CLNet: A Compact Latent Network for Fast
Adjusting Siamese Trackers

Xingping Dong![0000-0003-1613-9288] ' Ji,nhing Shen!*(0000-0003—1883-2086]
Ling Shao!+210000-0002—8264—6117] and Fatih Porikli3[0000—0002—1520— 4466]

! Inception Institute of Artificial Intelligence, Abu Dhabi, UAE.
2 Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE.
3 Australian National University, Australia.

Abstract. In this paper, we provide a deep analysis for Siamese-based
trackers and find that the one core reason for their failure on challeng-
ing cases can be attributed to the problem of decisive samples missing
during offline training. Furthermore, we notice that the samples given in
the first frame can be viewed as the decisive samples for the sequence
since they contain rich sequence-specific information. To make full use
of these sequence-specific samples, we propose a compact latent net-
work to quickly adjust the tracking model to adapt to new scenes. A
statistic-based compact latent feature is proposed to efficiently capture
the sequence-specific information for the fast adjustment. In addition,
we design a new training approach based on a diverse sample mining
strategy to further improve the discrimination ability of our compact
latent network. To evaluate the effectiveness of our method, we apply
it to adjust a recent state-of-the-art tracker, SiamRPN-++. Extensive
experimental results on five recent benchmarks demonstrate that the
adjusted tracker achieves promising improvement in terms of tracking
accuracy, with almost the same speed. The code and models are avail-
able at https://github.com/xingpingdong/CLNet-tracking.

Keywords: Siamese tracker, latent feature, sequence-specific, sample
mining, fast adjustment

1 Introduction

Recently, Siamese-based trackers [3,31,30] have attracted significant attention
in the tracking community, since they successfully incorporated data-driven deep
learning with real-time visual tracking, and achieved impressive tracking accu-
racy. However, these trackers are still unable to address more challenging situ-
ations, such as similar distractors or huge deformation as shown in Fig. 1. To
analyze the core reason for these failures, we simplify the Siamese model to a
linear binary-classifier and transfer the tracking task to a classification problem.
We find that the issues can be attributed to the problem of decisive samples
missing, i.e. some key samples, such as the ones in the above challenging cases,

* Corresponding author: Jianbing Shen (shenjianbingcg@gmail.com)

2 X. Dong et al.

SiamRPN—++ Ours

Fig. 1. Sample results of our compact latent network incorporated into the
state-of-the-art tracker, SiamRPN++ [30]. By only adjusting the base model
(SiamRPN++) with the sequence-specific samples from the first frame, we signifi-
cantly improve its discrimination ability under the challenging cases, such as similar
distractors (top) or huge deformation (bottom).

are rare or unseen during offline training. This results in the trained model hav-
ing poor discrimination ability for these challenging samples. This is a normal
problem for most data-driven models since they cannot capture all data for
training. In contrast, in the tracking task, annotated bounding boxes are given
in the first frame of each sequence, which can provide sequence-specific sam-
ples to improve the discrimination ability of the model, since these samples are
similar to the ones in the other frames of the same sequence. In addition, most
Siamese-based methods ignore the rich context information, only applying the
annotations to extract templates. Thus, the ignored context information can be
used to adjust these Siamese-based models and improve the discrimination abil-
ity for all samples in the sequence. As shown in Fig. 1, the model, adjusted by the
sequence-specific supervision information in the first frame, achieves significant
improvement compared with the original model.

Making full use of the sequence-specific information to adjust the offline
trained model is not a trivial task, especially for real-time tracking, because of
the limitation of computational load. A simple solution is to directly retrain the
Siamese-based model using an optimization method, such as stochastic gradient
descent (SGD) [42], ride regression [6], or Lagrange multipliers [24]. However,
these methods are often time-consuming and not practicable for tracking.

To meet real-time requirements and extract effective information from sequence-
specific samples, we propose a Compact Latent Network (CLNet) to adjust recent
Siamese-based trackers. Our CLNet contains an feature-adjusting sub-network,
latent encoder, and prediction sub-network. The first provides the adjusting fea-
ture for each sequence-specific sample, using three 1 x 1 convolutional layers
for efficiency. The core module, the latent encoder, produces a compact feature
representation for the entire set of sequence-specific samples, by computing the

CLNet: A Compact Latent Network for Fast Adjusting Siamese Trackers 3

statistical information inside the positive and negative adjusting feature sets, re-
spectively. Then, the latent feature is fed into the last sub-network (a three-layer
perceptron), to predict the adjusting parameters.

It is worth mentioning that our latent feature is compact, with only a few
thousand parameters, and more robust than the normal features, since statistics-
based features contain uncertainty information in the distribution, which is ben-
eficial for better classification performance [26]. In addition, we propose a new
training method based on diverse sample mining to further enhance the training
performance. In contrast to the training method of Siamese models, we sample
image-pairs from a sequence for each batch to effectively extract the sequence-
specific information for the latent feature. We also incorporate diverse sample
mining to benefit the adjustment network training. These diverse samples im-
prove the discrimination ability of the adjustment network enabling to address
similar distractors and significant appearance changes.

To evaluate the effectiveness of the proposed approach, we take the state-
of-the-art tracker, SiamRPN++ [30], as our basic model. To maintain the gen-
eralization ability of this model, we use the proposed CLNet to adjust the last
layers in the classification and regression branches. For fast adjustment, we only
run CLNet once in the first frame and omit it in the following frames. A thor-
ough evaluation on five popular benchmarks (seen in §4) clearly demonstrates
the advantage of our algorithm.

2 Related Work

Although many techniques have been successfully applied to visual object track-
ing, such as the correlation filter [21, 5, 7], regression model [20, 37], and sparse
coding [40, 39], here, we only focus on the recent Siamese network based track-
ers [3,31], which are mainstream in the tracking community, and meta-learning
approaches [22, 50|, which are related to our latent feature.

2.1 Siamese Network Based Trackers

The pioneering work, SiamFC [3], provided a new paradigm based on the Siamese
network to fully exploit the increasing number of labeled video datasets. After
this work, several researchers tried to further mine the potentiality of the offline
tracking model by designing different Siamese architectures [19, 60, 67, 12], using
the powerful training loss [8], learning efficient Siamese networks [36], and so
on [63,64,51]. Some focus on improving the performance of the online updating
method through various strategies, such as incorporating a correlation filter [58],
learning a dynamic network [18], utilizing deep reinforcement learning [25, 10,
11]. Among these Siamese-based trackers, the recent SiamRPN [31], which intro-
duces the region proposal network after the Siamese network, achieves very high
speed and impressive tracking accuracy on the popular VOT benchmark [29].
The following works [69, 14, 30, 68] also obtain state-of-the-art performance on
this benchmark. For example, Zhu et al. [69] proposed a distractor-aware data

4 X. Dong et al.

augmentation approach and an incremental learning method to enhance the of-
fline model and online tracking mechanism, respectively. In consequence, more
attention is paid to improving the generalization of the base network by us-
ing more discriminative network structures, such as cascaded RPN [14], deeper
networks [30], and wider networks [68]. These state-of-the-art trackers prefer to
provide a more powerful offline model that can use more training data. However,
they do not fully exploit the supervised information in the first frame

2.2 Meta-learning

Meta-learning can be interpolated as the inception of fast weights [22,2], or
learning-to-learn [50,57,23,1], and is usually applied to few-shot classification,
specifically for the image recognition task. There are three major categories of
recent meta-learning approaches, including 1) metric-based methods [27, 59, 55],
which focus on learning powerful similarity metrics to discriminate samples from
the same class; 2) memory-based methods [49, 44], which explore the storage of
critical training examples with effective memory architectures or encoding fast
adaptation methods, and 3) optimization-based methods [15, 16], which search
for adaptive parameters to quickly adjust the model for new tasks.

Although meta-learning has been widely applied for few-shot classification [15,
48, 32], there exist few related works in the community of visual object track-
ing [43,4]. Park et al. [43] proposed an optimization-based meta-learner, analo-
gous to MAML [15], to learn an adaptive step for gradient-based online updating.
This method has been applied to two trackers based on online training [42, 56] for
acceleration, by reducing the number of training iterations. However, it cannot
be directly used for offline training models, like Siamese-based trackers. Recently,
a meta-learner network [4] and gradient-guided network [33] were proposed to
update the Siamese network based tracker online, by utilizing the gradients to
extract target-specific information. In contrast, our approach explores a new di-
rection to capture the sequence-specific information, by using a statistic-based
latent feature. Besides, we only adjust the basic model in the first frame, rather
than using online updating. Thus, the time cost for our adjustment is almost
negligible.

3 Siamese Tracker with Compact Latent Network

SiamRPN-++ [30], a recent representative Siamese tracker, is adopted as our
basic tracker. Thus, we briefly introduce the framework of this tracker in §3.1.
Then, we conduct a deep analysis into the issue of decisive samples missing in
Siamese-based trackers (see §3.2). To overcome this issue, we propose an efficient
Compact Latent Network (CLNet) in §3.3, to adjust the basic model, and provide
a diverse sample mining strategy to boost training performance in §3.4. Fig. 2
shows the framework of our method.

CLNet: A Compact Latent Network for Fast Adjusting Siamese Trackers 5

Compact Latent Network
s Latent Variable
Latent
c M 01 H2 02
—
DW-Corr
Search Region f
| 25*25*256

Positive Set Negative Set

|’

Hidden R CLS Adjusted
Map Map Map
25*25*2k 25*25*|
Template L | . Last Layer
Siamese Backbone RPN Module Latent Encoder

Fig. 2. The framework of Compact Latent Network (CLNet) for adjusting
SiamRPN++ [30]. For clarity, we only show the classification branch. Given an
Annotated Bounding Box (AB-Box) in the first frame, the proposed CLNet predicts
the weights in the last layer of SiamRPN++-. At this time, the hidden map is fed into
CLNet, not the last layer (i.e. the red arrow is removed). In the following frames, we
remove the CLNet to reduce computational requirements and use the adjusted model
for tracking. The latent encoder module is shown on the right, where p and o present
the mean and standard deviation of a sample set. The positive and negative sets are
produced using the AB-Box.

3.1 Revisiting SiamRPN for Tracking

In the early Siamese network based tracking algorithm, SiamFC [3], the tracking
task is formulated as a nearest neighbor searching problem in a semantic em-
bedding space. Given a target patch provided in the first frame of a sequence,
the goal of SiamFC is to seek the most similar patch from the search region in
the subsequent frames. To extract representative semantic features, SiamFC [3]
build a fully-convolutional Siamese network ¢, which contains a template branch
for representing the target patch z, and an instance branch for representing the
search region x. Then the cross-correlation (convolution) operation is applied on
these semantic features to produce the final similarity map S, which is formu-
lated as S(z,x) = ¢(z) *¢(x)+b, where b is the offset of the similarity value, and
* represents the cross-correlation operation. S € R¥*" measures the similarity
between the template and instances in the search region, where w and h are the
width and height of this map. Then the peak of S corresponds to the target
location in the search region.

To avoid multi-scale estimation, SimRPN [31] extends SiamFC by incorpo-
rating an additional Region Proposal Network (RPN). The outputs of SiamRPN
include one classification branch and one regression branch to regress the target
bounding box (b-box) for both position and scale estimation. A multi-anchors
technique [46] is further used for better performance. Combined with the Siamese
network, SiamRPN produces w x h X k anchors, where k is the anchor number for
each searching position on instances feature map ¢(x). For each anchor, the re-
gression and classification branches obtain a proposal (b-box) and corresponding

6 X. Dong et al.

score, respectively. The corresponding outputs are formulated as follows,

A = conli ($(x)) * coniil (§(z)), Al = conf;T (¢(x)) * coniyl ($(z), (1)

cls

where con indicates the couvolutional network obtaining new feature maps. Then
the final target b-box is the regression output on the anchor with the highest
classification score. Furthermore, Li et al. [30] proposed SiamRPN++ to utilize
the asymmetrical depth-wise cross correlation to reduce the number of parame-
ters in the RPN block, providing efficient computation and solving the problem
caused by the differences between the classification and regression branches. The
new RPN block is formulated as follows,

A = 11 (ol (9()) + ol (6(2))) , A" = B (o2 (6(x)) » alil (6(2))) . (2)

where « is an adjust (1x1 convolutional) layer, x is the depth-wise cross cor-
relation, and h® denotes the head block for predicting the classification and
regression map.

3.2 Analysis for Siamese-based Training Method

Siamese-based trackers take advantage of large numbers of image pairs to train
a network from labeled video datasets (e.g., VID [47]) which can provide richer
training samples. These numerous training samples can effectively enhance the
generalization of tracking models for most testing sequences. However, this train-
ing strategy does not utilize sequence-specific information, provided by the an-
notation in the first frame of each testing sequence. Here, we introduce a simple
binary-classification case to intuitively illustrate the underlying problem caused
by using the general training method. In fact, SiamFC [3] can also be viewed as a
binary-classification problem, where the template is the classifier discriminating
the instance patch in the search region. Thus, the following analysis is suitable
for most methods based on SiamFC [3] or SiamRPN ([31].

Without loss of generality, we can assume that there are various positive
and negative samples that come from different videos during the training phase,
which is consistent with the Siamese-based training method. As shown in Fig. 3,
we use a group of positive samples (the big blue ellipse) as well as negative
samples (the big green ellipse) for training. The optimal decision hyperplane
should be located in the middle of the two groups of samples to maintain the
largest margin between the boundary samples and itself. Then, we can assume
w! is the ideal decision hyperplane based on these two groups of training data
in Fig. 3. During the testing phase, the positive and negative samples have no
overlap with the training samples (i.e., we apply the learned tracker on unseen
videos), and the number of testing samples is usually far less than that of the
training phase. Thus, we use small ellipses to represent the testing samples and
assume the challenging samples lie near the decision hyperplane. As shown in
Fig. 3, some challenging samples may pass through the decision hyperplane into
the wrong region, which means the trained classifier is invalid.

CLNet: A Compact Latent Network for Fast Adjusting Siamese Trackers 7

w! w ;
Positive

Sample Testing

data

**
*

*

AA
A
A Training data

Testing

data Negative

Sample
Training data

Fig. 3. Illustration of issue on binary-classification with the general training
method. w!' and w? are the ideal decision hyperplanes based on training and testing
sets, respectively. w™ is the decision boundary considering both two sets.

In the general classification task, an error will occur if any negative samples
score is larger than some positive sample. In contrast, a tracking error occurs
only when the classification score of one negative sample is larger than all posi-
tive samples scores. However, the tracking task still suffers from the issue of an
unsuitable decision hyperplane (like w!). For example, in Fig. 3, we can assume
that the testing data points are sampled from a search region. The red triangle
is the point with the largest distance from the decision boundary w' among all
negative samples, which means it has the highest positive classification score.
Similarly, the red star has the highest score among all positive samples. Obvi-
ously, the score of the red triangle is larger than that of the red star; thus, the
red triangle is regarded as the target, resulting in tracking faults.

In this paper, we focus on alleviating this issue and find a reasonable decision
hyperplane for the tracking task. We find that the target ground-truth b-box,
given in the first frame of a sequence, can provide rich supervision information to
enhance the model discrimination ability for this sequence which helps to find a
reasonable decision hyperplane. However, most Siamese-based trackers only use
this b-box to extract the template feature and ignore the discriminative context
information in the first frame. Effectively utilizing the supervision information
is vital for the tracking model (classifier) learning. One simple solution is to fine-
tune the tracking model with the positive and negative samples (testing data
in Fig. 3) in the first frame. This is time-consuming since the model finetuning
may converge after numerous iterations with normal gradient descent optimiza-
tion [42]. Furthermore, the limited samples generated in the first frame easily
lead to over-fitting. As shown in Fig. 3, if we only consider the testing data,
the optimal decision hyperplane is w?. However, this is not suitable for some
training samples, and provides wrong labels for them. In fact, the ideal decision
hyperplane for both training and testing data is w*, which is not easily found.
In the next section, we try to find an ideal tracking model which is suitable for
both training data (large-scale labeled videos) and testing data (samples in the
first frame), by using a compact latent network.

8 X. Dong et al.

3.3 Compact Latent Network

To demonstrate the effectiveness of our compact latent network, we select the re-
cent state-of-the-art Siamese-based model, SiamRPN++ [30], as our base tracker.
To maintain the generality of the original tracking model, we fix all layers except
the last one in the classification and regression branches. Here, we only show how
to incorporate our compact latent network into the classification branches, and a
similar process is also applied to the regression branches. For simplicity, we omit
the notation cls in the following description. Firstly, we reformulate the base
model to better explain the new proposed module. As mentioned in Sec. 3.1, the
last head block in SiamRPN++ contains two convolutional layers. We decom-
pose the head block into two components, i.e. h = hi(hg). Denoting all layers
except the last one in the classification branch as a function f, the classification
map in Eq. (2) can be reformulated as follows:

A = hi(f(x,2);01), (3)

where f(x,2z) = ho (a/°*(¢(x)) x a**"(¢(z))). In fact, f(x,2z) € R¥*"*¢is viewed
as a w X h feature map M with ¢ channels, and 6, is the parameter in h;.

To better exploit the feature map M, we provide a compact feature represen-
tation by utilizing the statistical information inside it. Firstly, this feature map
M can be regarded as a set including the hidden vectors corresponding to the
template-instance pair, i.e., M = {mj, ms,--- ,myy}. Furthermore, according
to the classification labels, this set can be split into two groups, the positive set
P = {m{,mj,--- ,m', } and negative set N = {m;,m;,--- ,m__}. Given
these two sets, we capture the statistical information by computing the mean p
and standard deviation o as follows,

1 n 1 np
[Py P —] = P\ 9
w= L amd)of = [LS (gatmt) - oy, @

where u € R!, 0 € R+, p € {+, -}, and g, is a feature-adjusting sub-network
containing three 1 x 1 convolutional layers, which is used to reduce the channel
number of the latent vector from ¢ to I. Here, we set | < 2¢ to avoid a too high
computational burden. Then, the final latent compact feature c for the original
m is constructed by concatenation, i.e., ¢ = concat(u™, ot,u~, o).

In practice, the proposed statistic-based feature is more robust than the orig-
inal features. We give an intuitive example in Fig. 4 to demonstrate the powerful
representative ability of the statistic-based feature. Assume the positive (blue
stars) and negative (green triangles) samples are respectively drawn from two
Gaussian distributions (the blue and green ellipses). As shown in Fig. 4, we
can easily find the ‘ideal’ decision hyperplane w™ according to the rule of the
largest margin. However, the true decision hyperplane should be w9, since the
true sample boundaries are the edges of the two ellipses. The incorrect decision
hyperplane is caused by decisive samples missing, i.e. the key samples (red star
and triangle) are not drawn. Usually, the critical samples are difficult to capture,
but we can provide the mean and standard deviation of each sample set to re-
shape the Gaussian distribution. Then the distributions can be used to find the

CLNet: A Compact Latent Network for Fast Adjusting Siamese Trackers 9

w! w' Negative Sample
Positive Gaussian A Decisive Sample

Positive Sample Negative Gaussian
% Decisive Sample

Fig. 4. Comparison of binary-classification based on normal samples and
Gaussian distributions. w" and w? are the corresponding ideal decision hyperplanes.

ideal decision hyperplane and achieve better classification performance, by uti-
lizing some uncertainty-based optimization methods [26]. Notice that a Gaussian
distribution only depends on its mean and standard deviation, which indicates
that these contain enough information to represent the distribution. Thus, we
use the mean and standard deviation as the compact feature to alleviate the
issue of decisive samples missing, by utilizing the underlying distribution.

The proposed compact representation brings two advantages: firstly, it has
fewer parameters than the original feature. Notice that [is kept in the same order
of magnitude as c. Thus, in practice, the parameter number 4 x [of the compact
feature c is less than the original one w X h X ¢. Secondly, the compact feature
c is number-free, in other words, we can use a different number of positive and
negative samples to construct this feature. This is very suitable for SiamRPN-
based tracking models, since the number of positive or negative samples changes
with the different input image-pairs [31].

After obtaining the latent compact feature c, a multi-layer perceptron is used
as the prediction sub-network to produce a deviation for the weights of the last
head layer:

Ab, = aan (C), (5)

where ga is the weight deviation predictor containing three fully connected lay-
ers. These deviations are added into the corresponding weights to adjust the
model for different sequences, which is formulated as:

0, = 01 + Ab:. (6)

Finally, the adjusted weight 6, is used to produce the classification map. For the
regression branch, the computation procedure for weight adjustment is similar
except that we use the positive sample set to build the compact latent feature,
since only the positive samples are used for training. In summary, the adjusted
classification map A¢® and regression map A!°¢ are formulated as follow:

A;ls — hils (fClS(X, Z), gcchS)7 Ailoc _ hZIDC(flOC(X’ Z), 0206)‘ (7)

These maps are applied to predict the tracked object, similar to SlamRPN++ [30].

10 X. Dong et al.

3.4 Training with Diverse Sample Mining

To train the proposed compact latent networks, we fix all parameters in the
original model, and use the same softmax loss L* and smooth-L1 loss L!°¢ in
SiamRPN-++ [30] for the adjusted classification and regression maps, respec-
tively. The final loss is formulated as follows,

I = Lcls (AZZS, ycls> +)\LZOC(ALOC, ylt)C)7 (8)

S C

where y** and y'°¢ are the classification and regression ground-truth, respec-
tively, and A is the trade-off parameter between the two losses, which is set as
1.2 in our experiments. In SiamRPN++, the image-pairs are sampled from dif-
ferent sequences in one training batch to achieve a more discriminative feature,
which is not suitable for training our adjustment network. This is because the
goal of our adjustment network is to predict the adjusted weights for each spe-
cific sequence rather than the whole videos. During training, we need to capture
the important information inside a specific sequence not the general information
across the sequences. Besides, our statistic-based latent feature also requires the
local statistical information in a sequence not the global statistical informa-
tion across sequences. Thus, in each training batch, we randomly sample several
image-pairs from the same sequence and feed them into the network.

To enhance the training performance, we propose a diverse sample min-
ing strategy, by ranking the classification scores of unused negative samples.
SiamRPN++ [30] adopts the IToU between the anchor and ground-truth b-box
to select the positive and negative samples. The negative ones are the anchors
with ToU < 0.3, and the positive samples are those with ToU > 0.6. Only at
most 16 positive samples and a total of 64 samples are used for one training
pair. The unused negative samples may contain some diverse samples, which are
helpful for enhancing the model discrimination ability. To mine these diverse
samples, we first compute the original score map A°*. Then, we sort the unused
negative samples in descending order according to the positive scores in A,
The first 16 negative samples are regarded as the diverse samples and appended
into the training samples. Thus, a total of 80 samples are used for one training
pair. The newly proposed diverse samples, near the decision hyperplane of the
original model, are more likely to be the decisive samples, such as the ones in
Fig. 4. As the analysis in Sec. 3.3, these samples are helpful to find the ideal
decision hyperplane and build a more robust compact latent feature.

4 Experimental Results

Our approach is implemented in Python 3 using Pytorch 0.4.0 and evaluated on
a single Nvidia RTX 2080Ti GPU. We compare our tracker and the base tracker
with several representative trackers on NFS [17], DTB70 [34], UAV123 [41],
VOT2019 [28], and LaSOT [13] benchmarks. The tracking speed of our method
is about 45.6 fps, closing to the base tracker SiamRPN++ [30] (46.9 fps). We
evaluate the base model with its official code in our machine for fair comparison.

CLNet: A Compact Latent Network for Fast Adjusting Siamese Trackers 11

4.1 Implementation Details

Architecture. Our Compact Latent Network (CLNet) has two sub-networks g,
and g¢5. In our experiments, g, contains three convolutional blocks constructed
by a 1x1 convolution, batch-norm, and ReLU layer. For the classification branch,
the output channel number of each convolutional layer is set as 256, and that
of the regression branch is set as 512. This ensures the compact latent features
are the same size in both two branches. Sub-network gs contains three fully
connected layers, the first two layers of which are followed by a ReLU layer
and the last of which is followed a Tanh layer. For the classification branch,
the output numbers of the three layers are [128, 128, nefls], where nges is the
parameter number of 0 to be adjusted. Similarly, the numbers in the regression
branch are set as [128, 128, ngioc]. Here, we adopt the SiamRPN++ [30] with
three layer-wise features aggregation as the base model. Since the output feature
maps in these three layers have the same size, we can use the adjustment network
with the same structure for each feature map.

Training. We follow the training protocol of SiamRPN++ [30], using the same
training datasets (COCO [35], DET [47], VID [47], and YouTubeBB [45]). Syn-
chronized stochastic gradient descent is used for training over four GPUs with
a total of 64 pairs per minibatch (16 pairs per GPU). We train over 20 epochs,
each of which contains 60,000 training pairs. We use a step learning rate from
0.001 to 0.005 for the first five epochs as a warmup training. In the last 15
epochs, the learning rate is exponentially decayed from 0.005 to 0.0005. The
other hyper-parameters are the same as SiamRPN++.

4.2 Comparison with Other Trackers

NFS30 Dataset. Need for Speed (NFS) [17] includes 100 challenging sequences
with fast-moving objects. We evaluate the proposed method on the 30 FPS
version (NFS30) by comparing the trackers in [17]. As shown in Fig. 5, our
tracker achieves a precision and AUC 21.8% and 24.2% higher than MDNet [42],
which is the best tracker reported in the original paper. Compared with the
baseline SiamRPN-++, we also achieve the significant relative gains of 8.2% in
terms of both precision and AUC.

DTB70 Dataset. Our method is also evaluated on the Drone Tracking Bench-
mark [34], which includes 70 videos captured by drone cameras. We report the
precision and AUC plots in Fig. 6 in comparison to the recent SiamFC-v2 [58],
and other trackers reported in DTB70. Specifically, our tracker significantly out-
performs the second-best tracker, SiamRPN++, by large gains of 5.5% and 6.8%
in terms of precision and AUC. We attribute the performance promotion to the
proposed compact latent network.

UAV123 Dataset. UAV123 [41] includes 123 low altitude aerial sequences cap-
tured from an aerial viewpoint, with an average sequence length of 915 frames.
Besides the recent methods in UAV123, we add SiamFC-v2 [58] into the compar-
ison. Fig. 7 shows the precision and AUC plots for the top ten trackers. Among
the compared methods, SiamRPN++ obtains the best precision and AUC scores

12 X. Dong et al.

Precision plots of OPE Success plots of OPE

06
" — SiamRPN++[0.5971] %
3. +++» MDNet [0.530] @ 4 |s» MDNet [0.437]
] = SiameseFc [0.513] g |==SiameseFc [0.417]
® s — HDT [0.502] 3 0s.|= HDT[0.408]
FCNT [0.484] FCNT [0.399]
02 === Goturn [0.439] 0.2 +|===Goturn [0.377]
= SRDCF [0.424] — SRDCF [0.352]
01 .-- MEEM [0.422] 01+|-=++ BACF [0.348]
——BACF [0.406] —Staple [0.340]
% 5 10 15 20 25 30 35 40 45 s % o1 02 03 o4 05 06 07 os 09 1
Location error threshold Overlap threshold
Fig. 5. Precision and success plots on the NFS30 dataset [17].
| Precision plots of OPE | Success plots of OPE
0.9 09_ —
0.8 OB~
07 07 F|==0urs [0.656]
e — SiamRPN++ [0.800]F & M= SiamRPN++ [0.614]
§ . Taeess SiamFC-v2 [0.704] & " Nesss SiamFC-v2 [0.481]
g0 ’ '=——MDNet [0.692] § °*[=——=MDNet [0.456]
& o4 — MEEM [0.583] 8,4l = MEEM[0.365]
CREST [0.549] @ CREST [0.364]
03 ——SRDCF [0.497] ©3||——SRDCF [0.339]
02 — KCF [0.470] o2 = BACF [0.308]
" «+== BACF [0.464] 4L 7+++ KCF [0.280]
——DAT [0.424] ——DAT [0.265]
00 5 10 15 20 25 30 35 40 45 5(00 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Location error threshold Overlap threshold
Fig. 6. Precision and success plots on the DTB70 dataset [34].
00 Precision plots of OPE 0o Success plots of OPE
08-
07
06 = QOurs [0.830] ° === Qurs [0.633]
c — SiamRPN++ [0.804]/| § | |= SiamRPN++ [0.611]
2°° wxs SiamFC-v2 [0.691] g“ +=x: SRDCF [0.464]
S oa = SRDCF [0.676] 8 o4l [==SiamFC-v2 [0.461]
o — SAMF [0.592] 2 | |= ASLA[0.407]
0z MUSTER[0.591] || o3t|---- SAMF [0.396]
s ——DSST [0.586] 12 |7 MUSTER [0.391]
= Struck [0.578] = Struck [0.381]

-:=- ASLA [0.571] 01| [+== DSST [0.356]
=== DCF [0.526] ==DCF [0.332]

o s 10 15 20 25 30 35 40 45 S0 © o1 02 03 04 05 06 07 08 09 1
Location error threshold Overlap threshold

Fig. 7. Precision and success plots on the UAV123 dataset [41].

of 0.804 and 0.611, respectively. However, our approach outperforms this with a
precision score of 0.830 and an AUC score of 0.633, which further demonstrates
the effectiveness of our method.

VOT2019 Dataset. We also evaluate our CLNet on the real-time challenge
of the VOT2019 Dataset [28], which contains 60 public sequences with different
challenging factors. This dataset performs re-initialization of a tracker when it

CLNet: A Compact Latent Network for Fast Adjusting Siamese Trackers 13

SiamCRF_RT SiamMask ARTCS SiamDW_ST DCFST DiMP SiamFCOT SiamMargin SiamRPN++ Ours

EAO 1 0.262 0.287 0.287 0.299 0.317 0.321 0.350 0.366 0.285 0.313
ACC T 0.549 0.594 0.602 0.600 0.585 0.582 0.601 0.585 0.599 0.606
ROB | 0.346 0.461 0.482 0.467 0.376 0.371 0.386 0.321 0.482 0.461

Table 1. Evaluation of the real-time challenge in VOT2019 [28] by EAO, ACC, and
ROB. The best scores are highlighted in red.

StrSiam SiamFC VITAL MDNet MLT GradNet SiamDW C-RPN SiamRPN++ Ours

[67] Bl [p6] [42] [33 [68] [14] 30]
P (%) 34 341 372 374 - 351 - 443 485 49.4
Puorm (%) 44.3 449 484 481 - - - 54.2 56.5 57.4
AUC (%) 356 358 412 413 345 365 384 455 49.3 49.9

Table 2. Comparison on the LaSOT dataset [13] by the success (AUC), precision (P),
and normalized precision (Porm). The best scores are highlighted in red.

fails to track the target, to order to measure its short-term tracking performance.
According to the evaluation protocol of VOT2019, we adopt the Expected Aver-
age Overlap (EAO), Accuracy (ACC) and Robustness (ROB) to compare differ-
ent trackers, including the top nine algorithms ranked by EAO in the real-time
challenge. As shown in Table 1, our approach obtains the best score in terms of
ACC. Compared with our baseline SiamRPN++, the proposed method achieves
a significant performance improvement of 9.8% in terms of EAQO, and also boosts
the ACC and ROB scores. This demonstrates our approach can effectively im-
prove the short-term tracking ability of the base model.

LaSOT Dataset. The recent LaSOT [13] provides high-quality manual anno-
tations for a large-scale dataset, which includes a total 1,400 sequences with an
average sequence length of 2,512 frames. To further validate the proposed ap-
proach on a larger and longer dataset, we conduct experiments on the testing
set of LaSOT with 280 sequences, comparing the recent MLT [4], GradNet [33],
SiamDW [68], and C-RPN [14], as well as the trackers from LaSOT. Following
[13], three metrics are used for evaluation, including the success (AUC), preci-
sion (P), and normalized precision (P, opm). As shown in Table 2, our tracker
achieves the best results in terms of all three metrics, which clearly demonstrates
the generalization ability of our approach for the large-scale dataset.

4.3 Ablation Study

Extensive experiments are performed to analyze the main components of the
proposed compact latent network. We conduct these experiments on a com-
bined dataset including the whole DTB70 [34], NFS30 (30 FPS version) [17] and
UAV123 [41] datasets. This new combined dataset contains 293 diverse videos
for thorough analysis. The variants of our method and the baseline are evaluated
using the precision (P) and AUC metrics [65].

We retrain our base tracker (BT) SiamRPN++ initialized with its origi-
nal parameters using our training method and test it on the combined dataset.

14 X. Dong et al.

RT BT +AN +LE +0S +DM

P (%) 74.373.3 73.8 755 76.6 77.2
AUC (%) 57.4 57.7 58.2 60.1 60.2 61.1
Table 3. Comparison of key components in terms of precision (P) and AUC scores on
the combined DTB70 [34], NFS30 [17], and UAV123 [41] dataset. SiamRPN-++ [30]
is the base tracker (BT). RT means the retrained base tracker. The critical compo-
nents include an adjustment network (+AN), latent encoder (+LE), one sequence for
training (+0OS), and diverse sample mining (+DM).

The results show that the retrained tracker (RT) improves the precision (BT:
73.3% vs RT: 74.3%) but reduces the AUC (BT: 57.6% vs RT: 57.4%), which
indicates that the additional training on the original model does not provide
significant gains. To analyze the impact of key components in the proposed
framework, we add them to the base tracker (BT) one by one. All results are
shown in Table 3. We first train a adjustment network without the latent en-
coder to adjust the base model (+MIN). The performance gains in terms of P
(0.5%) and AUC (0.5%) scores indicate that the base model benefits from the
sequence-specific information, extracted by the adjustment network. By adding
the latent encoder (+LE), CLNet achieves a major improvement with a P gain
of 1.7% and AUC gain of 1.9%. This demonstrates the advantages of the latent
encoder in providing a compact and effective feature for the sequence-specific
information. Furthermore, we sample the image-pairs from one sequence in each
training batch (+08S), to provide a more robust latent feature. This yields a
further improvement, with 1.1% and 0.1% gains in terms of P and AUC scores,
respectively. Finally, the diverse sample mining technique (+DM) improves the
P and AUC score by another 0.6% and 0.9%. In summary, compared with our
baseline, the final version (+DM) achieves significant relative gains of 5.3% and
5.9% in terms of the P and AUC scores.

5 Conclusion

This paper provided an in-depth analysis into the performance degradation of
Siamese-based trackers and found that an important factor is decisive samples
missing during training. To alleviate this problem, we proposed a Compact La-
tent Network (CLNet), which can efficiently extract the sequence-specific infor-
mation in the first frame, to adjust the Siamese-based model. To further facilitate
the adjustment network training, we proposed a new training strategy based on
diverse sample mining to enhance the discrimination ability of CLNet. Since we
only carry out one forward computation for the adjustment in each sequence,
the time cost is almost negligible. Extensive evaluations on SiamRPN++ have
clearly demonstrated the effectiveness of the proposed CLNet. In the future, we
will apply our method to other vision tasks, such as multi-object tracking [52,
66], segmentation [9, 38], deblurring [54, 53], and saliency detection [61, 62].

CLNet: A Compact Latent Network for Fast Adjusting Siamese Trackers 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D., Schaul, T.,
Shillingford, B., De Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: NeurIPS (2016)

Ba, J., Hinton, G.E., Mnih, V., Leibo, J.Z., Ionescu, C.: Using fast weights to
attend to the recent past. In: NeurIPS (2016)

Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-
convolutional siamese networks for object tracking. In: ECCV Workshop (2016)
Choi, J., Kwon, J., Lee, K.M.: Deep meta learning for real-time target-aware visual
tracking. ICCV (2019)

Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M., et al.: Eco: Efficient convolution
operators for tracking. In: CVPR (2017)

. Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation

filters: Learning continuous convolution operators for visual tracking. In: ECCV
(2016)

Dong, X., Shen, J., Yu, D., Wang, W., Liu, J., Huang, H.: Occlusion-aware real-
time object tracking. IEEE TMM (2017)

. Dong, X., Shen, J.: Triplet loss in siamese network for object tracking. In: ECCV

(2018)

Dong, X., Shen, J., Shao, L., Van Gool, L.: Sub-markov random walk for image
segmentation. IEEE TIP (2015)

Dong, X., Shen, J., Wang, W., Liu, Y., Shao, L., Porikli, F.: Hyperparameter
optimization for tracking with continuous deep g-learning. In: CVPR (2018)
Dong, X., Shen, J., Wang, W., Shao, L., Ling, H., Porikli, F.: Dynamical hyper-
parameter optimization via deep reinforcement learning in tracking. IEEE TPAMI
(2019)

Dong, X., Shen, J., Wu, D., Guo, K., Jin, X., Porikli, F.: Quadruplet Network
With One-Shot Learning for Fast Visual Object Tracking. IEEE TIP (2019)

Fan, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C.,
Ling, H.: Lasot: A high-quality benchmark for large-scale single object tracking.
In: CVPR (2019)

Fan, H., Ling, H.: Siamese cascaded region proposal networks for real-time visual
tracking. In: CVPR (2019)

Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017)

Finn, C., Xu, K., Levine, S.: Probabilistic model-agnostic meta-learning. In:
NeurIPS (2018)

Galoogahi, H.K., Fagg, A., Huang, C., Ramanan, D., Lucey, S.: Need for speed: A
benchmark for higher frame rate object tracking. In: ICCV (2017)

Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic
siamese network for visual object tracking. In: ICCV (2017)

He, A., Luo, C., Tian, X., Zeng, W.: A twofold siamese network for real-time object
tracking. In: CVPR (2018)

Held, D., Thrun, S., Savarese, S.: Learning to track at 100 fps with deep regression
networks. In: ECCV (2016)

Henriques, J.F., Rui, C., Martins, P., Batista, J.: High-speed tracking with kernel-
ized correlation filters. IEEE TPAMI (2015)

Hinton, G.E., Plaut, D.C.: Using fast weights to deblur old memories. In: CCSS
(1987)

16

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

X. Dong et al.

Hochreiter, S., Younger, A.S., Conwell, P.R.: Learning to learn using gradient de-
scent. In: ICANN. Springer (2001)

Hong, S., You, T., Kwak, S., Han, B.: Online tracking by learning discriminative
saliency map with convolutional neural network. In: ICML (2015)

Huang, C., Lucey, S., Ramanan, D.: Learning policies for adaptive tracking with
deep feature cascades. In: ICCV (2017)

Khan, S., Hayat, M., Zamir, S.W., Shen, J., Shao, L.: Striking the right balance
with uncertainty. In: CVPR (2019)

Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition. In: ICML deep learning workshop (2015)

Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Pflugfelder, R., Kamarainen,
J.K., Cehovin Zajc, L., Drbohlav, O., Lukezic, A., Berg, A., Eldesokey, A., Kapyla,
J., Fernandez, G.: The seventh visual object tracking vot2019 challenge results
(2019)

Kristan, M., Matas, J., Leonardis, A., Vojit, T., Pflugfelder, R., Fernandez, G.,
Nebehay, G., Porikli, F., Cehovin, L.: A novel performance evaluation methodology
for single-target trackers. IEEE TPAMI (2016)

Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: Siamrpn++: Evolution of
siamese visual tracking with very deep networks. In: CVPR (2019)

Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with
siamese region proposal network. In: CVPR (2018)

Li, H., Dong, W., Mei, X., Ma, C., Huang, F., Hu, B.G.: Lgm-net: Learning to
generate matching networks for few-shot learning. ICML (2019)

Li, P., Chen, B., Ouyang, W., Wang, D., Yang, X., Lu, H.: Gradnet: Gradient-
guided network for visual object tracking. In: ICCV (2019)

Li, S., Yeung, D.Y.: Visual object tracking for unmanned aerial vehicles: A bench-
mark and new motion models. In: AAAT (2017)

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014)

Liu, Y., Dong, X., Lu, X., Khan, F.S.; Shen, J., Hoi, S.: Teacher-Students Knowl-
edge Distillation for Siamese Trackers. arXiv (2019)

Lu, X., Ma, C., Ni, B., Yang, X., Reid, 1., Yang, M.H.: Deep regression tracking
with shrinkage loss. In: ECCV (2018)

Lu, X., Wang, W., Shen, J., Tai, Y.W., Crandall, D.J., Hoi, S.C.: Learning video
object segmentation from unlabeled videos. In: CVPR (2020)

Ma, B., Hu, H., Shen, J., Zhang, Y., Porikli, F.: Linearization to nonlinear learning
for visual tracking. In: ICCV (2015)

Ma, B., Shen, J., Liu, Y., Hu, H., Shao, L., Li, X.: Visual tracking using strong
classifier and structural local sparse descriptors. IEEE TMM (2015)

Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking.
In: ECCV (2016)

Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual
tracking. In: CVPR (2016)

Park, E., Berg, A.C.: Meta-tracker: Fast and robust online adaptation for visual
object trackers. ECCV (2018)

Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. ICLR
(2017)

Real, E., Shlens, J., Mazzocchi, S., Pan, X., Vanhoucke, V.: Youtube-
boundingboxes: A large high-precision human-annotated data set for object de-
tection in video. In: CVPR (2017)

46.

47.

48.

49.

50.

51.

52.

53.

54.

53.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

CLNet: A Compact Latent Network for Fast Adjusting Siamese Trackers 17

Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In: NeurIPS (2015)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. IJCV (2015)

Rusu, A.A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., Hadsell,
R.: Meta-learning with latent embedding optimization. ICLR (2019)

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In: ICML (2016)

Schmidhuber, J.: Evolutionary principles in self-referential learning, or on learn-
ing how to learn: the meta-meta-... hook. Ph.D. thesis, Technische Universitét
Miinchen (1987)

Shen, J., Tang, X., Dong, X., Shao, L.: Visual Object Tracking by Hierarchical
Attention Siamese Network. IEEE TCYB (2020)

Shen, J., Yu, D., Deng, L., Dong, X.: Fast online tracking with detection refinement.
IEEE TITS (2017)

Shen, Z., Lai, W.S., Xu, T., Kautz, J., Yang, M.H.: Exploiting semantics for face
image deblurring. IJCV (2020)

Shen, Z., Wang, W., Lu, X., Shen, J., Ling, H., Xu, T., Shao, L.: Human-aware
motion deblurring. In: ICCV (2019)

Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
NeurIPS (2017)

Song, Y., Ma, C., Wu, X., Gong, L., Bao, L., Zuo, W., Shen, C., Lau, R., Yang,
M.H.: Vital: Visual tracking via adversarial learning. CVPR (2018)

Thrun, S., Pratt, L.: Learning to learn: Introduction and overview. In: Learning
to learn, pp. 3-17. Springer (1998)

Valmadre, J., Bertinetto, L., Henriques, J.F., Vedaldi, A., Torr, P.H.: End-to-end
representation learning for correlation filter based tracking. In: CVPR (2017)
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. In: NeurIPS (2016)

Wang, Q., Teng, Z., Xing, J., Gao, J., Hu, W., Maybank, S.: Learning attentions:
residual attentional siamese network for high performance online visual tracking.
In: CVPR (2018)

Wang, W., Shen, J., Dong, X., Borji, A.: Salient object detection driven by fixation
prediction. In: CVPR (2018)

Wang, W., Shen, J., Dong, X., Borji, A., Yang, R.: Inferring salient objects from
human fixations. IEEE TPAMI (2019)

Wang, X., Li, C., Luo, B., Tang, J.: Sint++: Robust visual tracking via adversarial
positive instance generation. In: CVPR (2018)

Yang, T., Chan, A.B.: Learning Dynamic Memory Networks for Object Tracking.
In: ECCV (2018)

Yi, W., Jongwoo, L., Yang, M.H.: Object tracking benchmark. IEEE TPAMI
(2015)

Yin, J., Wang, W., Meng, Q., Yang, R., Shen, J.: A unified object motion and
affinity model for online multi-object tracking. In: CVPR, (2020)

Zhang, Y., Wang, L., Qi, J., Wang, D., Feng, M., Lu, H.: Structured siamese
network for real-time visual tracking. In: ECCV (2018)

Zhang, Z., Peng, H.: Deeper and wider siamese networks for real-time visual track-
ing. In: CVPR (2019)

Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese
networks for visual object tracking. In: ECCV (2018)

