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Abstract—In popular TV programs (such as CSl), a very low-resolution face image of a person, who is not even looking at the camera
in many cases, is digitally super-resolved to a degree that suddenly the person’s identity is made visible and recognizable. Of course,
we suspect that this is merely a cinematographic special effect and such a magical transformation of a single image is not technically
possible. Or, is it? In this paper, we push the boundaries of super-resolving (hallucinating to be more accurate) a tiny, non-frontal face
image to understand how much of this is possible by leveraging the availability of large datasets and deep networks. To this end, we
introduce a novel Transformative Adversarial Neural Network (TANN) to jointly frontalize very-low resolution (i.e. 16x16 pixels)
out-of-plane rotated face images (including profile views) and aggressively super-resolve them (8x), regardless of their original poses
and without using any 3D information. TANN is composed of two components: a transformative upsampling network which embodies
encoding, spatial transformation and deconvolutional layers, and a discriminative network that enforces the generated high-resolution
frontal faces to lie on the same manifold as real frontal face images. We evaluate our method on a large set of synthesized non-frontal
face images to assess its reconstruction performance. Extensive experiments demonstrate that TANN generates both qualitatively and
quantitatively superior results achieving over 4 dB improvement over the state-of-the-art.

Index Terms—Face, super-resolution, hallucination, face frontalization.
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1 INTRODUCTION

ECOVERING high-resolution (HR) face images from their

low-resolution (LR) counterparts, known as face hallucina-
tion, has received significant attention in recent years. Existing
face hallucination methods mainly focus on super-resolving nearly
frontal faces, which provide critical perceptual information for the
human visual system [1]. However, in most cases, LR faces may
not necessarily be frontal. Super-resolving such non-frontal LR
faces requires either frontalizing them first and then applying ex-
isting face hallucination techniques, or super-solving first (which
highly depends on an available pose-specific exemplar dataset) and
then frontalizing. Nevertheless, both of these options are naturally
very challenging.

Conventional and emerging face frontalization methods [1],
[51, [61, [7], [8], [9], [10] often rely on facial landmarks for
warping 2D face images onto 3D models, and thus require the
input images to have a sufficient resolution where such landmarks
are detectable. This renders them ineffective for tiny face images.
Without a proper frontalization, directly employing face halluci-
nation methods [11], [12], [13], [14], [15], [16], [171, [18], [19],
[20], [21], [22], [23] may cause severe artifacts due to large pose
variations and misalignments. As shown in Fig. 1 and Fig. 3, for
very low-resolution non-frontal face images, applying either face
frontalization followed by hallucination, or hallucination followed
by frontalization produces degraded results.

In this paper, we aim to jointly frontalize and hallucinate
a given input face image so as to avoid the artifacts produced
by either of these tasks individually. To do so, we present a
new Transformative Adversarial Neural Network (TANN) that
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Fig. 1. Comparison with the combination of face hallucination [2] and
frontalization [1] methods. (a) 16 x 16 LR non-frontal input image.
(b) 128 x 128 HR original frontal image (not available in training). (c)
The best possible match to the given LR image in the dataset after
compensating for in-plane rotations by STNy [3]. (d) Detected landmarks
by [4] after bicubic upsampling. (e) Result obtained by applying [1] first
and then [2]. In [2], the first decoder and encoder are used to reduce
image noise. Hereby, we only use the second decoder of [2] for super-
resolving LR faces. (f) Result obtained by applying [2] first and then [1].
(9) Image generated by [2], which is retrained with LR non-frontal and
HR frontal face images. (h) Our result.

automatically frontalizes the LR faces while hallucinating the
frontalized LR feature maps by an upscaling factor of 8x in
an end-to-end fashion. Considering that an LR input face may
undergo large pose variations and misalignments as seen in Fig. 1,
our motivation is to force a non-frontal LR face to share the same
latent representation of its corresponding frontal LR face and then
super-resolve the latent representation. Thus, we first design a
transformative subnetwork to encode a non-frontal LR face into



a latent representation, where the representation of the input non-
frontal LR face is forced to be similar to the latent representation
of its frontal counterpart in the latent subspace. Then, we pass
the latent representations, i.e., the frontalized LR feature maps,
through a subnetwork that is composed of deconvolutional and
spatial transformer layers [3], whose goal is to generate HR
outputs. Inspired by previous works [22], [24], [25], [26], [27],
we choose to employ an adversarial network to make these HR
outputs more closely resemble real human faces.

In order to train our network, we not only employ the tra-
ditional pixel-wise image appearance similarity and class-wise
similarity constraints used in our previous works [2], [22], but
also develop a triplet loss to constrain the similarity of the latent
representations between the input non-frontal faces and their
ground-truth frontal LR ones. With the help of the proposed triplet
loss, we are able to enforce that the representation of a side-view
face to be close to its corresponding frontal LR face and far from
other LR frontal faces in the latent subspace. In this manner, the
faces upsampled from the encoded representations are not only
similar to their HR frontal counterparts but also distinguishable
from other hallucinated faces since the same upsampling subnet-
work is used for super-resolution. In particular, the upsampled
frontalized faces can share similar facial characteristics with their
corresponding ground-truth ones after super-resolution. Thus, our
triplet loss preserves the identity information implicitly. Note that,
different from the traditional triplet loss, where both negative and
positive examples are used to calculate the gradients of neural
networks and updated simultaneously, we only update the latent
representations of LR side-view faces by forcing them to be close
to the representations of their ground-truth frontal faces without
affecting positive and negative LR frontal faces. Furthermore, we
exploit a feature-wise similarity constraint, known as perceptual
loss [28], to make the hallucinated facial characteristics similar to
the ground-truths, thus improving the visual quality.

Although deep neural networks have given rise to major
advances in many computer vision tasks, they require very large
datasets to train millions of parameters in their models. In our case,
the existing large-scale face datasets [29], [30] do not provide a
sufficient number of frontal and non-frontal face image pairs for
training our TANN. To obtain a large corpus of frontal and non-
frontal face image pairs for the goal of training our deep neural
network, we construct a set of out-of-plane rotated images from
available frontal faces mapped onto a 3D face model. We first map
randomly chosen frontal images to a 3D model, and then render
different views of the 3D face, similar to the work in [31]. This
allows us to have high-quality HR frontal faces as our ground-truth
images. It is important to note that this step is only to construct the
training dataset, as we do not use any 3D models in our network
(neither in training, nor in testing). In our experiments, we use
non-frontal faces whose 3D models are unknown to demonstrate
that TANN can hallucinate and frontalize different views of any
unaligned LR face beyond the poses it is exposed to in training.

Overall, our contributions can be summarized as follows:

e We introduce a new transformative adversarial neural
network to simultaneously hallucinate (by an upscaling
factor of 8 x) and frontalize tiny (16 16 pixels) unaligned
face images with pose variations up to £75°.

e« We propose a new triplet loss to encode non-frontal LR
faces into a latent subspace without distorting the encoding
of frontal LR ones. With the help of the proposed triplet
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loss, we can force non-frontal LR faces to be close to their
ground-truth frontal ones while keeping away from other
faces in the latent subspace. To the best of our knowledge,
our method is the first attempt to employ the triplet training
strategy in the face hallucination task.

e We perform the training of our network in an end-to-end
fashion by incorporating the reconstruction, perceptual,
discriminative and triplet loss terms. In order to train
our network, we also provide a dataset of corresponding
frontal and non-frontal view face image pairs, which will
be made available on-line to the vision community at large.

e We achieve superior hallucination results and outperforms
the state-of-the-art by a large margin of 4.0 dB PSNR.
Our method eliminates the need for facial landmarks or
3D face models as it is agnostic to the underlying in-plane
and out-of-plane pose variations and spatial deformations.
In the testing phase, our method can successfully process
faces that are imaged at views not seen during training.

This paper is an extension of our previous works [2], [22], [26].
Unlike our previous works [2], [22], [26], which only focus on
super-resolving LR face images, this paper aims at upsampling LR
faces while frontalizing them. However, our previous upsampling
networks [2], [26] cannot upsample and frontalize profile faces
even after retraining, as shown in Fig. 1(g). Therefore, we first
project LR faces in different poses into latent representations by
an encoder network, and then upsample from the latent repre-
sentations by a decoder network. To the best of our knowledge,
our method is the first attempt to provide a unified framework
for super-resolution and frontalization of unaligned very low-
resolution face images, reducing significantly the artifacts intro-
duced by either strategy, when considered individually.

2 RELATED WORK

Our work mainly focuses on two aspects: face frontalization and
hallucination. We briefly review noteworthy face frontalization
and hallucination works below.

Face Frontalization: Generating a frontal face from a single
non-frontal face image is very challenging due to self-occlusions
and various pose variations, and has received significant attention
in computer vision. Seminal works date back to the 3D Morphable
Model (3DMM) [5], where a face is represented by the shape
and texture bases in PCA subspace. After obtaining the the
shape and texture coefficients of an input face image, Blanz and
Vetter [5] render novel views of an input face. Driven by 3DMM,
Yang et al. [6] estimate 3D surface from face appearance and
then synthesize new expressions of the given face. However, these
methods require the input face images to be nearly frontal in
order to estimate the shape and appearance coefficients of input
faces in PCA subspace. Dovgard and Basri [32] exploit the facial
symmetry to estimate 3D geometry of the given faces and render
frontal faces. Similarly, Hassner et al. [1] use facial symmetry to
render out-of-view facial regions. Some methods, e.g., [7], [8],
[31], [33], [34], attempt to reconstruct frontal views by mapping a
2D face image onto a 3D reference surface mesh after registering
and normalizing the face image. Since they need to detect facial
landmarks in the input images and establish correspondences of
landmark points to 3D or 2D reference models, they require im-
ages in sufficiently high resolutions. Based on the fact that frontal
faces have the minimum rank of all different poses, Sagonas et
al. [9] propose a statistical face frontalization method, but the



appearance of their frontalized faces may not be consistent with
the input faces.

Deep learning based face frontalization methods have been
proposed recently as well [34], [35], [36], [37], [38], [39], [40].
Zhu et al. [35] present a deep neural network to frontalize
HR faces by exploiting the symmetry and similarity of facial
components. Their method does not require estimation of a 3D
model, but it cannot maintain appearance similarity between the
frontalized and input faces either. Yim et al. [36] develop a
multi-task deep neural network to rotate faces, but their method
outputs blurry frontal faces due to the aggressive downsampling
operations in the encoder. Similarly, Cole er al. [38] learn to
generate facial landmarks and textures from features extracted by
a face recognition network. Since Cole et al.warp input faces to
the mean face geometry by using facial landmarks, the resolutions
of their inputs need to be sufficiently large. Very recently, Huang et
al. [39] employ two deep neural networks, i.e., global and local
networks, to frontalize faces. However, their local network needs
to extract HR facial components for identity preservation and to
align HR facial components to pre-defined positions, and thus
their method is not suitable for very LR unaligned non-frontal face
images. Xi et al. [40] combine 3DMM and a generative adversarial
network to frontalize faces with arbitrary poses. They also need
to localize facial landmarks when mapping the input faces to the
3DMM. Thus their method requires sufficient resolutions for input
images. Tran et al. [41] present a convolutional neural network
(CNN) to regress 3DMM shape and texture parameters to speed
up the optimization of 3DMM, but their method does not render
frontalized faces which are similar to the input faces in terms of
image intensity. Instead of localizing facial landmarks explicitly
in the face images, Chang et al. [42] employ a simple CNN to
regress 6 degrees of freedom (6DoF) 3D head poses from image
intensities. Then the estimated 6DoF parameters can be used to
align face images without localizing facial landmarks explicitly.
By transforming input image intensities with the estimated param-
eters, [42] is able to preserve the appearance similarity between
the input faces and their counterparts in the generated views.

Face Hallucination: Face super-resolution (FSR), also known
as face hallucination, aims at magnifying an LR image to its HR
version and can be roughly grouped into three categories: holistic-
based, part-based, and deep network based solutions.

Holistic-based methods attempt to super-resolve an entire HR
face by using global face models, often learned by PCA. Wang
and Tang [ 14] establish a linear mapping between LR and HR face
subspaces to super-resolve HR faces, while Liu ef al. [15] learn a
global appearance model for upsampling LR inputs and employ a
local nonparametric model to enhance the facial details. Kolouri
and Rohde [20] propose to morph an HR output from the aligned
exemplar faces similar to LR inputs by the optimal transport
and subspace learning techniques. Because holistic-based methods
require LR inputs to be accurately aligned and to share the
same pose and expression as HR references when learning global
face models, they are very sensitive to misalignments and pose
variations.

Instead of super-resolving entire faces, part-based methods
upsample facial regions and thus can address various poses. They
either use reference position patches, or employ facial components
to restore the HR counterparts of LR inputs. For instance, Baker
and Kanade [12] reconstruct high-frequency details of aligned
frontal face images by finding the best mapping between LR and
HR patches. Similarly, Ma et al. [17] employ position patches

3

extracted from multiple aligned HR images to upsample aligned
LR face images. Rather than reconstructing patches in the image
domain, Yang et al. [18] and Li et al. [19] super-resolve HR image
patches by employing sparse coding techniques to achieve better
performance. Tappen and Liu [43] apply SIFT flow [44] to align
the facial parts of LR images and reconstruct HR facial details
by warping the reference HR images, while Yang et al. [45],
[46] localize facial components in the LR images by a facial
landmark detector and then reconstruct details from the similar
HR reference components. Since these methods need to extract
facial components in LR face images accurately, their performance
degrades dramatically when the LR faces are tiny. We refer the
readers to the work [21] for a more comprehensive survey on face
hallucination using traditional approaches.

As large-scale datasets become available, Zhou et al. [47]
propose a convolutional neural network (CNN) to extract facial
features and recover facial details from the extracted features.
Yu and Porikli [23] consolidate deconvolutional and convolutional
layers for super-resolving LR face images, but they improve the vi-
sual quality by a post-processing technique, i.e., an unsharp filter.
The work presented in [22] develops a discriminative generative
network to super-resolve aligned LR face images in an end-to-end
fashion while Huang et al. [48] exploit wavelet coefficients learned
by CNN to restore HR faces. In order to relax the requirement
of face alignment, Yu and Porikli [26] embed multiple spatial
transformer networks [3] into the generative network of [22]. Their
follow-up work [2] employs a decoder-encoder-decoder structure
to super-resolve noisy LR faces while suppressing image noise.
Xu et al. [27] employ the generative adversarial framework [24]
as well as a multi-class adversarial loss to upsample blurry and
LR face and text images. Dahl et al. [49] exploit the framework
of PixelCNN [50], known as an autoregressive generative model,
to hallucinate very low-resolution face images. Towards the same
goal, Zhu et al. [51] use a cascade bi-network to upsample very
low-resolution and unaligned faces, of which one is used to super-
resolve low-frequency components of face images and the other is
employed to hallucinate high-frequency facial details. Since these
deep learning based methods do not take out-of-plane rotations
of faces into account and are restricted to small pose variations,
(i.e.within £30°), they may fail to super-resolve LR faces with
large pose variations.

Recently, some face hallucination methods have been proposed
to handle large pose variations in LR face images by exploiting
facial structure information [52], [53]. Chen et al. [52] first
super-resolve low-frequency components of input faces and then
enhance the facial details based on the facial landmarks estimated
from the upsampled faces. Bulat et al. [53] upsample face images
in different poses by imposing a loss to enforce the detected
landmarks in the super-resolved faces to be close to the ground-
truth ones. However, these methods only super-resolve profile
faces rather than frontalizing them for better observation and
analysis. Even though profile faces can be super-resolved with
authentic details, localizing facial landmarks from those profile
faces for frontalization is still challenging.

Due to the above limitations, simply cascading face hallucina-
tion and frontalization methods is not an acceptable solution for
our problem.

3 PRoOPOSED METHOD: TANN

Our network has two components: (i) a transformative upsampling
network, which transforms different poses to the frontal one and



also super-resolves the frontalized LR feature maps; and (ii) a
discriminative network, which forces the generated HR frontal
faces to lie on the manifold of authentic HR face images. Figure 2
illustrates the overall architecture of TANN.

In the training phase, the entire network is trained in an
end-to-end fashion to compensate for possible artifacts induced
by any of the frontalization and hallucination tasks. As shown
in Fig. 3(k), when we train the upsampling network separately,
i.e., generating frontalized LR faces as intermediate results, the
transformer subnetwork may suffer from the loss of information
contained in its feature maps because it is enforced to output 3
channel LR faces as its objective function rather than 32 channel
feature maps. This may lead to accumulated errors and obvious
deviations in the output of the upsampling subnetwork due to the
incorrect input images for upsampling. Thus, feeding 32 feature
maps directly to the upsampling network is a better choice.

3.1

In Fig. 2, our transformative upsampling network is shown (red
box). TUN is composed of two parts: a transformer subnetwork
and an upsampling subnetwork. The transformer part (purple box)
aims at encoding non-frontal LR faces into latent representations
which are close to the latent representations of their corresponding
frontal LR ones. By doing so, we can achieve the latent codes of
frontalized LR faces. Our transformer subnetwork is constructed
by convolutional layers, a fully-connected layer, deconvolutional
layers and spatial transformer layers. Since the input LR faces
undergo in-plane rotations, translations and scale changes, mul-
tiple spatial transformer networks (STN) [3] are embedded as
intermediate layers to compensate for such affine transformations.
Moreover, because STNs learn 2D affine warps rather than out-
of-plane rotations, they cannot recover self-occluded parts of
faces. To solve this problem, our intuition is that we can project
different views of a face into a subspace, where their encoded
representations are enforced to lie close to the representations of
their corresponding frontal one. Therefore, we incorporate a fully-
connected layer to encode the feature maps of LR profile faces
as well as design a triplet loss to force the similarity between the
representations of LR profile and frontal ones.

To illustrate the effectiveness of the transformer subnetwork,
we change the channel number of its output layer to 3, and use
LR frontal faces as ground-truth images to train this subnetwork.
As shown in Fig. 3(j) and Fig. 4(d), it can successfully generate
an LR frontal face image. Note that, when training our TANN,
we do not employ LR frontal faces as supervision to prevent the
aforementioned drift issue.

After obtaining the feature maps of LR frontal faces generated
by the transformer subnetwork, we apply an upsampling sub-
network (green box in Fig. 2) to hallucinate the high-frequency
facial details of frontal faces. Because the resolution of LR input
images is very low, STNs in our transformer subnetwork may not
align LR faces accurately. The LR feature maps generated by the
transformer network may still contain misalignments. We employ
the upsampling structure used in our previous works [2], [26] for
further alignment and super-resolution.

As shown in Fig. 3(h), simply applying the method of [2] to LR
profile faces cannot provide high-quality HR frontal face images.
This manifests that upsampling LR non-frontal faces with large
pose variations is more difficult compared to LR frontal faces and
also indicates the necessity of our transformer subnetwork. Since

Transformative Upsampling Network (TUN)
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the mapping between common LR patterns and HR facial details
can be easily learned from frontal faces, we frontalize LR inputs
first and then hallucinate them.

3.2 Discriminative Network

As demonstrated in our previous works [2], [22], [26], only using
Euclidean distance (pixel-wise £5 loss) between the upsampled
faces and the ground-truth HR faces tends to generate over-
smoothed results. Therefore, a class-specific discriminative ob-
jective is also incorporated into our TUN, aiming to force the
hallucinated HR face images to lie on the same manifold of real
frontal face images.

As shown in Fig. 2 (blue box), the discriminative network con-
sists of convolutional layers, max-pooling layers, dropout layers,
and fully-connected layers. It is designed to determine whether an
image is sampled from real face images or the hallucinated ones.
The discriminative loss, also known as adversarial loss, will be
back-propagated to update the parameters of TUN as well. With
the help of the adversarial loss, we can generate more realistic HR
frontal faces. Figure 4 illustrates the impact of the adversarial loss
on the final results.

3.3 Training Details of TANN

We construct LR profile and HR frontal ground-truth face im-
age pairs {l;, h;} for our training purpose, where h; represents
the aligned frontal HR face images (only eyes are aligned),
and [; is the synthesized LR side-view face images from h;.
For each HR frontal face h;, we generate five different views,
i.e.{0°,+40°,£75°}, to construct LR/HR training pairs. Using
these five distinct poses is a trade-off between a sufficient coverage
of pose variations and the reasonable size of the training dataset
and also suggested in [31]. More details are provided in Sec. 4.

In training our TANN, we not only enforce the conventional
pixel-wise intensity similarity, known as pixel-wise {2 loss, but
also the feature-wise similarity, known as perceptual loss [28],
to obtain high-quality results. Similar to the works [22], [26],
the adversarial loss is also employed to attain visually appealing
frontalized HR face images. As mentioned in Sec. 3.1, we also
develop a triplet loss to force the representations of LR profile
faces to be similar to the representations of their frontal faces. In
this manner, we can frontalize LR profile faces without degrading
super-resolution of frontal ones.

Pixel-wise intensity similarity loss: We constrain the gener-
ated HR frontalized face h; to be similar to its ground-truth frontal
counterpart h; in terms of image intensities. Thus we employ
a pixel-wise ¢ regression loss L, to impose the appearance
similarity constraint, expressed as:

: 2
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where ¢ and T are the parameters and the output of TUN, p(ﬁ, h)
represents the joint distribution of the frontalized HR faces and
their corresponding frontal HR ground-truths, and p(l, h) indicates
the joint distribution of the LR and HR face images in the training
dataset.

Feature-wise similarity loss: As mention in [22], pixel-
wise £ loss leads to over-smoothed super-resolved results. Here,
we employ a feature-wise similarity loss, known as perceptual
loss [28], to constrain the super-resolved HR faces to share the
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Fig. 2. TANN consists of two parts: a transformative upsampling network (red box) and a discriminative network (blue box). In our transformer
subnetwork, we also employ skip connections between our encoding layers and decoding layers, indicated by the purple line. For simplicity, we only

draw the first skip connections.

same facial details as their ground-truth counterparts, thus attain-
ing high-quality results with rich facial details. The perceptual loss
L feqr measures Euclidean distance between the feature maps of
HR frontalized and ground-truth faces extracted by a deep neural
network, written as:

®(hy)|%
hi)|| %,

Efeat = E(ﬁl7hl)wp(ﬁ7h)||q)(hl) -

2
=B, h)mpt) |2 (T2 (1)) — @(

where ®(-) denotes feature maps extracted by the ReLU32 layer
in VGG-19 [54], which gives good empirical performance in our
experiments.

Adversarial loss: In order to achieve visually appealing re-
sults, we infuse class-specific discriminative information into TUN
by exploiting a discriminative network, similar to our previous
works [2], [22], [26]. Our goal is to make the discriminative
network fail to distinguish generated faces from real ones. In this
manner, we enforce the super-resolved HR frontal faces to lie
on the manifold of real frontal HR face images. Therefore, the
discriminative network is used to categorize real HR frontal faces

and generated ones, and thus its objective function is expressed as:

Lo = ~Eg, 1y epiin) [1og Da(hy) + log(1 — Dd(ﬁi))]
~Enimp(ny l0g Da(hi) = Ej 5y log(1 = Da(hi))

—Ep, op(n) 108 Da(hi) — By npy log(1 — Da(T (1)),
3)

where d represents the parameters of the discriminative network,
p(l), p(h) and p(h) indicate the distributions of the LR, HR
ground-truth frontal and the generated faces respectively, and
Da(h;) and D4(h;) are the outputs of the discriminative network.
To make the discriminative network distinguish hallucinated faces
from real ones, we minimize the loss L£p(d) and update the
parameters d.

Meanwhile, our TUN aims to fool the discriminative network.
Therefore, the adversarial loss for our TUN is:

£7- = _Efzin(iAL) log(D(iAlz))
= —Ey, p) log(D(T:(l)))-

Here, we minimize the loss £ (t) to update the parameters ¢.
These two adversarial losses in Eqn. 3 and Eqn. 4 are employed
to update our TUN and discriminative network respectively in an
alternating fashion.
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Fig. 3. Artifacts caused by the state-of-the-art face frontalization and
hallucination methods. (a) The input 16x 16 LR image. (b) The original
128x128 HR frontal image. (c) The aligned upright version of (a) by
STNp. (d) Frontalized result of (c) using [1]. Note that, we first upsam-
ple (c) by bicubic interpolation, then apply [1], and downsample the
frontalized result. (e) HR image after applying [51] to (d). (f) HR image
after applying [51] to (c) directly. (g) The frontalized version of (f) by [1].
(h) The result of applying [2] to (a). (i) The result of TANN without the
transformer subnetwork, which is similar to the upsampling network [2],
retrained with LR non-frontal and HR frontal faces. (j) The aligned and
frontalized LR face by our transformer subnetwork. Note that, in our
end-to-end trained TANN, the output of the transformer network is a set
of feature maps not an image. (k) The hallucinated result of (j) by our
upsampling subnetwork (here, we retrained the upsampling network). (1)
Our final result.

Triplet loss: In order to frontalize side-view LR faces, we
present a triplet loss to constrain the encoded LR faces to be close
to the latent representations of their corresponding frontal ones and
far away from other frontal faces in the latent subspace. Therefore,
our proposed triplet loss is expressed as:

[ ) = FEOIF = 17() = FU)IE]

Lir; E(lj,l,i 1) ~p(S) ||]'—(l1)||%7

&)
where F(-) indicates the encoded latent representation by the
fully-connected layer in our transformer subnetwork, (I;",1;,1;)
represents a triplet sample from the set of all possible triplets S
in the training set. [; is an LR profile face, lj' , dubbed positive
anchor, is the corresponding frontal LR face of /;, and [, dubbed
negative anchor, is any other frontal LR face. One example of the
triplets is shown in Fig. 2. In addition, [z]; denotes the operator
max{z,0}.

Since our network aims at super-resolving LR faces rather
than clustering faces, it should not distort the mapping between
LR and HR frontal faces. Considering that positive and negative
anchors are LR frontal faces, updating the gradients with respect
to the representations of the positive and negative anchors will
distort the mapping between LR and HR frontal faces. In other
words, clustering triplets by adjusting the latent representations
of positive and negative anchors would damage the end-to-end
mapping between LR and HR frontal faces and thus leads to

6

inferior super-resolution performance. Different from the triplet
loss presented in [55], we take positive and negative anchors as
constant and thus only back-propagate gradients with respect to
the latent representations of LR side-view faces. In this manner, we
are able to upsample frontal faces without introducing distortions
while forcing the LR profile faces to be close to their frontal
counterparts in the latent space.

In our TANN, all the layers are differentiable and RM-
Sprop [56] is used to update the parameters ¢ and d. We update the
parameters d by minimizing the adversarial loss Lp as follows:

Az+1 — ~A? 1 — D2
YA+ (1 =) (5%

OLp 1
dd AFT 1 ¢

where 7 and <y represent the learning rate and the decay rate
respectively, 7 indicates the index of the iterations, A is an
auxiliary variable, and € is set to 10~® to avoid division by zero.
We employ multiple losses, i.e., Lpiz, Leat, L7 and Lipg, to
update our TUN and the object function is expressed as:

‘ A (6)
dz+1 —_ dz _

Lrun = Lpiz + 1ML jeat + AT + pLliri, @)
where 7), A and p are the trade-off weights. Since we aim at super-
resolving frontal HR faces rather than generating random faces,
we put lower weights on the feature-wise, adversarial and triplet
losses and set A, 7 and j to 10e =2, 10e~2 and 10e~* respectively.
Then, the parameters of TUN ¢ are updated by the gradient descent
as follows:

OLruNn

AT = yAT + (1 - 7)(7)27
it _yi_OLron 1 ®)
ot NG _|_€'

As the iteration progresses, the output faces will be more
similar to real faces. Therefore, we gradually reduce the impact
of the discriminative network by decreasing A,

N = max{\-0.9957, \/2}, )
where j is the index of the epochs. Equation 9 not only increases

the impact of the appearance similarity term but also preserves the
class-specific discriminative information in the training phase.

3.4 Hallucinating Frontal HR from Non-frontal LR

The discriminative network is only employed in the training phase.
In the testing phase, we feed an unaligned LR profile face image
into the transformative upsampling network to obtain its upright
and frontal HR version. Note that, only in the training stage, we
need to feed the network with triplet samples due to employing
the triplet loss. In the testing stage, our network is able to super-
resolve and frontalize a single image. Since aligned HR frontal
face images are employed as ground-truths, TUN will output
aligned and frontalized HR faces directly. As a result, our method
does not need to estimate the face orientations or align very
low-resolution images beforehand, and provides an end-to-end
and highly nonlinear mapping from an unaligned LR profile face
image to its frontal HR version.
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Fig. 4. lllustrations of influence of different losses. (a) The input 16x16 LR images. (b) The original 128x128 HR frontal images. (c) The
downsampled version of (b). (d) The frontalized LR faces by our transformer subnetwork. (e) The upsampling results only using pixel-wise loss. (f)
The upsampling results using the pixel-wise and perceptual losses. (g) The upsampling results without using the triplet loss. (h) Our final results.

3.5

The STN layers, as shown in Fig. 2, are built by convo-
lutional and ReLU layers (Conv+ReLU), max-pooling layers
with a stride 2 (MP2) and fully connected layers (FC). Since
STN is mainly used for calibrating in-plane transformations,
we employ the similarity transformation for alignment. Specif-
ically, STN; and STNjy share the same architecture and con-
sist of Conv+ReLU (filter size: 20x128x3x3 with 1 pixel
padding), MP2, Conv+ReLU (20x20x3x3), FC+ReLU (from
400 to 20 dimensions), and FC (from 20 to 4 dimensions).
STN3 is composed of MP2, Conv+ReLU (20256 x5x%5), MP2,
Conv+ReLU (20x20x5x5), FC+ReLU (from 80 to 20 di-
mensions) and FC (from 20 to 4 dimensions). STN4 is com-
posed of MP2, Conv+ReLU (128x64x5x5), MP2, Conv+ReLU
(20x128x5x5), MP2, Conv+ReLU (20x20x3x3), FC+ReLU
(from 120 to 20 dimensions) and FC (from 20 to 4 dimensions).

Similar to the works [24], [57], batch normalization [58] is em-
ployed after each convolution except the final output layer of TUN
and dropout is applied to the feature maps in the discriminative
network. In the experimental part, some algorithms may require
alignment of LR inputs, i.e. [I17]. Hence, we employ another
network STNj to align the LR face images to the upright position,
and STNy consists of Conv+ReLU (128x3x3x3 with 1 pixel
padding), MP2, Conv+ReLU (20x20x3x3), MP2, FC+ReLU
(from 180 to 20 dimensions), and FC (from 20 to 4 dimensions).

We also use a triplet pair { (1], 1;,1;), (hi, hi, hy )} as a unit
to construct our mini-batch in training, where h; is the HR frontal
face image corresponding to the LR profile face /; and the LR
frontal face l?’, and h; is the HR frontal version of the LR frontal
face [; . The triplet pairs are not only designed to calculate the
triplet loss but also compatible with the other losses. Therefore,
our network can be trained in an end-to-end fashion.

The learning rate 7 is set to 0.001 and multiplied by 0.99
after each epoch, 7 is set to 0.01, and the decay rate is set
to 0.01. The training codes and details can be downloaded
https://github.com/Xin YuANU/JFFH.

Implementation Details

4 SYNTHESIZED DATASET

Training of a deep neural network requires a large number of
samples to prevent models from overfitting to the training dataset.
However, the publicly available large-scale face datasets [29], [30]
only provide faces in the wild but not frontal/non-frontal pairs. For

Fig. 5. lllustration of the synthesized dataset. (a) Original frontal HR face
image. (b) The generated views of (a). (c) Spatially transformed and
downsampled version of (b).

the training purpose, we opt to generate a large set of synthesized
LR non-frontal faces from HR frontal face images.

There are a number of alternative approaches available. For
instance, Hassner et al. [1] render 2D frontal faces from different
side-view faces using a single 3D reference mesh. However, when
the out-of-view face regions are large, these methods are prone
to artifacts. Similarly, landmark detection algorithms may fail to
localize facial landmarks accurately in large poses.

We adopt the idea of [31] to generate different views from
HR frontal ones. We use a single 3D face model to render HR
out-of-plane rotated faces while taking advantage of the mirror-
symmetry for the positive and negative angles to produce five
different views of faces, i.e., {0°, £40°, £75°}. Specifically, we
first randomly select 10K cropped frontal faces (within £5°) from
the CelebA [30], and resize them to 128x 128 pixels. We use
these images as our HR ground-truth faces h;. Then we generate
the non-frontal LR faces [; by transforming and downsampling the
reconstructed HR images down to 16 x 16 pixels. Here, we employ
the bicubic interpolation method ( imresize function in Matlab) to
generate LR face images. Therefore, we obtain 50K LR/HR face
pairs for training and testing of our network. Figure 5 illustrates
sample pairs {l;, h;} generated from a single frontal face.

Since our side-view face images are generated from frontal
faces by a generic 3D face model, some distorted areas or artifacts
may appear in the synthesized side-view faces, such as ear and hair
regions as visible in Fig. 5. When we downsample the generated
profile faces, those artifacts can be largely reduced. Furthermore,
those regions may not be visible in the final frontalized and



upsampled HR face images, and thus deep neural networks might
learn to ignore those artifacts. However, if localizations of fa-
cial landmarks are erroneous, the generated views may undergo
obvious distortions. For instance, when noses or chins suffer
severe misalignments to the 3D model, the synthesized profile
faces can be severely distorted or even blended with backgrounds.
Those artifacts cannot be alleviated in LR faces, thus bringing
extra ambiguity to the super-resolution and frontalization process.
Therefore, we manually choose frontal faces where landmarks are
well localized on the facial components to avoid generating side-
view faces in sub-quality.

5 EXPERIMENTAL EVALUATION

We compare our method with ten state-of-the-art methods qualita-
tively and quantitatively. As mentioned in Sec. 4, we assemble
50K LR/HR face pairs, and randomly choose 9K frontal face
images for training (45K LR/HR pairs), and 1K faces for testing
(SK LR/HR pairs). In training TANN, we randomly choose a side-
view LR face, its corresponding frontal LR face and any other
frontal LR face to construct an input triplet (I;,1;,1;) as well as
employ their corresponding HR ground-truth triplet (h;, hi, h;")
as supervision. In all cases, the training data and test data do not
overlap. We use different ground-truth HR frontal faces in the
training and testing phases.

5.1 Qualitative Comparisons with the SoA

Since Ma et al.’s method [17] requires the input LR faces to be
aligned uprightly, we train STNy to align the LR inputs to the
upright position for a fair comparison. Note that, our method does
not need any alignment or pose estimation in advance.

As illustrated in Fig. 6(c) and Fig. 7(c), different combinations
of bicubic interpolation and the frontalization method [1] cannot
produce authentic frontal face details. Because of the low reso-
lution of inputs, Hassner et al.’s method [1] fails to detect facial
landmarks and outputs erroneous frontalized faces while bicubic
interpolation is handicapped to generate necessary high-frequency
facial details.

Kim et al. [59] propose a very deep CNN based general
purpose super-resolution (SR) method, known as VDSR. Since
VDSR is trained on natural image patches and does not provide
an upscaling factor of 8, we retrain VDSR with face patches
extracted from CelebA dataset by an upscaling factor of 8x. As
shown in Fig. 6(d) and Fig. 7(d), VDSR fails to produce facial
details and thus contaminates the outputs of [!] with ghosting
artifacts.

Leigh et al. [60] present a generic super-resolution method,
dubbed SRGAN. SRGAN employs the framework of generative
adversarial networks [24], [57] to enhance the visual quality and
is trained by using not only a pixel-wise f5 loss but also an
adversarial loss. SRGAN provides an upscaling factor of 8, but
it is only trained on general patches. Thus, we retrain SRGAN
on face images as well. As shown in Fig. 6(e) and Fig. 7(e), the
generated facial details by SRGAN are still blurry, and [1] fails to
localize the landmarks accurately in the upsampled faces. Thus,
the final results suffer from severe artifacts.

Ma et al. [17] super-resolve LR inputs by exploiting position
patches, and require the LR inputs to be precisely aligned with
the exemplar training dataset. Here, aligned HR face images from
CelebA dataset are employed as the exemplar dataset. It spawns
severe artifacts in the upsampled faces because of large pose

TABLE 1
Quantitative evaluations on the entire test dataset.

H Method FL+H HF (1]
PSNR | SSIM | PE PSNR | SSIM | PE
Bicubic 2099 | 0.80 236 | 2041 | 0.79 2.48
VDSR [59] 21.04 | 0.80 227 | 2047 | 0.79 2.39
SRGAN [60] | 20.94 | 0.80 222 | 2034 | 079 2.37
Maetal [17] | 21.60 | 0.82 1.87 | 21.15 | 0.80 2.11
CBN [51] 20.61 | 0.79 233 1940 | 0.77 2.76
TDAE [2] 20.68 | 0.79 228 | 19.89 | 0.77 252
Ours 2569 | 0.87 110 | 2569 | 0.87 1.10

variations that exist in the input LR images as visible in Fig. 7(f).
Due to the faulty frontalization by [1], this method also produces
distorted facial details, as shown in Fig. 6(f).

Zhu et al. [51] present a deep cascaded bi-network for face
hallucination, called CBN, which first localizes facial landmarks
and then aligns LR faces based on the localized landmarks.
However, when the inputs undergo large pose variations, CBN
cannot localize facial landmarks accurately, and thus causes severe
artifacts as seen in Fig. 7(g). Figure 6(g) shows that CBN cannot
hallucinate authentic HR faces from the incorrect frontalized LR
faces either. Furthermore, CBN super-resolves high-frequency
facial details by combing facial deformation bases. The bases
are pre-defined and shared by all samples in CBN. When CBN
fails to localize facial components accurately, it tends to output a
mean face template composed by the bases as the high-frequency
components of the upsampled faces. Therefore, the results seem
very close to each other, as visible in Fig. 6(g) and Fig. 7(g).

Yu and Porikli [2] propose a transformative discriminative au-
toencoder (TDAE) as an extension to [22] to upsample unaligned
and noisy LR face images. TDAE interweaves deconvolutional and
STN layers to align and super-resolve LR faces while employing
a discriminative network that forces the generative network to
produce sharper results. However, TDAE can only hallucinate
unaligned frontal faces rather than profile faces as demonstrated in
Fig. 7(h) since it does not take out-of-plane rotations into account
and the first decoder and encoder in TDAE are used for noise
reduction rather than frontalization. Figure. 6(h) shows that TDAE
cannot produce realistic HR faces due to the deteriorated LR facial
patterns caused by the incorrect frontalization.

Our method reconstructs authentic facial details as shown in
Fig. 6(i) and Fig. 7(i). In the experiments, the face poses vary from
-75° to +75°. Since our transformer subnetwork can frontalize and
align LR input faces more accurately, our upsampling subnetwork
achieves superior reconstruction performance from the frontalized
and aligned LR features.

5.2 Quantitative Comparisons to the SoA

We measure the reconstruction performance of all methods on the
entire test dataset by the average PSNR and the structural simi-
larity (SSIM) scores. Note that, when we hallucinate non-frontal
faces, the hair and background regions may not be symmetric or
the same compared to the original HR face images. Thus, for a
fair comparison for all methods, we compute the PSNR and SSIM
on the face regions.

We report results for two possible scenarios. In the first case,
we first apply [I] to frontalize LR face images, and then super-
resolve the frontalized LR images by the state-of-the-art SR/FSR
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Fig. 6. Results of the state-of-the-art methods for frontalization followed by hallucination. The input faces are first frontalized by [1] and then
hallucinated by different algorithms. Rows: +75°, +40°, 0°, -40°, and -75°. Columns: (a) Unaligned non-frontal LR inputs. (b) Original frontal HR
images. (c) [1] + bicubic interpolation. (d) [1] + [59]. (e) [1] + [60]. (f) [1]1 + [17]- (@) [1] + [51]- (h) [1] + [2]. (i) Our method. Notice that, TANN does not
need or use [1].

TABLE 2

Quantitative evaluations on different out-of-plane rotation degrees.

H Methods —75° —40° 0° +40° +75°
Bicubic 20.63/0.80/2.35 | 21.43/0.81/2.32 | 2452/0.83/2.07 | 19.51/0.78/2.52 | 18.87/0.77/2.54
VDSR [59] 20.69/0.80/2.23 | 21.47/0.81/223 | 2459/0.84/190 | 19.54/0.78/2.49 | 18.90/0.77/2.50
F[I1]+H SRGAN [60] | 20.58/0.80/2.21 | 21.34/0.80/2.21 | 24.53/0.83/1.76 | 19.41/0.78/2.46 | 18.81/0.77/2.46
Maetal [17] | 21.15/0.81/1.88 | 22.05/0.82/1.83 | 24.90/0.85/1.52 | 20.38/0.80/2.04 | 19.53/0.80/2.06
CBN [51] 20.34/0.79/2.27 | 21.14/080/2.23 | 24.14/0.83/1.87 | 19.08/0.77/2.59 | 18.36/0.76 /2.68
TDAE [2] 20.44/0.79/2.26 | 20.69/0.79/2.30 | 23.13/0.82/1.80 | 19.74/0.78/2.50 | 19.43/0.78/2.52
Bicubic 20.25/0.79/2.48 | 20.68/0.80/2.47 | 23.46/0.83/2.17 | 19.05/0.77/2.63 | 18.62/0.77/2.62
VDSR [59] 20.41/0.80/2.38 | 20.83/0.80/2.39 | 23.43/0.83/1.98 | 19.04/0.77/2.64 | 18.66/0.77 /2.59
H4F [1] SRGAN [60] | 20.36/0.79/2.34 | 20.69/0.79/2.40 | 23.12/0.82/1.92 | 18.98/0.77/2.61 | 18.53/0.77/2.55
Maetal [17] | 21.23/0.80/2.12 | 21.90/0.81/2.11 | 23.37/0.83/1.85 | 19.97/0.79/223 | 19.26/0.78/2.24
CBN [51] 18.64/0.75/2.83 | 19.23/0.76/2.84 | 22.13/0.81/2.18 | 18.84/0.76/2.93 | 18.16/0.75/2.99
TDAE [2] 19.35/0.77/2.59 | 1997/0.77/2.56 | 22.62/0.80/2.18 | 19.36/0.77/2.58 | 18.13/0.76/2.69
Ours ™~ 2486/0.87/1.21 | 2524/0.87/1.18 | 26.58/0.88/1.08 | 2522/0.87/1.17 | 24.78/0.87/1.21
Ours 25.02/0.87/1.17 | 25.72/0.87/1.10 | 26.97/0.89/0.98 | 25.70/0.87/1.10 | 25.03/0.87/1.17

methods (denoted as F+H). In the second case, we super-resolve
LR face images first by the state-of-the-art SR/FSR methods and
then frontalize the upsampled results by [!] (denoted as H+F).
We apply STNj to align LR inputs uprightly in both cases.
Table 1 shows that our method achieves the superior performance
in comparison to the other methods, and outperforms the second
best method over 4.0 dB in PSNR.

Table 2 indicates the PSNR and SSIM scores for different
out-of-plane rotation degrees in the F+H and the H+F cases. In
Tab. 2, the first and second numbers denote PSNR and SSIM
scores respectively. As indicated in Tab. 2, first frontalizing and
then upsampling faces can achieve slightly better results than first

upsampling followed by frontalization. This also implies that it is
easier to super-resolve frontal LR facial patterns than non-frontal
ones. Because of the mirror symmetry operation in [1], the PSNR
and SSIM scores of the other methods in the positive degrees
are lower than those in the negative degrees, as seen in Tab. 2.
However, our method does not have this effect and produces
consistent PSNR scores in both negative and positive degrees.
Furthermore, as the rotation degree increases, our method does not
degrade like the other methods. From 0° to £75°, our performance
only decreases 1.95 dB while the performance of the second best
method decreases 3.75 dB.

In addition, as reported in our previous work [26], we also
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Fig. 7. Results of the state-of-the-art methods for hallucination followed by frontalization by [1]. Columns: (a) Unaligned non-frontal LR inputs. (b)
Original frontal HR images. (c) Bicubic interpolation + [1]. (d) [59] + [1]. (e) [60] + [1]. (f) [17] + [1]. (@) [51] + [1]. (h) [2] + [1]. (i) Our method.

TABLE 3
Quantitative evaluations on the frontal view

Method Bicubic | VDSR[59] | SRGAN[60] | Maeral [17] | CBN[51] | TDAE[2] | Ours
PSNR 25.64 25.78 25.58 26.45 25.37 26.39 26.97
SSIM 0.86 0.86 0.85 0.88 0.86 0.87 0.89
PE 1.84 1.51 1.17 1.16 1.44 1.18 0.98

observe that blurry upsampled results may have higher PSNRs.
Therefore, we introduce a perceptual error metric to measure
the hallucination performance and the perceptual errors are more
consistent with human perception. In particular, the perceptual
errors are measured by the differences of feature maps between
the hallucinated faces and their ground-truth ones, as indicated in
Eqn. 2. As demonstrated in Tab. 1, Tab. 2 and Tab. 3, our method
achieves the lowest perceptual errors in comparison to other stat-
of-the-art methods. This also implies that our method can attain
more authentic frontalized upsampled HR face images.

We also conduct a user study. In the experiment, a cohort of
twenty students are asked to rank the upsampled faces with respect
to the ground-truth images. Since there are two strategies to obtain
HR frontalized face images, we conduct the user study on these
two scenarios separately. Specifically, in the first scenario all the
face images are recovered by applying frontalization first and then
hallucination, and in the second scenario all the images are recon-
structed by employing hallucination first and then frontalization.
In each scenario, we show twenty female faces as well as twenty
male ones recovered by different methods to each user. Each user
gives a score from 1 to 7 to different results. We average the scores
for all the users. The average scores are illustrated in Fig. 15. As
seen in Fig. 15(a) and Fig. 15(b), all the users favor our method
on the test images.

6 DISCUSSIONS

6.1 Super-resolving Different Levels of Downsampled
Images

In order to super-resolve different levels of downsampled images,
i.e., 2%, 4x and 8x, we need to modify our network slightly to
accept images in larger resolutions. Due to the fixed size of the
bottleneck layers of our network, merely increasing the number
of layers of the encoder network does not necessarily improve the
performance as the resolutions increase. Since increasing the size
of the bottleneck of the network will increase the parameters of
the network dramatically, and the network cannot be fed into GPU
memory. Therefore, we employ skip connections between our
encoder and decoder parts. Note that, we concatenate the feature
maps of our encoder layers and their corresponding decoder layers
rather than adding them. In this way, we can preserve more high-
frequency details from inputs. The visual results for different
resolutions are also shown in Fig. 10.

6.2 Comparisons with SoA on Face Recognition and
Retrieval

It is important to notice that we do not claim our method is de-
signed for face recognition for two reasons: (i) we do not explicitly
incorporate an identification objective in our formulation, and (ii)
it might seem fruitless to attempt recognizing people in such tiny



TABLE 4
Results of different face recognition networks trained on different
source images.

Sources | HR | LR | 8x | 4x | 2x

Accuracy | 8532% | 62.15% | 81.53% | 83.33% | 84.51%

images even for humans. However, we demonstrate that our hallu-
cination method effectively facilitates the face recognition task in
two difference scenarios: (1) we first use the hallucinated faces to
train a face recognition network and then test its face recognition
performance; (2) We use an off-the-shelf face recognition network
which is trained on original HR face images, and then test its
performance on our hallucinated face images.

For the first scenario, we use the standard faceNet [55] as
the face recognition network and the same training protocols as
indicated in [55]. We follow the standard divisions of the training
and test datasets in the LFW benchmark to generate LR/HR pairs,
as reported in [29]. The face recognition network is both trained
and tested on the hallucinated faces by our network. Following
the standard LFW face verification test protocol, we report the
accuracy scores in Tab. 4. We also included another two baseline
methods for more detailed comparisons. The first baseline network
is trained and tested on the original HR faces, marked as HR,
and the second baseline network is trained and tested on LR
face images that are upsampled by bicubic interpolation to fit the
resolution requirement of the network, marked as LR.

As indicated in Tab. 4, our method improves the face recog-
nition performance by a large margin of 19.38% compared to the
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Fig. 8. Results of the state-of-the-art methods for frontalization followed by hallucination. Columns: (a) Unaligned non-frontal LR inputs. (b) Original
frontal HR images. (c) [1] + bicubic interpolation. (d) [1] + [59]. (e) [1] + [60]. (f) [11+ [17]. (@) [1] + [51]. (h) [1] + [2]. (i) Our method.

TABLE 5
Face recognition results for different methods.

H Method Accuracy
Fl+H | H+F[I]
Bicubic 66.57% 65.43%
VDSR [59] 64.15% 69.77%
SRGAN [60] 68.88% 70.92%
Ma et al. [17] 65.55% 68.83%
CBN [51] 65.05% 64.72%
TDAE [2] 64.02% 65.96%

HR 96.02%

LR 77.27%

Ours 8% 82.32%

Ours 4 x 86.18%

Ours 2% 92.25%

network that is only trained on LR face images. However, as seen
in Tab. 4, the gap of the face recognition performance between
the LR and the original HR faces is reduced by our method.
We also test face recognition performance on different levels of
downsampling, i.e., 2%, 4x and 8X. As indicated in Tab. 4, as
the input resolutions increase, the face recognition performance
improves.

For the second scenario, we employ a state-of-the-art pre-
trained face recognition network (SphereFaceNet [61]) to conduct
standard face recognition tests on original HR faces, aggressive
downsampled LR faces and hallucinated HR faces from LR ones
by different methods. The face recognition performance is also
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Fig. 9. Results of the state-of-the-art methods for hallucination followed by frontalization by [1]. Columns: (a) Unaligned non-frontal LR inputs. (b)
Original frontal HR images. (c) Bicubic interpolation + [1]. (d) [59] + [1]. (e) [60] + [1]. () [17] + [1]. (@) [51] + [1]. (h) [2] + [1]. (i) Our method.
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Fig. 10. lllustrations of super-resolving and frontalizing face images in different resolutions by our method. First row: ground-truth frontal HR face
images. Second row: input LR faces (left) and our results with a magnification factor 8x (right). Third row: input LR faces and our results with a
magnification factor 4 x. Fourth row: input LR faces and our results with a magnification factor 2x.

evaluated on standard LFW face verification benchmark [29]. We
demonstrate the face recognition performance in Tab. 5, where
the performance on original HR faces is marked as HR, the
performance on LR faces is marked as LR, and the combinations
of the frontalization method and different upsampling methods
are also listed. As shown in Tab. 5, our method improves the
face recognition performance significantly compared to the other

methods in both scenarios. Note that, since our cropped original
HR faces might not be aligned to the positions of HR faces
used for training the network of [61], the face recognition rate
for original HR faces decreases slightly. Furthermore, we also
demonstrate that when the resolutions of input images increase,
the face recognition performance of our method improves as seen
in Tab. 5.
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Fig. 11. Results of the state-of-the-art face hallucination methods for frontal LR faces. Columns: (a) Unaligned non-frontal LR inputs. (b) Original
frontal HR images. (c) Bicubic interpolation. (d) [59]. (e) [60]. (f) [17]. (g) [51]. (h) [2]. (i) Our method.
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Fig. 12. Results on LR face images beyond 3D model and training poses. Top row: real HR images. Middle row: unaligned LR images. Bottom row:
our frontalized and hallucinated results.

Furthermore, to our advantage, our method achieves significant
improvement in face retrieval performance as shown in Tab. 6. We
use an off-the-shelf deep face recognition model [62] to evaluate
the performance of all the methods. First, we randomly choose
100 frontal faces from the test data as our gallery. We generate
their corresponding four LR non-frontal images, and employ six
algorithms listed above to hallucinate the frontal HR faces on
both F+H and H+F scenarios. Following the standard protocol
in [62], we compute the accuracy score based on whether the
(a) (b) () ) (e) correct person is included within the top-5 candidates (thus, the

Fig. 13. Results on real LR face images. Top row: real LR images. probability of random selection is 5%). Here, we notice that
Bottom row: our frontalized and hallucinated results.
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Fig. 14. Super-resolving LR faces without frontallzatlon by our network.
Top row: ground-truth HR images. Middle row: LR face images. Bottom
row: our upsampled results.

L O
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Bicubic VDSR SRGAN ~ Ma Bicubic VDSR SRGAN Ma  CBN TDAE Ours

(@) (b)
Fig. 15. Evaluation of user study on the test images. (a) Average
scores of different methods for frontalization followed by hallucination.
(b) Average scores of different methods for hallucination followed by
frontalization.

directly using off-the-shelf face recognition is inappropriate to
measure the similarity between generated HR faces and real HR
faces because there is still a domain gap between them. For
instance, the features of real faces may be different from those of
generated HR faces. In order to mitigate the domain gap, we train
an autoencoder by using the same protocol of training TANN to
transfer HR real faces to the domain where generated HR images
lie in. In this way, we can significantly reduce the domain gap.
As seen in Tab. 6, we improve the face retrieval accuracy with
a large margin of 77.7%. This also implies that our method is
able to preserve the appearance similarity rather than generating
averaged HR faces when frontalizing and hallucinating LR faces.

6.3 Comparisons with SoA on Frontal Faces

Because we do not distinguish the views of LR faces deliberately
before frontalization, the frontalization method [I] is applied
to all the views of LR faces. As shown in Fig. 6, using the
face frontalization method [!] distorts LR input faces due to the
erroneous localization of facial components and its symmetrizing
operations. Therefore, the super-resolution performance of frontal
LR faces degrades dramatically.

For a fair comparison, we also include an evaluation for the
frontal view case where the frontalization is not employed. As
shown in Tab. 3, our method still outperforms all others in the
frontal view case. Note that, our previous method TDAE [2]
intends to increase the depth of its decoder to achieve better super-
resolution performance but is limited by the GPU memory. In con-
trast, our network employs an autoencoder, i.e., our transformer
subnetwork, before upsampling, and thus it does not require as
much memory as TDAE yet achieves better performance. This
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TABLE 6
Face retrieval results for different methods.
H Method Accuracy
F+H | H+F[]]
Bicubic 5.8% 6.6%
VDSR [59] 7.0% 8.0%
SRGAN [60] 6.0% 9.0%
Maetal [17] 6.0% 9.0%
CBN [51] 6.2% 8.2%
TDAE [2] 7.2% 5.6%
Ours 86.7 %
TABLE 7

Quantitative evaluations on the influence of different losses

\ W/0 Ly \ W/ Luri
‘ £pix £])ix+fem Epix+ feat+T ‘ L‘«pix ‘Cpixffear l:pi.x+feat+7—
PSNR | 25.01 25.17 25.33 25.19 25.33 25.69
SSIM 0.87 0.87 0.87 0.88 0.87 0.87
PE 1.32 1.17 1.17 1.31 1.05 1.10

also demonstrates that our transformer subnetwork can not only
frontalize LR profile faces but also improve super-resolution
performance.

6.4

Table 7 indicates the influences of different losses on the perfor-
mance quantitatively. As indicated in Fig. 4(f) and Tab. 7, the
feature-wise loss not only improves the visual quality but also
increases the quantitative results. The adversarial loss makes the
hallucinated faces sharper and more realistic, as shown in Fig. 4(f).
As illustrated in Tab. 7, using adversarial loss is also able to force
the super-resolved face images to be frontal and thus improves the
super-resolution performance.

As demonstrated in Tab. 7, using our triplet loss improves the
final results. Because our triplet loss forces the LR profile faces to
be close to their frontal ones in the latent subspace, the upsampled
HR frontalized faces are more similar to their frontal ground-
truths. Furthermore, we also illustrate the quantitative results
without using our triplet loss for different out-of-plane rotation
degrees in Tab. 2, marked as Ours ™. This experiment confirms that
the triplet loss does not degrade the performance of upsampling
frontal faces but improves the SR performance of LR profile faces.
In addition, our triplet loss is able to reduce the reconstruction loss
of LR profile faces earlier in the transformer subnetwork rather
than spreading the loss through the entire upsampling network.
Thus, the upsampling subnetwork can focus on learning mappings
between LR and HR facial patterns as suggested in [22]. With the
help of the triplet loss, we can even achieve better super-resolution
performance on LR frontal faces, as indicated in Tab. 2.

Influence of Different Losses

6.5 Performance on Faces beyond 3D models

Although our method is trained on a dataset of LR non-frontal
and HR frontal image pairs synthesized by using a single 3D
face model, our method can be effectively generalized to faces
beyond the 3D model and the poses used in the training stage. To
demonstrate this, we randomly choose face images from CelebA



excluding the frontal faces used for generating our training dataset.
Then we spatially deform, i.e., 2D transformation including rota-
tions, translations and scale changes, and downsample these im-
ages to obtain LR face samples. The synthesized LR faces do not
share 3D shapes or poses with the examples used in the training
dataset, and thus these samples are much more challenging. As
shown in Fig. 12, our network can hallucinate and frontalize such
randomly chosen images, demonstrating it is not restricted to these
five poses and certain models. Three reasons may account for this
phenomenon: (1) When generating our dataset, the selected faces
used for generating profile faces are not strictly frontal ones, which
increases the variety of the training poses. (2) The differences
between different HR faces become less obvious in LR faces, and
faces in different poses can be approximated by one of the five
poses in very low resolutions. (3) In the process of encoding LR
faces to latent representations, the max pooling layers also reduce
the differences of 3D models and poses between the training and
test LR faces.

We also apply our network to real LR face images chosen
from the WiderFace dataset [63], where LR faces are captured in
the wild. Notice that the real LR faces are even blurrier than our
training samples. Our super-resolved results are shown in Fig. 13.
Since our network does not need to select one specific model
for a particular angle, our method does not require estimation of
the face pose angles explicitly. Instead, our method frontalizes
and hallucinates LR profile faces in different angles by a single
network.

6.6 Super-resolving LR faces without Frontalization

Since our method is an extension of our previous face super-
resolution methods [2], [22], [26], our network can be also applied
to super-resolve LR face images without frontalizing them. To this
end, we use the ground-truth HR faces that have the same poses
as the input LR ones as supervision and remove the triplet loss
in training. As seen in Fig. 14, after retraining our network, our
method can effectively super-resolve LR faces in different poses,
similar to our previous methods [2], [26].

6.7 Limitations

Since our method uses a generic face model to generate faces
in different poses, we do not contain different expressions in
the training dataset. Therefore, our network does not account for
different facial expressions. Furthermore, limited by the generic
3D face model, we do not model eye-glasses or sun-glasses in
the training dataset either. When frontalizing occluded regions,
general occluded regions and sun-glasses should yield different
frontalization results due to the symmetry of sun-glasses and
asymmetry of general occlusions. This may introduce further am-
biguity in the frontalization process without exploiting any high-
level semantic information. Our training dataset is generated from
face images captured in normal illumination conditions where
facial landmarks can be detected for generating different poses.
Since facial landmark detectors may fail to localize landmarks
accurately under extreme illumination conditions and the gener-
ated faces by the 3D model may suffer severe artifacts, we do not
contain those faces for training. Besides, since the illuminations
on the faces are not symmetric, it is very challenging to frontalize
realistic illumination conditions. Thus, our method does not tackle
such face images acquired under extreme illumination conditions.
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7 CONCLUSION

We introduced a transformative adversarial network to upsample
and frontalize very low-resolution unaligned face images simulta-
neously in an end-to-end fashion. Our network is able to learn
how to frontalize and align LR faces while upsampling 8X.
Benefiting from our proposed triplet loss, we are able to enforce
LR profile faces to be close to their frontal counterparts in the
latent subspace and thus achieve better frontalization performance.
With the help of the intra-class discriminative information and the
feature constraints, our network generates realistic facial details.
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