent motion patterns,
similar appearances, and close spatiotemporal relationships. We generate the compact trajectories using a probabilistic model, which
enables handling of occlusions and drifts effectively. To reliably group point trajectories, we adopt a modified version of the density
peaks based clustering algorithm that allows capturing rich spatiotemporal relations among trajectories in the clustering process. We
incorporate two intuitive mechanisms for segmentation, called as reverse-tracking and object re-occurrence, for robustness and
boosting the performance. Building on the proposed video representation, our segmentation method is discriminative enough to
accurately propagate the initial annotations in the first frame onto the remaining frames. Our extensive experimental analyses on three
challenging benchmarks demonstrate that, given the annotation in the first frame, our method is capable of extracting the target objects
from complex backgrounds, and even reidentifying them after prolonged occlusions, producing high-quality video object segments.

Index Terms—Video segmentation, trajectory extraction, density peaks clustering.

1 INTRODUCTION

Emi-supervised video segmentation refers to the par-
Stitioning of objects in a given video sequence with
available annotations in the first frame. A pixel-accurate,
spatiotemporal bipartition of the video is an essential build-
ing block for a wide spectrum of applications, such as action
recognition [1], object tracking [2], semantic labeling [3],
to name a few. Semi-supervised techniques also provide
proper initializations for further video editing and analy-
sis tasks (e.g., interactive video cutout, dataset annotation)
since they allow a tradeoff between accuracy and human
interaction.

Aiming for this task, we incorporate a comprehensive
video representation, super-trajectory, to capture the under-
lying spatiotemporal structure information that is intrinsic
to real-world scenes. Each super-trajectory is composed of
a group of trajectories that are similar in nature and have
common characteristics. A point trajectory, e.g., the tracked
positions of an individual point across multiple frames,
is a constituent of the super-trajectory. This representation
portrays several properties of a video:

o Long-term motion information is explicitly modeled as
it consists of trajectories over extended periods;

o Spatiotemporal location information is implicitly inter-
preted by clustering nearby trajectories; and

o Compact features, such as color and motion pattern,
are described in a conveniently compact form.
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Fig. 1. Our video segmentation method takes the first frame annotation
as initialization (left). Leveraging on super-trajectories, the segmentation
process achieves superior results even for challenging scenarios includ-
ing heavy occlusions, complex appearance variations, and large shape
deformations (middle, right).

With above convenient qualities, super-trajectory simpli-
fies and reduces the complexity of propagating labels in the
segmentation process. We first generate point trajectories
based on a probabilistic model, which handles occlusions
and drifts naturally. Then, we apply the density peaks based
clustering (DPC) algorithm [4] that is modified to attain a
proper split of videos in space and time by grouping these
trajectories.

Our approach to the design of the super-trajectory is
inspired by the following two motivations. Firstly, for the
task of video segmentation, it is desirable to have a pow-
erful abstraction of videos that is robust to spatiotemporal
structure variations and deformations. As demonstrated in
the recently released DAVIS dataset [5], most of the previous
heuristic approaches exhibit serious limitations for the cases



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

with occlusions, motion blur and appearance changes. The
proposed super-trajectory, on the other hand, is able to en-
code video efficiently handling these challenges (see Fig. 1).

Secondly, from the perspective of feature generation,
merging and splitting video segments (through the cor-
responding point trajectories) into atomic spatiotemporal
components is essential for handling occlusions and tempo-
ral discontinuities. However, it is known that the classical
clustering methods, e.g., k-means and spectral clustering,
which are widely adopted by the existing trajectory meth-
ods, cannot reach a consensus on the definition of a cluster.
To address this, we modify the DPC algorithm for grouping
the point trajectories, leveraging on its traits of choosing
cluster centers based on a more suitable criterion.

We also introduce a reverse-tracking strategy by excluding
objects that originate outside the frame to eliminate the
adverse effects of camera motion. To reidentify objects after
occlusions, we exploit object re-occurrence information, which
reflects the spatiotemporal relations between objects across
the entire video sequence.

To summarize, our method has the following contribu-
tions:

e A semi-supervised video segmentation algorithm
based on super-trajectories that capture spatiotem-
poral relations among point trajectories (Sections 3
and 4).

e Anovel super-trajectory generation method based on
a modified version of the DPC algorithm to reliably
determine cluster centers that represent spatiotem-
poral structure variations (Section 3.2).

e A reverse-tracking strategy for identifying objects
with long durations of propagation, and an object
re-occurrence scheme for recovering objects after oc-
clusion (Sections 4.2 and 4.3).

We evaluate our method on three publicly accept-
able datasets, namely DAVIS [5], Youtube-Object [6] and
SegTrack-V2 [7] benchmarks and compare with the state-of-
the-art both qualitatively and quantitatively. Furthermore,
to gain a comprehensive understanding of its various as-
pects, we implement three variants of our method and
conduct multiple ablation studies. We also run two groups
of experiments to assess the impacts of its different compo-
nents. We observe that our method compares favorably with
the previous state-of-the-art heuristic methods.

This paper builds upon our conference paper [8] and
significantly extends it with in-depth discussions on the
algorithm providing more details of the formulation, its
implementation, and its multiple variants. It dives deeper
into the two important assumptions for video segmentation,
reverse-tracking and object re-occurrence, and quantitatively
demonstrates their effectiveness. It also offers a more in-
clusive and insightful overview of the recent work of video
segmentation and trajectory extraction. Last but not least,
it reports extensive experimental results with an additional
large-scale dataset, Youtube-Object [6] for further validation.

The remainder of the paper is organized as follows. An
overview of the related work is presented in Section 2. The
proposed super-trajectory is described in detail in Section 3.
The novel video segmentation method is explained in Sec-
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tion 4 followed by the experimental analyses on robustness,
effectiveness, and efficiency in Section 5.

2 RELATED WORK

We provide a brief overview of recent works in two relevant
fields: video segmentation and point trajectory extraction.

2.1

According to the level of supervision required, we first
broadly categorize the conventional video segmentation
techniques into unsupervised, semi-supervised and
supervised methods. Then, we specifically discuss the
recently proposed deep-learning based approaches, due to
their astonishing performance improvement.

Unsupervised algorithms ordinarily aim for over-
segmentation, including solutions ~ for hierarchical

segmentation [9], [10], temporal superpixel [11], and
super-voxels [12], [13]. The key assumption behind
these methods is to group pixels that have consistent
appearance and motion properties since other types of prior
knowledge on image content and object type are absent.
Similarly, motion segmentation approaches [14], [15], [16]
extract moving object regions from the scene background
presuming the motion information is a reliable indicator
of the objects. For instance, [14], [15] are specifically
based on the analysis of long-term motion information,
represented as trajectories, posing the segmentation task
as a trajectory clustering problem. More recent works,
e.g. [17], [18], propose automatic motion segmentation
for foreground-background separation. While they do
not require manual annotations, they rely on restrictive
constraints on the application scenario. For identifying
objects, many techniques employ saliency and objectness
cues, which are bootstrapped from research efforts in
salient object detection and generic object proposals. To
this end, [19], [20] introduce saliency information as prior
knowledge to infer the object, and [21], [22], [23], [24],
[25], [26] generate object segments via ranking hundreds of
object candidates [27]. Object proposal based approaches
are usually time-consuming due to the high computational
load of generating object hypotheses and complicated
ranking processes. As stated in [5], unsupervised methods
are well-suited for parsing large-scale databases, but they
fail in case of their underlying assumptions do not hold.

Video Segmentation

Semi-supervised methods propagate the given labels in
one or more key-frames to the entire video sequence
[28], [29], [30], [31], [32]. They are also referred as Iabel
propagation. As argued earlier, unsupervised approaches
are bound by their underlying assumptions, therefore
incorporating human provided annotations is considered a
reliable solution for object segmentation. Semi-supervised
video segmentation methods often rely on optical flow
[33], [34] and share similar spirit with video tracking [35],
[7]. Among many variants, these methods use flow-based
random field propagation models [36], patch-seam based
propagation strategies [37], energy optimizations over
graph models [38], joint segmentation and detection
frameworks [39], and pixel segmentation on bilateral
spaces [40]. Semi-supervised approaches, compared to their
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unsupervised competitors, are more practical and would
provide more accurate partitions. At the same time, they
may suffer from drift issues during the propagation process.

Supervised methods [41], [42], [43], [44] require tedious
user interaction and iterative human corrections. They are
often referred as interactive video segmentation or video cut-out
in computer graphics. In general, supervised approaches
can attain high-quality boundaries even though they
demand extensive and time-consuming human supervision.
Compared with unsupervised or semi-supervised methods,
supervised approaches are capable of producing more
accurate partitions. However, the labor-intensive process is
unfeasible at large scale. Thus, supervised methods are more
suitable for specific scenarios such as video post-production.

Deep Learning based video segmentation methods have
become popular in recent years following the success of
deep learning in many computer vision applications. The
work of Fragkiadaki et al. [24] can be viewed as an early
attempt to introduce deep learning into video segmentation.
In this work, a CNN based Moving Objectness Detector is
trained on image and motion fields for detecting moving
objects. Another option to the use deep learning is the shal-
low combination with the features of the pretrained neural
networks, such as [34]. Very recently, efforts have been
devoted to explore an integrated use of neural networks in
video segmentation. These deep learning based approaches
can be classified as either unsupervised [45], [46], [47],
[48] or semi-supervised [49], [50], [51], [52], [53], [54], [55]
architectures. Thanks to the strong learning capability of
neural networks, deep learning based video segmentation
methods achieved higher performance over the traditional
heuristic methods. However, there are still two remaining
difficulties. The first one, mainly due to the absence of
sufficiently large and pixel-wise annotated video datasets
[52], it is a challenge to train a video segmentation network
in an end-to-end fashion. To address this, several deep learn-
ing methods attempted to leverage static training samples
from the existing large-scale image segmentation datasets
(e.g., COCO [56]), and use optical flow as an extra input.
The second one comes from the inherent computational
requirements as the training step of deep models for video
understanding often require large hardware memory and
intensive computations. As a result, most of the current deep
learning based video segmentation models were built upon
pre-trained networks (e.g., VGGnet [57]) and fine-tuned with
smaller scale datasets.

In this paper, we introduce a model for semi-supervised
video segmentation based on the super-trajectory concept,
which is a compact and convenient abstraction of trajec-
tories. The success of the proposed segmentation method
demonstrates the potential of super-trajectories for this task.

2.2 Point Trajectory

Point trajectories are generated through tracking points over
multiple frames. They have the advantage of representing
long-term motion information. Historically, Kanade-Lucas-
Tomasi (KLT) [58] is one of the earlier attempts to track a
small set of feature points. Inspiring several follow-up stud-
ies in video segmentation and action recognition, optical
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flow based dense trajectories [
terest point tracking. Some representative studies [14], [60],
[61], [62], [15], [63], [64], [65] address the problem of motion
segmentation of all moving objects in video, in contrast to
traditional unsupervised methods that aim to extract a sin-
gle primary object. These trajectory segmentation methods
usually track points via dense optical flow and perform
segmentation via clustering trajectories. The trajectories are
directly grouped into a few clusters as object segments,
using spectral clustering [14], [60], [63], [64], energy-based
clustering [61], or minimum cost multi-cut [65]. The final
partitioning is obtained via employing graph-cuts on the
rough clustering results, usually assuming the number of
objects with different motion patterns is known.

] improve over sparse in-

Trajectories are also used for action recognition [66], [67],
[68], where the trajectory aligned descriptor acts as a power-
ful representation for describing actions in video sequences.
Wang et al. [66] first used trajectory-aligned descriptors
for action classification and demonstrated the state-of-the-
art performance. Later, an improved version [67] was de-
veloped for removing noisy trajectories from the camera
motion. With the success of deep learning in computer
vision tasks, Wang et al. [68] encoded deep-learned features
into trajectories, reporting improved performance. Gener-
ally, trajectory based action recognition methods [66], [67],
[68] put more focus on the combination of trajectory and
other descriptors (e.g., HOG) due to the pursuit of describ-
ing whole video sequences and capturing most informative
parts for classifying the whole action sequence. Thus, the
computation of trajectories is relatively straightforward and
fast, and the trajectories have some uniform and specified
lengths. However, motion segmentation models place more
emphasis on the point tracking accuracy and clustering
performance as they aim for generating per-frame pixel-
wise segmentation. Therefore, the trajectories are usually
computed using more accurate but more time-consuming
optical flow, inferred via more complicated strategies and
with varying lengths.

Existing approaches mostly handle trajectories in pairs
or individually, and directly group all trajectories into a
few clusters (as segments), ignoring the inner coherence
in a group of similar trajectories. Instead, we go one step
beyond the conventional trajectory methods by putting
trajectories in operation as united super-trajectory groups
instead of individual entities. The proposed super-trajectory
idea inherits the representability of trajectory for model-
ing long-term motion information, while further exploiting
spatiotemporal relations among trajectories, thus offering
compact and atomic video representation.

3 SUPER-TRAJECTORY

We first introduce the super-trajectory in this section and
then describe our segmentation approach in Section 4. In
Section 3.1, we present our trajectory generation method
based on a probabilistic model. Then, in Section 3.2, we
introduce our super-trajectory generation method using
density peaks based clustering (DPC) algorithm [4].
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3.1

Given a sequence of video frames I1.7 = {I1, - - -, I7} within
time range [1,7], each pixel point can be tracked to the
next frame using optical flow. This tracking process can be
executed frame-by-frame until some termination conditions
(e.g., occlusion, incorrect motion estimates, efc.) are reached.
The tracked points are composed into a trajectory and a new
tracker is initialized where prior tracker finished. Contrast to
previous trajectory methods that design many hard thresh-
olds [14], [66], [15] for detecting occlusion, or unreliable
motion estimates, we build our trajectory generation on a
more interpretable and reasonable probabilistic model.

Let w denote a flow field indexed by pixel positions that
returns a 2D flow vector at a given point. Using LDOF [69],
we compute forward-flow field w, from frame I; to I,
and the backward-flow field w; from I; to I;_1. We track
pixel potion x = (z,y,t) to the consecutive frames in both
directions. The tracked points of consecutive frames are
concatenated to form a trajectory 7:

T = {Xn}ql;le = {(xna Yn,s tn)}ﬁ:la (1)

where L indicates the length of trajectory 7 and point x,, =
(Zny Y, tn) is tracked via:

Trajectory Generation

t, €[1,T],

)

As the optical flow is subpixel accurate, x and y will usually
end up between grid points. We use bilinear interpolation
to infer the flow at these points.

We model point tracking process as a first order Marko-
vian process, and denote the probability that n-th point
xp of trajectory 7 is correctly tracked from frame I, as
P(Xn |11, 4, )- The prediction model is defined by:

(:L'na yn) = (xn—la yn—l)‘i’wtn_l (xn—la yn—1)~

P(Xnllty:t,) = PO [Xn—1, It, ) D(Xn—1 Tty 1),  (3)

where p(x1|I;,) = 1 and p(x,|xn—1, It, ) is formulated as:
(4)

The energy functions £ penalize various potential tracking
error. The former energy &, is expressed as:

P(xXn[Xn—1, It,) < exp{—(Eapp + Eoce) }-

©)

which penalizes the appearance variations between corre-
sponding points. Obvious, a tracked point would be consis-
tent in appearance over time.

The latter energy &, is included to penalize occlusions.
It uses the consistency of the forward and backward flows:

5app(xn7 anl) = HIt,L (xnv yn) - Itn,l (:Enfla ynfl)H7

(6)

Eoee Xy Xt ) = ||wtn, (Tn, Yn) TWi, (Tr1, Yn1)||
s An—1) — 77 = .
S e (@ )[4t (20t Y]

Ideally, when a point is successfully tracked without oc-
clusion, we expect an one-to-one correlation between cor-
responding points: x,, and X, ;. Thus the backward flow
vector Wy, (Zn,Yyn) should be opposite in direction of
the forward flow vector wi, (Tp1,Yn1): Wi, (Tn,Yn) =
—wW¢, (Tn-1, Yn-1), which makes the numerator close to 0.
When this consistency constraint is violated, occlusions or
unreliable optical flow estimates might occur.

It is important to notice that the proposed tracking model
performs accurately yet our model is not limited to the
above constraints. We terminate the tracking process when

Fig. 2. lllustration of the density peaks based clustering (DPC) algorithm.
(a) A schematic diagram where the bigger circles indicate higher local
densities p. (b) Sample point distributions in two dimensions. (c) Cluster-
ing results with DPC, where different colors represent different clusters.
(d) Local density p and distance ¢ distributions for the data points of (b).
See Section 3.2.1 for detailed explanations.

p(Xn|lt,+, ) < 0.5, and then we start a new tracker at x,,. In
our implementation, we discard the trajectories shorter than
four frames.

3.2 Super-Trajectory Generation

Previous studies indicate the value of trajectory based rep-
resentations for long-term motion information. Here, our
intuition is that neighboring trajectories exhibit compact
spatiotemporal relationships and they have similar charac-
teristics in appearance and motion patterns. This motives us
operating on trajectories as united groups.

We generate super-trajectory by clustering trajectories
adopting the recently proposed density peaks based clus-
tering (DPC) [4]. Before introducing our super-trajectory
generation method, we first describe DPC.

3.2.1 Density Peaks based Clustering (DPC)

DPC clusters the data by finding its density peaks. It pro-
vides a unique solution of fast clustering based on the idea
that cluster centers are characterized by a higher density
than their neighbors and by a relatively large distance from
points with higher densities.

Given the distances d;; between data points, for each
data point 7, DPC calculates two quantities: local density p;
and its distance J; from points of higher density. The local
density p; of data point i is defined as ':

pi = Zj dij. )

Here, §; is measured by computing the minimum distance
between the point 7 and any other point with higher density:

0; = min (dg;). (8)

J:pi>pi

1. We do not use a cut-off kernel or Gaussian kernel adopted in [4]
due to the small amount of data.
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(b)

Fig. 3. lllustration of initial super-trajectory generation process, de-
scribed in Section 3.2.2. (a) The arrows indicate trajectories and the dots
indicate the initial location of the trajectories. (b) We cluster trajectories
into K groups on the spatial grid (in this case, K = 4).

For the point with highest density, it takes d; = max;(d;;).
Since ¢§; is much larger than the typical nearest neighbor
distance only for points that are local or global maxima
in the density, cluster centers are recognized as points for
which the value of §; is anomalously large.

Cluster centers are the points with high local density (p 1)
and large distance (4 1) from other points with higher local
density. This core observation is illustrated by the simple
example in Fig. 2 (a), where the bigger circle indicates higher
local density p and two clusters, centered as pointl and
point3, are colored blue and red, respectively. We can find
that cluster centers are surrounded by neighbors with lower
local density and they are at a relatively large distance from
any points with a higher local density. point2 also have a
relatively large local density. However, since it is closer to
pointl of higher density, it has less distance d and point3 is
more favored to be a cluster center due to both high local
density and large distance. The data points can be ranked
via:

©)

where the cluster centers are recognized as points for which
the values of p; and ; are both large. Then the top ranking
points are selected as centers. After successfully declaring
cluster centers, each remaining data points is assigned to
the cluster center as its nearest neighbor of higher density.
This cluster assignment is performed in a single step, in
contrast with other clustering algorithms (e.g., k-means)
which iteratively update cluster centers with certain ob-
jective function. Fig. 2 (b)-(d) gives another case for DPC
with two-dimensional data. As seen, in Fig. 2 (c), the cluster
centers correspond to the points (represented as large solid
circles) in Fig. 2 (d) with large values of ¢ and sizeable
densities p.

Vi = pibi,

3.2.2 Grouping Trajectories via DPC

Given a trajectory 7 : {(Zn,Yn,tn)}n spans L frames, we
define three features: spatial location (I,), color (c;), and
velocity (v.), for describing 7:

1 ZL 1 ZL

lr = Z n:l(m”’yn)’ €r = E n=1 It" (a:n,yn)7
1 ZL 1

Ur = Z n=1 (Kt(anrAt — Tny Yntat — yn))v

(10)

where we set At = 3. We tested At = {5,7,9} and did not
observe obvious effect on the results.

(e) 4" Iteration (f) 5" Iteration

Fig. 4. Super-trajectory generation via iterative trajectory clustering. (a)
Frame I;. (b)-(f) Visualization of super-trajectory in the time slice I;
at different iterations. Each pixel is assigned to the average color of
all points within its super-trajectory. The blank areas are the discarded
trajectories, which are shorter than four frames. The areas with obvious
changes are highlighted in red circles. For clarity, we set the number of
initial spatial grid to K=500. See Section 3.2.2 for more details.

Between each pair of trajectories 7; and 7; that share
some frames, we define their distance d;; via measuring
descriptor similarity:

dij = Zfe{l,c,v} Hfﬂ - f‘f'j||'

We normalize color distance on max intensity, location dis-
tance on sampling step R (detailed below), motion distance
on the mean motion magnitude of all the trajectories, which
makes above distance measures to have similar scales. In
case there is no temporal overlap, we set d;; = H, where H
has a very large value.

It is clear that trajectories are usually asynchronous, i.e.,
they cover different frames, mainly due to occlusion and dis-
occlusion. For this, we modify the DPC algorithm for clus-
tering the compact trajectories into super-trajectories. We
first roughly partition trajectories into several non-overlap
clusters, and then iteratively updates each partition to get
the optimized trajectory clusters. The only parameter of our
super-trajectory algorithm is number of spatial grids K, as
the degree of spatial subdivision. The spatial sampling step
becomes R = /S/K, where S refers to the product of the
height and width of image frame. The clustering procedure
begins with an initialization step where we divide the input
video I, into several non-overlap spatiotemporal volumes
of size R x R x T. As shown in Fig. 3, all the trajectories
T = {n;}; are divided into K spatially regular volumes.
A trajectory 7 falls into the volume where it starts. Then
we need to find a proper cluster number of each trajectory
group, thereby further offering a reasonable temporal split
of video, and further generate more accurate spatiotemporal
clustering.

1)
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Algorithm 1 DPC for Generating Super-Trajectory Centers

Algorithm 2 Super-Trajectory Generation

Input: A sub-group of trajectories 7' = {7/}; (T' C T),
distance matrix {d;;} via Eq. 11 and cluster number C;

Output: Organized trajectory clusters;

: Compute local densities {p; }; via Eq. 7;

: Compute distance {0;}; via Eq. §;

: Find {7}, };» with 6, = H, where |{7], }/| = n/;

: if C < n’ then
Select {7}, }: as cluster centers;

else
Compute {7, }; via v; = p;0;;
Select the trajectories with C' highest v values as
cluster centers;

9: end if

10: Assign each remaining trajectories to cluster center as its
nearest neighbor of higher density p.

PN ARy

For each trajectory group, we initially estimate the clus-
ter number as C' = T'/L, where L indicates the average
length of all trajectories. Then we apply a modified DPC
algorithm for generating trajectory clusters, as described in
Alg. 1. In Alg. 1-3, in case d; = H the trajectory 7; does not
have any temporal overlap with those trajectories that have
higher local densities. This means the trajectory 7; is the
center of an isolated group. If C' < n’ in Alg. 1-4, there exist
more than C' unconnected trajectory groups. Accordingly,
we select the trajectories with the highest densities of those
unconnected trajectory groups as the centers (Alg. 1-5).
Otherwise, as in Alg. 1-7 and 8, the trajectories with the
C highest v values are selected as the cluster centers. The
whole initialization process is described in Alg. 2-1,2,3.

With above initialization process, we group trajecto-
ries into super-trajectories according to their spatiotempo-
ral relationships and similarities (see Fig. 4(b)). Next, we
iteratively refine our super-trajectory assignments. In this
process, each trajectory is classified into the nearest cluster
center.

For reducing the searching space, we only search the
trajectories fall into a 2R x 2R x T space-time volume
around the cluster center 7;; (Alg. 2-7). This results in a
significant speed advantage by limiting the size of search
space to reduce the number of distance calculations. Once
each trajectory has been associated to the nearest cluster
center, an update step adjusts the center of each trajectory
cluster via Alg. 1 with C' = 1 (Alg. 2-14,15). We drop very
small trajectory clusters and combine those trajectories to
other nearest trajectory clusters. In practice, we find 4 ~ 5
iterations for above refining process are enough for obtain-
ing satisfactory performance. Visualization results of super-
trajectory generation with different iterations are presented
in Fig. 4.

Using DPC in Alg. 1, we group all trajectories
T = {n}; into m non-overlapping clusters, repre-
sented as super-trajectories X' = {x;}}]L;, where x; =
{7 | 7 is classified into j-th cluster via Alg. 2}. Note that,
m (the number of super-trajectories) is varied at each it-
eration in Alg. 2 since we merge small clusters into other
clusters. Additionally, m for different videos is different
even with same input parameter K. That is important, since

Input: All the trajectories {7; };, spatial sampling step R;
Output: Super-trajectory assignments;
/* Initialization */
1: Obtain K trajectory groups via spatial sampling step R;
2: Set initial cluster number C' = T'/L for each group;
3: Obtain initial cluster centers {7,/ };» from each trajectory
group via Alg. 1, where |{7; }+| =m;

4: loop
/* Iterative Assignment */
5: Set label I; = —1 and distance x; = H for each
trajectory 7;;
6: for each trajectory cluster center 7;; do
7: for each trajectory 7; fallsin a 2R x 2R x T space-
time volume around 7;» do
8: Compute distance d;;; between 7; and 7 via
Eq. 11;
9: if dji’ < Kj then
10: Set Kj = dji// lj = i/;
11: end if
12: end for

13: end for

/* Update Assignment */
14: Set cluster number C' = 1 for each group;
15:  Update {7, }; for each cluster via Alg. 1.
16: end loop

different videos have different temporal characteristics, thus
we only constrain their spatial shape via K.

4 SUPER-TRAJECTORY FOR SEGMENTATION

In Section 3, we cluster a set of compact trajectories into
super-trajectory. In this section, we describe our video seg-
mentation approach that leverages on super-trajectories.

4.1

Given the mask M of the first frame, we seek a binary par-
titioning of pixels into foreground and background classes.
Clearly, the annotation can be propagated to the rest of the
video, using the trajectories that start at the first frame.
However, only a few of points can be successfully tracked
across the whole scene, due to occlusion, drift or unreliable
motion estimation. Benefiting from our efficient trajectory
clustering approach, super-trajectories are able to spread
more annotation information over longer periods. This in-
spires us to base our label propagation process on super-
trajectory.

For inferring the foreground probability of super-
trajectories X, we first divide all the trajectories 7 into
three categories: foreground trajectories 7/, background
trajectories 7° and unlabeled trajectories 7“, where 7 =
T/ UTPUT% The T/ and T are the trajectories which
start at the first frame and are labeled by the annotation
mask M, while the 7" are the trajectories start at any
frames except the first frame, thus cannot be labeled via
M. Accordingly, super-trajectories X are classified into two
categories: labeled ones X! and unlabeled ones X“. A la-
beled super-trajectory Xé’ € X! contains at least one labeled

Super-Trajectory based Propagation
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Fig. 5. (a) Input frames. (b) Estimated foregrounds via Eq. 12 and the appearance model in Section 4.1. (c) Estimated foregrounds via our
reverse tracking strategy (Eq. 14) and the updated appearance model in Section 4.2. (d) Estimated foregrounds via backward re-occurrence

based optimization (Eq. 16, Section 4.3). (e) Final segmentation results.

trajectory from 7/ or 7?, and its foreground probability can
be computed as the ratio between the included foreground
trajectories and the labeled ones it contains:

pr(xh) = b, N 77|
PP AT+ N T

(12)

For the points belonging to the labeled super-trajectory Xé'/
their foreground probabilities are set as ps(x}).

Then we build an appearance model for estimating
the foreground probabilities of unlabeled pixels. The ap-
pearance model is built upon the labeled super-trajectories
X!, consists of two weighted Gaussian Mixture Models
over RGB color values, one for the foreground and one
for the background. The foreground GMM is estimated
form all labeled super-trajectories X', weighted by their
foreground probabilities {py(x})};. The estimation of back-
ground GMM is analogous, with the weight replaced by
the background probabilities {1—py(x’)};. The foreground
GMM is initialized with 3 components, while the back-
ground GMM has 5 components, following general set-
tings. The appearance models leverage the foreground and
background super-trajectories over many frames, instead of
using only the first frame or labeled trajectories, therefore
they can robustly estimate appearance information.

4.2 Reverse Tracking

Although above model successfully propagates more anno-
tation information across the whole video sequence, it still
suffers from some difficulties: the model will be confused
when a new object comes into view (see Fig. 5 (b)). To
this, we propose to reversely track points for excluding new
incoming objects. We compute the ‘source’ of unlabeled
trajectory 7' € T™:

(z0,%0) = (T1,Y1) — Vs, (13)
where (21, 1) indicates starting position and (252 refers to
velocity via Eq. 10. It is clear that, if the virtual position
(z0,y0) is out of image frame domain, trajectory 7 is a
latecomer. For those trajectories 7° C T* start outside view,
we treat them as background. Labeled super-trajectory Xé‘ €

X! is redefined as the one contains at least one trajectory
from 7/, T? or T°, and Eq. 12 is updated as

pr(x)) = N7
AT+ G AT+ RGN Tl

Those outside trajectories 7° are also adopted for training
appearance model in prior step. According to our experi-
ment in Section 5.3, this assumption offers about 6% perfor-
mance improvement. Foreground estimation results via our
reverse tracking strategy are presented in Fig. 5 (c).

(14)

4.3 Backward Re-occurrence

Most video segmentation methods assume objects are con-
sistent between successive frames. However, it is also very
common that objects move into or leave view, which poses
great challenge for existing approaches. Instead of constrain-
ing local object consistency, we pursue global consistency
via exploring re-occurrence of objects across the whole scene.
As suggested by [19], objects, or regions, often re-occur
both in space and in time. Here, we build correspondences
among re-occurring regions across distant frames and trans-
port foreground estimates globally. This process is based on
super-pixel level, since super-trajectories cannot cover all of
pixels.

Let {r;}; be the superpixel set of input video. For each
region, we search its N Nearest Neighbors (NNs) as its
re-occurring regions using KD-tree search. For region r;
of frame I;, we only search its NNs in previous frames
{I1,- -+, I;}. Such backward search strategy is for biasing the
segmentation results of prior frames as the propagation
accuracy degrades over time. Following [19], each region
r; is represented as a concatenation of several descriptors
fr;: RGB and LAB color histograms (6 channelsx20 bins),
HOG descriptor (9 cellsx6 orientation bins) computed over
a 15 x 15 patch around superpixel center, and spatial coor-
dinate of superpixel center. The spatial coordinate is with
respect to image center and normalized into [0, 1], which
implicitly incorporates spatial consistency in NN-search.

After NN-search in the feature space, we construct a
weight matrix W for all the regions {r; };:

e~ Wil i r; is one of NNs of r;
Wij =41 ifi=j (15)
0 otherwise
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Then a probability transition matrix P is built via row-
wise normalization of WW. We define a column vector v
that gathers all the foreground probabilities of {r;};. The
foreground probability of a superpixel is assigned as the
average foreground probabilities of its pixels.

Then we iteratively update v via the probability transi-
tion matrix P. In each iteration k, we update v(*) via:

o) = pyk=1) (16)
which equivalents to updating foreground probability of
a region with the weighted average of its NNs. In each
iteration, we keep the foreground probabilities of those
points belonging to labeled trajectories unchanged. Then
we recompute v(¥) and update it in next iteration. In this
way, the relatively accurate annotation information of the
labeled trajectories is preserved. Additionally, the annota-
tion information is progressively propagated in a forward
way and the super-trajectories based foreground estimates
are consistent even across many distant frames (see Fig. 5
(d))-

After 10 iterations, the pixels (regions) with foreground
probabilities lager than 0.5 are classified as foreground,
thus obtaining final binary segments. In Section 5.3, we test
N = {4,6,---,20} and only observe +0.3% performance
variation. We set N = 8§ for obtaining best performance.

5 EXPERIMENTAL RESULTS

The performance evaluation and analysis of the proposed
approach are reported in this section. Two groups of exper-
iments are conducted. First, our approach is compared with
some of the state-of-the-art video segmentation approaches
on three universally acceptable benchmarks. Second, a few
important issues regarding our approach are discussed,
such as dissecting various components and variants, and
the running time.

5.1

Parameter Settings In Section 3.2, we set number of
spatial grids K = 1200. In Section 4.3, we over-segment
each frame into about 2000 superpixels via SLIC [70] for
good boundary adherence. For each superpixel, we set
the number of NNs N = 8. In our experiments, all the
parameters of our algorithm are fixed to unity.

Experimental Setup

Datasets We evaluate our method on three public video
segmentation benchmarks, e.g., DAVIS [5], YouTube-Objects
[6], and Segtrack-V2 [7]. Some statistics and features of these
datasets are summarized in Table 1.

The newly released DAVIS [5] contains 50 video se-
quences (3455 frames in total) and pixel-accurate manual
ground-truth for the foreground object in every frame.
These videos span a wide range of typical challenges en-
countered in video object segmentation such as occlusions,
fast-motion, appearance changes and motion blur. The
videos in DAVIS are split into train set (30) and validation
set (20).

Youtube-Objects [0] is a large dataset of 1, 407 videos
collected from 155 web videos. This dataset includes videos
with 10 object categories. With the setting and ground-truth

8
TABLE 1
Characteristics of three video segmentation datasets used in
evaluation.
[ Dataset H Ref [ Year [ #Videos [ #Frames [ #Objects l
50

DAVIS [5] | 2016 (train:30,0a1:20) 3,455 50
YouTube-Objects ] |2012 126 20, 000 126
Segtrack-V2 ] 12013 14 947 24

masks of [13], we consider totally 126 videos with more than
20, 000 frames. The annotations are roughly pixel-level and
provided on every 10" frame of downsampled videos.
SegTrack-V2 [7] extends the SegTrack dataset [29] to con-
tain 8 additional videos, in which totally 14 low-resolution
video sequences with 24 instance objects and 947 frames.
SegTrack-V2 is a relatively small but is the most widely
adopted dataset for video segmentation. It is originally pro-
posed for joint segmentation and tracking and is designed
to be challenging with respect to background-foreground
color similarity, fast motion and complex shape deforma-
tion. Pixel-level annotation on the objects is offered for
every frame. Since instance-level masks are provided for se-
quences with multiple objects, in our experiments, we treat
each specific instance segmentation as separate problem.

5.2 Performance Comparison

To evaluate the quality of the proposed Super-Trajectory
based Video segmentation (STV), we provide in this sec-
tion both qualitative as well as quantitative comparison
on DAVIS dataset [5], Youtube-Object [6] and SegTrack-V2
[7] datasets. We compare the proposed STV against nine

classical state-of-the-art alternatives: BVS [40], FCP [38], JMP
[44], SEA [37], TSP [11], HVS [9], VSF [33], SCF [13], and
OFL [34]. BVS, FCP, JMP, SEA, VSF, SCF, and OFL are semi-

supervised video segmentation approaches. TSP and HVS
are for unsupervised over-segmentation, but they can also
accept initial annotation in the first frame, following the
settings in [5]. For completeness, we also report six deep
learning based semi-supervised video segmentations mod-
els: VPN [49], CTN [52], SFL [53], MSK [50], OSVOS [51],
and OnAVOS [54]. The results are obtained via running their
publicly available codes with default settings or borrowed
from their papers.

5.2.1 Evaluation on DAVIS Dataset

Evaluation Metrics We evaluate the effectiveness of our
approach on DAVIS dataset with three accompanied evalua-
tion tools: intersection-over-union metric (7) for measuring
the region-based segmentation similarity, F-measure (F) for
measuring the contour accuracy, temporal stability (7") for
measuring the temporal consistency of segments.
Intersection-over-union metric is one of the most widely
adopted metric to evaluate the performance of image/video
segmentation methods. Given a segmentation mask A and
ground-truth G, intersection-over-union score is defined as

MNG

j:MUG
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TABLE 2
loU score (), contour accuracy (F) and temporal stability (7") averaged on the validation set of DAVIS [5]. For loU score and contour accuracy,
higher values are better. For temporal stability, lower values are better. The best results of non-deep learning and deep learning models are
boldfaced, respetively.

Non-Deep Learning Model

Deep Learning Model

Pataset Metric BVS [ FCP [ JMP | SEA | TSP | HVS [ STV || VPN [ CTN | SFL | MSK | OSVOS [ OnAVOS
ToU Score 7 T || 0-600 | 0.584 [ 0570 | 0.504 | 0.319 | 0.546 | 0.689 || 0702 | 0.735 | 0.761 0797 | 0798 | 0.861
DAVIS | Contour Accuracy F 1 || 0.588 | 0.492 | 0.531 | 0.480 | 0.297 | 0.529 | 0.670 || 0.655 | 0.693 | 0.760 | 0.754 | 0.806 | 0.849
Temporal stability 7 | || 0.347 [ 0.306 | 0.159 | 0.154 | 0561 | 0.360 | 0.185 || 0.324 | 0.220 | 0.189 | 0218 | 0378 | 0.190

Fig. 6. Qualitative segmentation results on four video sequences from DAVIS [5] (from top to bottom: bmx-bumps, breakdance-flare, dog-agility and
libby). It can be observed that the proposed algorithm is applicable to a large set of scenarios and robust to scale changes, motion blur, occlusions

and multiple splits, and background appearance similarities.

J

Fig. 7. Qualitative segmentation results on representative video sequences from Youtube-Objects dataset [6] (from top to bottom: aero02, bird12,

and dog10). The initial masks are presented in the first row.

Contour accuracy (F) is for measuring how well the seg-
ment contours ¢(M) match the ground-truth contour ¢(G).
Contour-based precision P, and recall R. between ¢(M)
and ¢(G) can be computed via bipartite graph matching.
Given P, and R, , contour accuracy F is defined as

2P.R.
P.+R.

Temporal stability (7) is used for penalizing incon-
sistent segments. It is computed as the per-pixel cost of
matching two successive segmentation contours. The match
is achieved by minimizing the Shape Context Descriptor
(SCD) [71] distances between the matched points.

f:

Quantitative Results In Table 2, IoU score, contour accuracy,
and temporal stability (averaged on the validation set of the
DAVIS dataset) are reported. It can be observed that, among
the heuristic video segmentation models, our method (STV)
achieves the highest average IoU score (0.689) over the
20 video sequences from the validation set of the DAVIS
dataset. Our results also achieve a significant improvement
over the second best algorithm BVS (0.600) and the third
best algorithm FCP (0.584). In addition, STV achieves the
best overall contour accuracy (0.670) over other non-deep
learning based algorithms and gains a competitive temporal
stability score (0.185). This demonstrates that our segments
align better with the ground-truth object boundaries and
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TABLE 3
loU score (7) on the Youtube-Objects dataset [6]. The average is
computed over all 126 video sequences. Higher values are better. The
best results are boldfaced.

10

TABLE 4
loU score (J) on the SegTrack-V2 dataset [7]. The average is
computed over all 24 object instances. Higher values are better. The
best results are boldfaced.

Method Dataset Object Method
Dataset | Category | 5ys T GFL T VSF [ 5CF [ STV : BVS [ OFL [ SEA [ HVS [ STV
aeroplane || 0.808 | 0.853 | 0.890 | 0.862 | 0.811 bird of paradise || 08371 08711 0823 1 0868 1 0501
: irdfall 0.653 | 0.529 | 0.093 | 0.574 | 0.461
bird 0.764 | 0.831 | 0.816 | 0.810 | 0.813 bmx1 0671 | 0879 | 0445 | 0392 | 0922
boat 0.601 | 0.706 | 0.742 | 0.685 | 0.791 bmx2 0.032 | 0.040 | 0.000 | 0325 | 0.401
car 0.567 | 0.688 | 0.709 | 0.693 | 0.754 cheetahl 0.054 | 0.259 | 0.177 | 0.188 | 0.666
cat 0.527 | 0.606 | 0.677 | 0.588 | 0.780 cheetah2 0.092 | 0.372 | 0.006 | 0.244 | 0.467
Yotube cow 0.648 | 0.715 | 0.791 | 0.685 | 0.722 driftl 0685 | 0.779 | 0429 | 0.552 | 0.934
-Object | dog 0.616 | 0.716 | 0.703 | 0.617 | 0.739 drift2 0.327°1 0.274 | 0.111 1 0.272" 0.509
horse || 0.531 | 0.623 | 0.678 | 0539 | 0.716 frog 0761 ) 0784 1 0.634 1 0671 ) 0812
- girl 0.865 | 0.842 | 0.624 | 0.319 | 0.916
motorbike || 0.416 | 0.599 | 0.615 | 0.608 | 0.680 hummingbirdl || 0532 | 0.672 | 0.140 | 0.137 | 0.762
train 0.621 | 0.747 | 0.782 | 0.663 | 0.761 SegTrack | hummingbird2 || 0.287 | 0.685 | 0.368 | 0.252 | 0.675
monkeydogl 0.405 | 0471 | 0.049 | 0.683 | 0.432
monkeydog?2 0.171 | 0.210 | 0.090 | 0.188 | 0.874
. parachute 0.937 | 0.933 | 0.925 | 0.691 | 0.942
they are temporally consistent. We also observe that, com- penguinl 0.816 | 0.804 | 0.802 | 0.720 | 0.970
pared with the heuristic methods, deep learning based semi- penguﬁné 8%(5) 822; 812; 83(5); 82?13
s s : : enguin . . . . B
supervised video s.egmentatlon algorithms generate more genguin . 076a | 0se2 | 0516 | 0806 | 0920
accurate segmentation results. penguin5 0478 | 0.823 | 0537 | 0.627 | 0.863
Qualitative Results Qualitative video segmentation results penguiné 0.843 | 0.873 | 0.701 | 0.755 | 0.952
for four video sequences from the DAVIS dataset [5] are solider 0.553 | 0.868 | 0.719 | 0.665 | 0.908
presented in Fig. 6. With the first frame as initialization, the worm 0.654 | 0.832 | 0.724 | 0.347 | 0.650
\ [ Avg. [[ 0584 | 0.675 | 0.453 | 0.518 | 0.781 |

proposed algorithm has the ability to segment the objects
with fast motion patterns (breakdance-flare) or large shape
deformation (dog-agility). It also produces accurate segmen-
tation maps even when the foreground suffers occlusions
(libby). In Section 5.3.3, we provide a more detailed analysis
of the performance of our method for typical video object
segmentation challenges.

5.2.2 Evaluation on Youtube-Object and SegTrack-V2

Quantitative Results We report our performance on the
Youtube-Object [6] and SegTrack-V2 [7] datasets, which
are widely used for semi-supervised segmentation. The
IoU scores of our and various state-of-the-art methods on
Youtube-Object and SegTrack-V2 are presented in Table 3
and Table 4, respectively. As can be seen, our method
outperforms other methods overall, achieving the best IoU
score on most of the videos with the average score up to
0.753 (Youtube-Object) and 0.781 (SegTrack-V2).

Qualitative Results Representative pixel labeling results
on Youtube-Object and SegTrack-V2 datasets are shown in
Fig. 7 and Fig. 8. We can observe that the target foreground
objects in challenging scenarios (such as existence of similar
objects, deformations, color changes, motion and image
blur, scale variations, etc.) can be accurately segmented out
by our algorithm. Our quantitative and qualitative results
demonstrate the power of our method.

5.3

In this section, we offer more detailed exploration for the
proposed approach in several aspects with DAVIS dataset
[5]. We test the values of important parameters, verify basic
assumptions of the proposed algorithm, evaluate the contri-
butions from each part of our approach, perform attribute-
based study and conduct runtime comparison.

In-Depth Validation Experiments

5.3.1 Parameter Verification

With the train set of the DAVIS dataset, we first study the
influence of the needed input parameter: number of spatial
grids K, of our super-trajectory algorithm in Section 3.2. We
report the performance by plotting the IoU value of the seg-
mentation results as functions of a variety of K's, where we
vary K = {800,900, ---,1500}. As shown in Fig. 9 (a), the
performance increases with finer super-trajectory clustering
in spatial domain (K1). However, when we further increase
K, the final performance does not change obviously. In
our experiments, we set K = 1200 where the maximum
performance is obtained over the train set of DAVIS.

Later, we investigate the influence of parameter N,
which indicates the number of the NNs of a region in Sec-
tion 4.3. We plot IoU score with varying N = {2,4, - - -, 20}
in Fig. 9 (b), and set N = 8 for achieving best performance.

5.3.2 Ablation Study

To quantify the improvement obtained with our proposed
trajectories in Section 3.1, we compare to two baseline
trajectories: LTM [15] and DAD [66] in our experimental
results. LTM is widely used for motion segmentation and
DAD shows promising performance for action detection. To
be fair, we only replace our trajectory generation part with
above two methods, estimate optical flow via LDOF [69]
and keep all other parameters fixed.

To further dissect various parts of our method, we offer
five variants of the proposed algorithm STV, list as follows:

e STV-s: For demonstrating the effectiveness of the
our super-trajectory based label propagation in Sec-
tion 4.1, we offer baseline STV-s by performing label
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Fig. 8. Qualitative segmentation results on representative video sequences from SegTrack-V2 [7] (from top to bottom: cheetah1, drift1, and

penguin3). The initial masks are presented in the first row.
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Fig. 9. The loU scores for parameter selection for number of spatial grids
K (a) and the number of the NNs N (b). See Section 5.3.1 for more
detailed discussion.

propagation on trajectory level and only use labeled-
trajectories for establishing appearance model.

e STV-r: For evaluating the effectiveness of the pro-
posed reverse tracking strategy in Section 4.2, we
offer baseline STV-r by performing segmentation
without considering outside trajectories 7°.

s STV-b: For evaluating the effectiveness of the back-
ward re-occurrence assumption, we offer baseline
STV-b via performing segmentation without Eq.16.

e STV-KM: For accessing the influence of the DPC
algorithm, we offer baseline STV-KM via replacing
DPC with K-means clustering algorithm.

e STV-5C: For accessing the influence of the DPC algo-
rithm, we offer baseline STV-KM via replacing DPC

0.7

STV-H
0.657

STV-KM
0641

STV-SC
0.653

STV-s
0558

STV~
0632

LTM

DAD
0612

0.663

Fig. 10. Average loU score over the validation set of DAVIS dataset. We
compare our method (STV) with two trajectory based methods: LTM [15]
and DAD [66], and five variations of our algorithm: STV-s, STV-r, STV-b,
STV-KM and STV-SC. See Section 5.3.2 for more details.

with spectral clustering algorithm.

The comparison results with above baselines are summa-
rized in Fig. 10. Four important conclusions can be drawn:
(1) compared with classical trajectory methods [15], [66],
the proposed trajectory generation approach is preferable;
(2) significant improvement over STV-s (0.689 vs 0.558)
clearly demonstrates the advantage of super-trajectory for
capturing rich structure information of video; (3) the im-
provement over STV-r and STV-b verifies the effectiveness
of our reverse tracking strategy and global optimization
via backward re-occurrence; (4) the DPC algorithm is more
favored compared with K-means (0.689 vs 0.641) or spectral
clustering algorithm (0.689 vs 0.653).

5.3.3 Attribute-Based Analysis

The videos in the DAVIS dataset are also categorized accord-
ing to their various attributes such as appearance change
(AC), background clutter (BC), camera shake (CS), dynamic
background (DB), deformation (DEF), edge ambiguity (EA),
fast motion (FM), heterogeneous objects (HO), interesting
objects (IO), low resolution (LR), motion blur (MB), occlu-
sion (OCC), out-of-view (OV), shape complexity (SC), scale-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

12

TABLE 5
Attribute-based aggregate performance on the DAVIS dataset with loU score (7). Higher values are better. The best performing method of each
category is highlighted in boldfaced.

Dataset | Method Attribute
AC [ BC [ CS [ DB [ DEF [ EA [ M [ HO [ 10 [ LR [ MB [ OCC [ [©)Y [ SC [ SV
BVS 0.459 | 0.627 | 0.621 | 0.604 | 0.704 | 0.575 | 0.534 | 0.628 | 0.628 | 0.594 | 0.579 | 0.681 | 0.430 | 0.671 | 0.490
FCP 0.509 | 0587 | 0.611 | 0.622 | 0.612 | 0.577 | 0.554 | 0.597 | 0.595 | 0.589 | 0.530 | 0.589 | 0.526 | 0.592 | 0.524
JMP 0.580 | 0.607 | 0.609 | 0.595 | 0.593 | 0.557 | 0.503 | 0.561 | 0.588 | 0.511 | 0.509 | 0.470 | 0.611 | 0.525 | 0.581
SEA 0.461 | 0.586 | 0.424 | 0.577 | 0.498 | 0.516 | 0.395 | 0.494 | 0.543 | 0.472 | 0.394 | 0470 | 0.441 | 0.505 | 0.491
DAVIS TSP 0.174 | 0.414 | 0.359 | 0.400 | 0.313 | 0.326 | 0.177 | 0.281 | 0.347 | 0.308 | 0.147 | 0.269 | 0.215 | 0.334 | 0.239
HVS 0.418 | 0.622 | 0.561 | 0.603 | 0.590 | 0.546 | 0.418 | 0.541 | 0.566 | 0.485 | 0.435 | 0.527 | 0.415 | 0.572 | 0.460
STV-s 0.465 | 0571 | 0.553 | 0.568 | 0.537 | 0.525 | 0.510 | 0.547 | 0.569 | 0.517 | 0.493 | 0.532 | 0.486 | 0.527 | 0.498
STV-r 0.524 | 0.653 | 0.621 | 0.647 | 0.704 | 0.610 | 0.584 | 0.647 | 0.654 | 0.582 | 0.550 | 0.638 | 0.540 | 0.657 | 0.561
STV-b 0.547 | 0.674 | 0.653 | 0.679 | 0.730 | 0.631 | 0.602 | 0.663 | 0.684 | 0.617 | 0.583 | 0.654 | 0.581 | 0.692 | 0.598
STV || 0.588 | 0.706 | 0.699 | 0.713 | 0.753 | 0.662 | 0.631 | 0.703 | 0.710 | 0.641 | 0.628 | 0.712 | 0.623 | 0.711 | 0.624
‘ —BVS —FCP —JMP —SEA —TSP —HVS —STV V), which.usually degrade; methods that strongly rely
_— on propagation of segmentations on a per-frame basis. We
2 also observe significant improvement in cases with scale-
0.9 variations and low-resolution objects, which are typically
failure cases for methods relying on spatiotemporal connec-
0.8 - \ .
\\,.,\ tions.
NN
0.7 e "~ '
N \’NM\J\//V\“\/\\ 5.3.4 Performance over Time
06 1 ~, For semi-supervised video segmentation, as the number
AN N\~ f f i th f ill d i
05 | N of frames increases, the performance will decrease since
\m\"’\‘ errors accumulate over time. In Fig. 11, we plot the IoU
04 1 \J\ scores of different approaches BVS [40], FCP [38], JMP [44],
SEA [37], TSP [11] and HVS [9], with the initial annotation
03 1 propagated over time. It can be observed that, the IoU score
02 1 of our method drops more slowly and consistently gains
better performance over different numbers of propagation
01 frames, compared with other methods. This demonstrates
0 0 20 3 4 5 60 70 8 90

Length of Frames

Fig. 11. Segmentation performance with loU score over time, reported
on DAVIS dataset. It can be observed that the loU decreases during
propagation of the initial mask over the consecutive video frames. Our
method STV has consistently better performance compared to others.

variation (SV). With these attribute annotations, we present
a more detailed evaluation in Table 5. Three variations of the
proposed STV method: STV-s, STV-r, and STV-b, described
in Section 5.3.2, are also included for a thorough analysis of
the effectiveness of our super-trajectory representation, the
influence of the proposed reverse tracking scheme and the
backward re-occurrence strategies.

The attribute based analysis shows that the proposed
video segmentation model, STC, is robust to various chal-
lenges presented in the DAVIS dataset. Specifically, it com-
pares favorably on any subset of videos sharing the same
attribute. Due to the representation power of the super-
trajectory and the efficient DPC algorithm, our segmentation
model handles the dynamic background (DB) and motion
blur (MB) well. With the reverse tracking strategy, STC is
able to discriminate the cases involving the background
clutter (BC), and occlusion (OCC). By leveraging on the
backward re-occurrence, STV recovers from the out-of-view
scenarios (OV) and attains an increased robustness to the de-
formation (DEF), shape complexity (SC), and scale-variation

the results of our method experience less drift of the object
regions over time.

5.3.5 Runtime Comparison

TABLE 6
Runtime comparison (seconds/frame) on the DAVIS [5].

Method BVS [40] FCP [38] HVS [9] OFL [34]
Time (s) 16 (0.377) >50 16 137
Code Type || Matlab&C++ Python C++ | Matlab&C++
Method SEA [37] TSP [11] | IMP [44] STV
Time (s) 6 63 14 9
Code Type || Matlab&C++ | Matlab&C++ | C++ | Matlab&C++
" The runtime reported in [40] is offered for reference,
since the code released in https://github.com/owang/

Bilateral VideoSegmentation is much slower.

We conduct running-time comparisons on DAVIS
dataset [5] with 480p image frames. We include six semi-
supervised video segmentation methods BVS [40], FCP [38],
HVS [9], IMP [44], SEA [37], TSP [11] and OFL [34] for pro-
viding a comprehensive view of execution times of existing
approaches. The time comparison results (excluding optical
computation time) are listed in Table 6. Although we do not
have the code of FCP [38], it’s computation time must large
than 50 seconds per frame. Since FCP is based on object
proposal, which takes more than 50 seconds for processing
each frame. As seen, our method achieves a better tradeoff
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between performance and computation efficiency. All the
tests are performed on a Dell T5610 workstation with an
Intel Xeon E5 CPU of 2.50 GHz. The proposed method is
implemented with MATLAB and C++.

6 CONCLUSIONS AND FUTURE WORK

We introduced a super-trajectory representation based semi-
supervised video segmentation approach. We demonstrated
that, based on the density peaks based clustering, compact
trajectories can be efficiently grouped into super-trajectories.
Super trajectory possesses various desired properties and
capable of capturing: i) long-term motion information, ii) lo-
cal spatiotemporal information, and iii) diverse and compact
features of video. We showed that, in our context, occlusion
and drift are naturally handled by our trajectory generation
method using the probabilistic model. Our solution for
reverse tracking points and our approach to leverage the
property of region re-occurrence both lead an improved
robustness for many segmentation challenges such as oc-
clusions and move-in/-out.

By extensive experimental evaluations on three large
video segmentation datasets [5], [6], [7], we verified that our
approach outperforms the current non-deep learning based
and heuristic methods. We also analyzed several variants
and components for a comprehensive assessment of various
aspects of our method.

One potential direction for future work is to combine
our super-trajectory with deep learning descriptors, as the
work of [68], for a more powerful representation of video
sequences. Additionally, our work provides valuable evi-
dence toward combining compact spatiotemporal represen-
tation with certain priors (e.g., saliency, objectness) for other
computer vision applications such as action recognition.
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