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Abstract—In visual tracking, usually only a small number
of samples are labeled, and most existing deep learning based
trackers ignore abundant unlabeled samples that could provide
additional information for deep trackers to boost their tracking
performance. An intuitive way to explain unlabeled data is to
incorporate manifold regularization into the common classification
loss functions, but the high computational cost may prohibit
those deep trackers from practical applications. To overcome
this issue, we propose a two-stage approach to a deep tracker
that takes into account both labeled and unlabeled samples.
The annotation of unlabeled samples is propagated from its
labeled neighbors first by exploring the manifold space that these
samples are assumed to lie in. Then, we refine it by training
a deep convolutional neural network using both labeled and
unlabeled data in a supervised manner. Online visual tracking is
further carried out under the framework of particle filters with
the presented manifold regularized deep model being updated
every few frames. Experimental results on different tracking
datasets demonstrate that our tracker outperforms most existing
tracking approaches. The source code and results are available at:
https://github.com/shenjianbing/MRCNNTracking.

Index Terms—Convolutional neural networks, deep learning,
deep tracker, manifold regularization, object tracking, online
tracking.
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I. INTRODUCTION

A S A fundamental topic in multimedia processing, vi-
sual tracking could be used in different practical appli-

cations, especially human-computer interaction, autonomous
cars, biomedical image analysis and video surveillance [4], [7],
[28], [44]. It is a challenging problem due to target appearance
changes caused by illumination variation, occlusion, motion
blur, background clutter, etc. Visual tracking has been studied
for decades, and researchers have developed and designed var-
ious tracking algorithms to handle those challenges [11], [17],
[21], [27], [38]. Recently, deep Convolutional Neural Networks
(CNNs), being a powerful representation of visual data, have
been applied to various multimedia processing topics [31], such
as object detection, and image classification. Deep CNNs have
also been used in visual tracking and achieve outstanding track-
ing performance.

Actually, the use of deep networks in visual tracking is never
a smooth ride. The deficiency of labeled data in visual track-
ing limits the application of deep CNNs to the tracking field.
The main reason is that obtaining an efficient deep model needs
large-scale annotated data. However, in visual tracking, the an-
notated samples are cropped from the first frame in a video,
which are too few to train the complex CNNs with millions of
parameters. To handle this problem, two types of CNNs based
tracking methods have been proposed from the perspective of
sample collection. The first type in [22], [32] adopts the CNNs
trained on object detection or image classification datasets to
the tracking field and regard them as a feature extraction tool.
However, it may not be suitable for the tracking problem by
transferring deep models from a non-tracking field. Moreover,
a large-scale dataset, which could train a CNN model for visual
tracking, is still unavailable. And it needs tremendous efforts
to annotate a benchmark for training deep trackers. Hence, the
second type of trackers [24], [29] collect training samples from
the barely available annotated tracking benchmarks and con-
sider the CNN as a classifier to distinguish the target from the
complex background. The above deep methods are trained with
labeled samples to achieve impressive tracking performance, but
they ignore the unlabeled samples which are the most common
data in visual tracking. In this paper, we attempt to make an
effective use of those unlabeled and labeled samples together
for accurate target location.

Visual data, including labeled and unlabeled samples, on a
high dimensional space often lie on a manifold with a smaller
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dimensionality than the original space [40]. To exploit the ge-
ometry of a high dimensional sample space, manifold regular-
ization has been proposed by combining labeled and unlabeled
data into a unified semi-supervised learning framework [3]. It
has been widely applied in many vision fields, such as data fu-
sion and classification. The deep learning algorithms under a
manifold regularization framework [15], [33] are introduced as
well. But manifold regularized CNNs have not been generalized
to the tracking problem. The major issue is that the training pro-
cedure of semi-supervised CNNs is time-consuming, which is
not suitable for online visual tracking. To handle this problem,
Lee [18] proposed pseudo labels for unlabeled samples to train
an efficient semi-supervised deep model, which is equivalent
to entropy regularization [19]. Inspired by the aforementioned
methods, we generate the deduced labels for unlabeled data
points under the manifold assumption and introduce an efficient
tracker using CNNs.

We introduce a manifold regularization item in the loss
function of CNNs by considering the unlabeled samples arising
during tracking, but it will be a time-consuming strategy for
online tracking. Therefore, by deducing labels for unlabeled
samples according to the manifold structure of the sample
space, we could learn a deep model in a supervised manner ap-
proximately instead of the complex semi-supervised problem.
Motivated by these facts, we introduce a two-stage approach
to the deep tracker that takes both labeled and unlabeled
samples into account as shown in Fig. 1. The presented tracking
approach offers the following three-fold contributions:

� To better exploit both labeled and unlabeled samples, vi-
sual data in a manifold space are assumed to have sim-
ilar labels with their neighbors. This is formulated as a
graph Laplacian regularization with a Gaussian random
field. The labels of unlabeled samples are calculated by
the weighted average of its neighbors using this Gaussian
harmonic function.

� Those unlabeled samples with the deduced labels are used
to update a pre-trained CNN along with labeled samples.
The deduced labels of unlabeled data only relying on the
structural space may be inaccurate. Thus, we train a CNN
model using the deduced samples as part of training sam-
ples and output a more accurate tag for each unlabeled
one.

� Our tracker is carried out under the framework of particle
filters with online updated CNNs. The proposed tracking
approach is then verified on several public tracking bench-
marks and achieves better tracking results.

II. RELATED WORKS

A large number of visual tracking algorithms [28], [39] have
been proposed over decades. They are typically classified into
generative and discriminative trackers. It is out of the scope of
this work to comprehensively review those tracking methods.
We only review the mostly related works, and a more compre-
hensive overview can be found in [28].

Traditional discriminative tracking methods utilize hand-
crafted representations such as CIE-Lab and HOG to model
the target appearance in general. For example, Henriques et al.

[10], [12] employed the HOG features to model the target and
locate the object center with kernelized correlation filters. Haar-
like features [20] were exploited in Struck [9] to perform online
tracking using the kernelized structured output SVM. Ning et al.
[25] used the original features of the color image to formulate
the final sample vectors and trained a discriminative classifier
using dual linear structured SVM. The SOWP descriptors [14]
were designed by combining spatially ordered features to ex-
tract multiple local patches for accurate visual tracking based
on the Struck tracker. Ma et al. [2] also used HOG features to
establish the final target representation. Qi et al. [48] used the
spare codes the represents a target. Those hand-crafted features
often rely on professional knowledge and are developed for spe-
cialized issues, which means they may not generalize well in
the tracking problem.

As the latest feature learning and classifier training tech-
niques, CNNs have been gradually used in visual tracking ap-
proaches. Ma et al. [22] extracted CNN features for each image
patch from VGG-Net trained on ImageNet, and learned multiple
linear correlation filters using different features obtained from
different convolutional layers. The tracking results were decided
by combinations of the response maps calculated by those corre-
lation filters. Wang et al. [32] proposed a tracking method using
fully convolutional networks, and designed a feature map selec-
tion approach to determine discriminative features for tracking.
Qi et al. [26], [34] presented a tracking method to construct
several weak trackers based on correlation filters, where each
one was trained using the CNN features extracted from different
layers. Wang et al. [46] investigated different strategies to tackle
the limited training samples in online tracking. The CNN here
was pre-trained on VGG-Net, and the adaptive hedging method
was applied to ensemble these weak trackers into a stronger
one. But the models obtained from other vision tasks may be
inappropriate for visual tracking. Nam and Han [24] learned
a representation for multi-domain learning based CNNs using
a large number of training samples from VOT [16] or OTB
[39]. Bertinetto et al. [5] trained a fully-convolutional end-to-
end Siamese network for visual tracking on the ILSVRC15
dataset [30]. Tao et al. [29] constructed a Siamese deep CNN
whose inputs are image pairs for visual tracking. They adopted
the ALOV dataset [28] to train and test their approach on OTB.
These methods all neglect the abundant unlabeled samples avail-
able in a visual tracking problem.

Manifold regularization based tracking methods aim to make
full use of both labeled and unlabeled data. Bai and Tang [1]
proposed a tracking method using online ranking support vec-
tor machines, where weakly labeled data in the current frame
were used to update their appearance model. Wang et al. [45]
also proposed a Laplacian regularization method to propagate
foreground labels. But the manifold regularized CNNs based
tracking method has not been well studied.

III. LABEL PROPAGATION USING GAUSSIAN FIELDS

HARMONIC FUNCTIONS

Now, we focus on the label propagation of unlabeled sam-
ples from labeled ones on an embedding manifold space using
Gaussian fields harmonic. Suppose that we are given l labeled
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Fig. 1. The proposed architecture for manifold regularized CNNs, where both accurately labeled samples and unlabeled samples with deduced labels are used
to train this network. The image patches surrounded with red rectangles indicate positive samples, and the green ones represent negative samples. The unlabeled
samples are surrounded with yellow rectangles.

samples {(xi , yi) | xi ∈ Rd , yi ∈ {0, 1}}l
i=1 where xi is the d-

dimensional data point and yi is its corresponding label, and
we obtain u unlabeled samples {xi}l+u

i= l+1 . A graph Laplacian
indicates that neighboring samples should share similar labels
on the manifold space, which could be formulated as

min
yl + 1 ,...,yl + u

l+u∑

i=1

l+u∑

j=1

wij (yi − yj )2 , (1)

where wij denotes the similarity weight between samples xi

and xj . Generally, the similarity is only relevant to the spatial
distance between a sample pair. In practice, we calculate the
weights of two samples only if they lie in the k nearest neighbors
of each other, i.e.,

wij =

⎧
⎪⎨

⎪⎩

exp(−‖xi − xj‖2/δ), xi ∈ Nk (xj )

exp(−‖xj − xi‖2/δ), xj ∈ Nk (xi)

0, otherwise

, (2)

where Nk (xi) is a set including the k nearest neighbors of
sample xi . Eq. (1) can be reorganized as

min tr
(
yT Ly

)
, (3)

where y = [yT
l yT

u ]T with yl = [y1 , y2 , . . . , yl ] represents the
labels of labeled samples and yu = [yl+1 , . . . , yl+u ] denotes
the labels of unlabeled samples. And the Laplacian matrix L =
D − W is calculated from similarity matrix W whose elements
are wij , and the diagonal elements of D are obtained by [D]ii =∑l+u

j=1 wij .
To deduce yu , Eq. (3) could be reformulated as

min
yu

tr

([
yT

l yT
u

] [
Lll Llu

Lul Luu

] [
yl

yu

])
, (4)

where Lll denotes the Laplacian matrix of labeled samples,
and Luu is the Laplacian matrix of all unlabeled samples, and
Llu = LT

ul represents the Laplacian matrix for labeled and un-
labeled samples. The above minimization problem could be
solved based on Gaussian fields harmonic functions [43]. As-
suming that we have a function f to predict the label yi of sample
xi , it is formulated as f(xi) = yi . The function f is assigned

with a Gaussian field probability distribution

p(f) =
exp(−βE(f))∫

f |L=fl
exp(−βE(f))df

, (5)

where β is a constant parameter, L indicates the set of labeled
samples, and the constraint L = fl indicates that the predictions
of labeled samples calculated by function f should be consistent
with their true labels, and E(f) =

∑l+u
i=1

∑l+u
j=1 wij (f(xi) −

f(xj ))2 . It can be proved that the optimal prediction function
f = arg minf |L=fl

E(f) is harmonic, i.e., Δf = 0 for unla-
beled data set where Δ denotes the combinatorial Laplacian
operation, and f = fl for labeled samples [37]. This property
means that the label of each unlabeled sample is the weighted
average of its labeled neighbors.

Thus, the optimal label vector y∗
u for unlabeled sample is

calculated as

y∗
u = Pyl , (6)

where P = −L−1
uuLul .

From this equation, the matrix P can be viewed as a projec-
tion matrix for label propagation. And yu could be regarded as
the deduced label vector for an unlabeled sample. But this label
vector may not be accurate enough since it only takes the spatial
structure of the embedding manifold into consideration and ne-
glects the discriminative information of labeled samples. Thus,
we train CNNs using both the spatial structure constituted by all
samples and the discriminative information of labeled samples
in the next section.

IV. MANIFOLD REGULARIZED CNNS FOR ONLINE

VISUAL TRACKING

A. Model Overview

As provided in the left-side of Fig. 1, we show the proposed
manifold regularized CNNs architecture trained with labeled
and unlabeled data, where the first three convolutional layers of
this network are taken from VGG-net with a resized RGB input.
Followed by the convolutional layers, we append three fully
connected layers. In our settings, different convolutional lay-
ers are usually connected by ReLUs, normalization, and max
pooling, and fully connected layers are connected by ReLUs
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and dropout. The softmax loss is applied as the loss function
to train this network for separating targets from the complex
background. The design of this network is different from ex-
isting deep networks for tracking. Firstly, the present network
receives both accurately labeled samples and unlabeled samples
with the deduced labels as its inputs, which takes full advantage
of the abundant unlabeled samples arising during tracking. Sec-
ondly, the network model needs no change for both pre-training
and updating, and it makes this deep model more convenient to
be applied in tracking. Besides, we treat the samples from dif-
ferent video sequences equally, where the shared information of
them is expected to be learned using this deep model. Finally,
the single binary classification layer in the last layer is suitable
for tracking, since visual tracking is modeled as a binary classi-
fication problem in most tracking-by-detection algorithms.

B. Network Update

We aim to train a manifold regularized CNN to distinguish
the target and the background. As one of the loss functions,
softmax loss has been widely used in many deep neural
networks. Its main role is equal to a softmax layer and a
multinomial logistic loss layer. We introduce a loss function
considering both labeled and unlabeled data. For labeled
samples {(xi ,yi) | xi ∈ Rd ,yi ∈ {0, 1}C }l

i=1 where C is the
number of sample categories. In our settings, C = 2 indicates
the two sample classifications including target and non-target.
And yi is a label vector with one non-zero element only. The
softmax loss in classical deep neural networks is written as

Ll = −1
l

l∑

i=1

C∑

j=1

yj
i log (pj (xi)) , (7)

where pj (xi) represents the j-th softmax output of sample xi ,
and yj

i the j-th element of label vector yi .
In order to utilize the unlabeled samples {xi}l+u

i= l+1 , we take
the deduced labels calculated in Section III to participate in
the network training. Let {y∗

i ∈ {0, 1}C }l+u
i= l+1 indicate the la-

bel vector of these unlabeled samples using Eq. (6). Thus, a
regularization term is defined after Eq. (7), i.e.,

L = (1 − λ)Ll + λLu , (8)

Lu = − 1
u

l+u∑

i= l+1

C∑

j=1

y∗
i
j log (p(xi)) , (9)

where y∗
i
j denotes the j-th element of the deduced label vector

for unlabeled sample xi calculated by Eq. (6). The function in
Eq. (8) is named as a manifold regularized softmax loss function,
and its derivative with respect to xi is ready to be obtained. If xi

denotes the labeled samples, only partial derivative of Ll should
be computed, and Lu otherwise. Let f be the softmax function,
and zi ∈ RC be the input of softmax loss with respect to sample
xi , i.e., pj (xi) = f(zj

i ) where zj
i represents the j-th element

of zi .

The final derivative consists of the two parts, and it is balanced
by a preset constant factor λ, i.e.,

∂L
∂zj

= (1 − λ)
1
l

l∑

i=1

C∑

j=1

yj
i

(
f(zj

i ) − 1
)

+ λ
1
u

l+u∑

i= l+1

C∑

j=1

y∗
i
j
(
f(zj

i ) − 1
)

. (10)

The CNN model designed in Section IV-A is therefore trained
with both labeled and unlabeled samples with the back propa-
gation method in a supervised manner. The presented manifold
regularized CNNs are trained by the min-batch stochastic gra-
dient descent method. The labeled training samples are cropped
from previous frames. And we take the candidates sampled in
the current frame around the previous target location as unla-
beled samples. In fact, the number of these samples is quite
small in contrast to the complex deep neural networks. It not
only may cause overfitting when training the whole network
using these samples, but also increases the computational com-
plexity which makes it impractical for online tracking. Thus, we
only update the weights of the last three fully connected lay-
ers for computational efficiency and keep the weights of other
layers unchanged.

C. Offline Pre-training

The three convolutional layers of this network are taken from
VGG-net trained with classification data (ImageNet), which
may not be appropriate for visual tracking problems. There-
fore, we collect training samples from VOT2015 [16], and learn
the model parameters with these samples. The positive and neg-
ative samples are sampled from every annotated frame in the
datasets. The positive samples and negative samples are col-
lected in each frame from the training dataset. The samples are
collected around the target region according to a Gaussian dis-
tribution, and we choose 50 of those samples whose overlap
with ground-truth is larger than a fixed threshold as positive
samples and 200 of those ones with their overlap rates that are
smaller than a preset constant as negative samples. The network
in Fig. 1 is only pre-trained with labeled samples, and all the
parameters in it will be updated including the convolutional lay-
ers and the fully connected layers. However, this may cause the
training ambiguity when sample different targets from the same
sequence (like Jogging-1,2). The weights in the convolutional
layers are initialized using the corresponding part in VGG-net,
and the parameters in the fully connected layers are preset ran-
domly. We employ the softmax loss mentioned in Eq. (7). This
model is also trained using the min-batch stochastic gradient
descent method.

D. Tracking Approach

The introduced visual tracking method is implemented under
the framework of particle filters [23]. The goal is to estimate the
maximum of a posterior of an object state st which is modeled
by the target central coordinate, height and width, in frame t. It
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Fig. 2. The tracking flow chart. Global templates are divided into several image patches, and each image part is assigned with a CNN model. The image patches
surrounded with red rectangles indicate positive samples, and the green ones represent negative samples. The unlabeled samples are surrounded with yellow
rectangles.

can be formulated as

arg max
st

p(st | o1:t), (11)

where o1:t = {o1 , . . . ,ot} represents the observation sample
set up to frame t. According to the Bayesian theorem, the max-
imum a posterior is proportional to

p(ot | xt)
∫

p(st | st−1)p(st−1 | o1:t−1)dst−1 . (12)

where the motion model p(st | st−1) is modeled by a Gaus-
sian distribution, and the posterior p(st | o1:t) is approximated
by a set of sampled candidates based on an assumed proposal
distribution which is the same as the motion model.

We take the positive score in the outputs of manifold regular-
ized CNNs as the likelihood value of a candidate. To be more
specific, we crop a set of candidate samples whose positions
obey a Gaussian distribution with the previous target state as
its mean value. We first update the proposed manifold regular-
ized CNN model with both candidates and labeled samples. And
then, the candidates are transferred into the updated deep model,
and a confidence value is obtained for each candidate. We could
choose the candidate with the highest confidence as the current
target. The tracking flow is summarized in Algorithm 1.

Occlusion Handling Strategy: It may not be enough to han-
dle local target appearance changes caused by occlusion during
tracking, if we only establish the target model with holistic
templates. Hence, we further model global and local target ap-
pearances at the same time. As shown in Fig. 2, the holistic
templates are divided into several overlapping image parts, and
different image parts corresponding to different relative posi-
tions on the holistic templates are collected. And then, we train

Algorithm 1: Manifold Regularized CNNs Based Online
Visual Tracking Algorithm
Input: The pre-trained CNN model, the target state s1 of the

first frame in a video.
Output: The target states s2 , . . . , sn of subsequent frames.

1: Crop positive and negative samples Xl = {(xi , yi)}l
i=1

in the first frame.
2: for t = 2 : n do
3: Sample target candidates Xu = {xi}l+u

i=1+1 in the t-th
frame around target state st−1 .

4: Calculate the deduced the labels for target candidates
using Eq. (6).

5: Update the last three layer of CNNs with manifold
regularized loss in Eq. (8) with Eq. (10) using both

the labeled/unlabeled samples {Xl ,Xu} until
convergence.

6: Assign confidence value for each candidate using the
updated CNNs.

7: Determine the current target state st with the highest
confidence using Eq. (11).

8: Collect positive and negative samples
Xl = {(xi , yi)}l

i=1 based on current target state.
9: end for

several different CNNs for every local target model with those
local samples. Since we only update the parameters in the fully
connected layers, the time complexity of tracking is acceptable.
Suppose that the global template zg is separated into k image

patches {z(1)
b , z(2)

b , . . . , z(k)
b }, their corresponding confidence
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TABLE I
THE DETAILED PARAMETERS FOR EACH LAYER OF THE PROPOSED MANIFOLD

REGULARIZED CNNS. (THE ‘CONV’ INDICATES THE CONVOLUTIONAL LAYER,
AND ‘MAXPOOL’ IS THE MAX POOLING LAYER, AND ‘FC’ REPRESENTS THE

FULLY CONNECTED LAYER. THE SYMBOL ‘-’ MEANS THAT NO PARAMETERS

EXIST IN THIS FIELD)

scores sg and {s(1)
b , s

(2)
b , . . . , s

(k)
b } are obtained with global and

local CNN models. The final confidence sf of a candidate can
be computed as

sf = (1 − γ)sg + γ
1
k

k∑

i=1

s
(i)
b , (13)

where γ is a constant to balance the impacts of global and local
models.

Once a target is partially occluded, the confidence of occluded
parts will decrease, but the confidence of unoccluded parts still
maintain high scores, which is helpful for target localization
accurately. Finally, the candidate with the highest confidence
is selected as the current target. In our implementation, we di-
vided the target into four local patches for efficient computation.
We believe that the max pooling or ranked-pooling in [35] will
improve the tracking performance especially in case of larger
number of local separations. The structure and training proce-
dure of local networks are just similar with the holistic networks,
except for the training samples. The training samples of local
networks are local patches cropped from a target.

V. EXPERIMENTAL RESULTS

The proposed tracking method is verified on two popular
visual tracking datasets, namely, OTB [36] and TB-100 [39].
The manifold regularized CNNs are trained with samples
collected from VOT2015 [16], and implemented based on
MatConvNet toolbox. Our tracker runs about 1.2 fps using the
unoptimized Matlab implementation on an Intel(R) Core i7
CPU with 3.5 GHz and GeForce GTX 1080 GPU.

A. Implementation Details

The detailed parameters of each layer for the proposed
manifold regularized CNNs are shown in Table I. Besides, the
rectified linear units (ReLU) and local response normalization
(LRN) are added after ‘conv1’ and ‘conv2’. And ‘conv3’ is
only followed by the ReLU layer. The ‘fc4’ and ‘fc5’ layers are
followed by ReLU and the dropout layer.

Our tracker runs under the particle filter framework, and
the covariances of the target location and scale are set to
(0.6, 0.6, 1.0), which is formulated as a diagonal matrix for
Gaussian distribution. For each frame, 50 positive samples and
250 negative samples are collected which means that l = 300,

and the number of candidates u = 400 is the number of parti-
cles. Three color channels of CIE Lab are combined row by row
of the target as the sample feature. As described in Algorithm 1,
the manifold regularized CNNs are updated every frame. But in
our implementation, we update this model every three frames,
and we could collect more labeled samples to update our deep
model for more efficient tracking. Additionally, a bounding box
regression technique [8] is utilized to improve the accuracy of
the target location. Refer to [24] for more details about the
bounding box regression.

B. Results on OTB

OTB [36] contains 50 videos, and each video is annotated by
different types of difficulties including out-of-view, occlusion,
fast motion, motion blur, and illumination variations. It is one
of the most commonly used tracking benchmarks to verify the
tracking performance.

We compare the proposed tracking method with several clas-
sical trackers such as MDNet [24], Struck [9], WCO [47], CSK
[10], SCM [42], KCF [12], and MEEM [41] and some recently
proposed deep trackers including HCF [22], HDT [26], SINT
[29], CNN-SVM [13] and DeepSRDCF [6]. For performance
evaluation, the tracking results from different trackers are es-
timated by distance precision (DP) and overlap precision (OP)
using one-pass evaluation. DP measures the relative number of
frames when the center location error is smaller than a threshold
(20 in general) in a video, while OP measures the percentage
of frames that the overlap rate between ground truth and the
tracked bounding box is larger than a threshold. More details
about these measurements can be found in [36]. The pre-training
videos are collected from VOT2015 [16], which excludes the
sequences arising in OTB.

The DP and OP comparisons on OTB are illustrated in Fig. 3,
and the performance of the proposed tracker is better than that of
existing deep learning based trackers (such as HCF and HDT),
as well as traditional trackers. The DP score of our method is
0.931, which is 27.7 percent higher than the Struck tracker. The
OP score on the success plots for the proposed tracking method
is 0. HCF, HDT, CNN-SVM and SINT perform roughly the
same on DP and OP scores, which have a small gap with the
proposed tracking method.

To test the performance under different scenes, we compare
them according to several annotated attributes. Fig. 4 illus-
trates the ranking of different tracking algorithms under eight
attributes: deformation, occlusion, illumination variation, out-
of-plane rotation, in-plane rotation, out-of-view, motion blur,
and scale variation. These tracking algorithms are ranked by DP
and OP scores on the OTB dataset, and the detailed scores are
shown in the legends of each subfigure. Overall, deep learning
based tracking methods, such as MDNet, DeepSRDCF, HCF,
and HDT, behave better than traditional trackers on these at-
tributes. The proposed method performs the best on the total
eight attributes compared with those popular trackers.

C. Results on TB-100

TB-100 [39], as an extended tracking dataset of OTB,
adds about 50 annotated videos. We compare the proposed
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Fig. 3. The comparison with state-of-the-art results on OTB [36]. The left subfigure shows the distance precision evaluation and the right one shows the overlap
precision estimation.

Fig. 4. The comparison with state-of-the-art results on OTB [36] for attribute-based estimation, including deformation, occlusion, illumination variation,
out-of-plane rotation, in-plane rotation, out-of-view, motion blur, and scale variation from left to right and up to bottom.
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Fig. 5. The state-of-the-art comparison results on TB-100 [39]. The left subfigure shows the distance precision evaluation and the left one shows the overlap
precision estimation.

Fig. 6. The comparison with state-of-the-art results on TB-100 [39] for attribute-based estimation, including deformation, occlusion, illumination variation,
out-of-plane rotation, in-plane rotation, out-of-view, motion blur, and scale variation from left to right and up to bottom.
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Fig. 7. Comparisons with different numbers of nearest neighbors k.

tracking method with the aforementioned popular trackers. The
pre-training videos are collected from VOT2015 [16], which
excludes the sequences arising in TB-100.

To verify our performance on a larger video dataset, we com-
pare the proposed approach on TB-100 with those aforemen-
tioned tracking algorithms using the same evaluation criteria
and the same pre-trained deep CNN model. Fig. 5 shows the
overall estimations for those trackers on this benchmark. The DP
and OP scores of our method are 0.886 and 0.658 respectively,
which are higher than those of the compared deep trackers, such
as HDT, HCF, CNN-SVM, and those traditional trackers. The
DeepSRDCF, HDT, HCF, CNN-SVM tracking methods per-
form well among them, which demonstrates that deep learning
could improve the performance greatly.

In Fig. 6, we also compare our method with those popu-
lar trackers under deformation, occlusion, illumination varia-
tion, out-of-plane rotation, in-plane rotation, out-of-view, mo-
tion blur, and scale variation. These tracking algorithms are
ranked by DP and OP scores on the TB-100 dataset, and the de-
tailed scores are shown in the legends of each subfigure. From
these figures, we find that our tracker behaves better on these
attributes than both deep trackers and conventional trackers.

D. Component Analysis

Effectiveness of Manifold Regularization: To verify the
effectiveness of the manifold regularization item in the pro-
posed method, we perform the comparisons of our tracker with
different numbers of nearest neighbors in Eq. (2) on OTB. As
shown in Fig. 7, the DP scores (vertical axis) of our method
with neighbors k = 0, 3, 5, 7, 10 (horizontal axis) are illustrated
in the histogram. It is noted that the performance will be im-
proved when the manifold regularization item is removed, and
the experimental results are shown in Fig. 7. From the figure, the
worst tracking performance is produced using our method with
k = 0, which means that the proposed manifold regularization
item works in our setting. The highest DP score is obtained when
k = 5. Hence, we choose 5 as the number of nearest neighbors
in our tracking algorithm. The performance declines with the
increase of the number of neighbors, which means that a suitable

Fig. 8. The analysis of global and local models.

TABLE II
THE PERFORMANCE COMPARISON RESULTS WITH AND WITHOUT OFFLINE

PRE-TRAINING METHOD ON OTB

number of neighbors benefits the tracking performance. In prin-
ciple, a larger number of neighbors will bring more information
in a local region of a sample, and it will violate the assumed
manifold structure. Therefore, k = 5 is the best choice for the
spatial structure of manifold and tracking performance through
our experiments.

Influence of Global and Local Models: To test the influence
of global and local models, we implement the experimental
comparisons of our tracker with the increase of λ in Eq. (13) from
0 to 1 on OTB. As shown in Fig. 8, the DP scores (vertical axis)
of our method with λ = 0, 0.1, 0.25, 0.75, 1 (horizontal axis) are
illustrated in the histogram. From the figure, the best tracking
performance is obtained when λ = 0.5, which is 0.931 for DP
score. Hence, we set the value of λ to 0.5 of Eq. (13). Therefore,
the local model could bring some performance improvement.
But the drawback is that the tracking time increases with the
rise of image patches.

Effectiveness of Pre-training and Bounding Box Regression
Strategy: We also carry out a comparison experiment with the
proposed tracking algorithm without offline pre-training strat-
egy presented in Section IV-C and the bounding box regres-
sion Strategy. As shown in Table II, a CNN model without
pre-training (only random weights in different layers) based
tracker performs pretty bad. For a complex CNN, training sam-
ples extracted from the first frame only are far from enough.
Thus, the DP and OP scores are pretty low, and most targets
could not be located accurately. The bounding box regression
strategy is useful for our tracker to improve the tracking perfor-
mance. The DP and OP scores increase about 2.9 and 1.1 percent
respectively.



HU et al.: ROBUST OBJECT TRACKING USING MANIFOLD REGULARIZED CONVOLUTIONAL NEURAL NETWORKS 519

Fig. 9. The visual comparison under partial occlusion (top) and deformation (bottom). The names of clips are “Suv”, and “Bolt” from top to bottom.

Fig. 10. Visual results under illumination variations (top) and rotation (bottom). The names of clips are “Basketball”, and “Ironman” from top to bottom.

E. Visual Comparisons

Fig. 9 and Fig. 10 show the qualitative comparisons of our
tracking algorithm with the state-of-the-art trackers.

Occlusion: Target occlusion brings difficulties for accurate
target locating because of the missing of target appearance in-
formation. Fig. 9 (top row) shows part of the tracking results
under partial occlusion. In clip “Suv”, the interesting targets are
occluded by background objects occasionally. We train multi-
ple CNNs for different image parts and decide the final target
according to global and local confidences, which alleviates the
adverse impacts caused by partial occlusion and verifies the ef-
fectiveness of our tracking for handling occlusion. Some track-
ers (like MEEM) could track interesting targets precisely and
even drift under occlusion scenarios.

Deformation: The rigid and non-rigid deformation of the
target during tracking often leads to the missing of existing
appearance information and the addition of new appearance
information. As shown in Fig. 9 (bottom row), the postures of
bodies are changing with the swinging of limbs. In addition,

motion blur exists in clips such as “BlurBody”, which causes
the target appearance changes. Our tracking approach that is
trained on CNNs with both labeled and unlabeled samples could
improve the accuracy of classification for unlabeled samples
containing deformed targets. Thus, the proposed method could
handle the deformation problem very well.

Illumination Variation: The target appearance will have shad-
ing due to the change of illumination in the surroundings. For
example, the target appearance in “Basketball” in Fig. 10 are in-
fluenced by the lights, and both the global and local appearances
are changed constantly. From the tracking results, our tracker
could resist the illumination variations, and most deep learning
based trackers also have handle this challenge well. But tradi-
tional trackers (such as SCM) could not track the target well
from the beginning to the end. It is clear that CNNs have certain
advantages for illumination variations.

Rotation: In Fig. 10, targets in “Ironman” have in-plane or
out-of-plane rotation. Moreover, the background in most videos
are cluttered, which is unfavorable for tracking. Our tracker
could update the CNN models only with samples obtained from
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the current frame online, and make them adapt to appearance
changes rapidly caused by rotation. Our tracker could handle
rotation well, while other trackers (such as HCF and MEEM)
drift more or less during tracking.

VI. CONCLUSION

We have presented an online visual tracking algorithm based
on manifold regularized CNNs using the Gaussian fields har-
monic function. The labels of unlabeled samples were first cal-
culated using their local neighbors with graph Laplacian, and
then the proposed deep model was trained online with both la-
beled and unlabeled data. It is a relatively simple network and
pre-trained using the samples collected from a public tracking
benchmark. The proposed deep tracker was tested on several
popular tracking datasets and achieved better tracking perfor-
mance compared with different tracking approaches.
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