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In this section of the paper, we provide performance on the synthetic datasets and more results on real-image denoising.

1. Identity Module vs. Residual module
Figure 1 shows the difference between the our network blocks and resent blocks. It is to be noted here, that resnet employs

different block structures in the same network.
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Figure 1. The comparison between our network block and the Resnet blocks. Our network block is simple than resent which employs
several different layers.

As compared to our method, ResNet [5] contains elements such as branched convolutions, strides, batch normalization,
flattening, a high number of feature maps, pooling, fully convolutional layer and post-ReLU. Here, it is to be noted that
ResNet [5] in its original form is not suitable for image denoising. So, we experimented with a modified version of a
ResNet, by setting all the convolution strides to one and removing pooling and fully convolutional layer to make it suitable
for denoising purposes. Furthermore, we reduce the depth of the network to 20 layers to make it comparable to our model,
DnCNN, and other state-of-the-art networks. The PSNR on BSD68 (σ = 25) for the modified ResNet network is 16.25 dB
without dilation and 16.90 dB with a dilation of three, keeping all the other parameters and training details as ours. This
result is very low even compared with decade old methods.

2. inference time and memory cost
The number of parameters in RIDNet is 1.5M (having a model size of 6.0MB) as compared to IERD’s 1M parameter (with

2.7MB model size). Similarly, the inference time taken by our method is 11.42s for the BSD68 dataset, while the time taken
by RIDNet is 15.42s. It should be noted here that the time reported also contains loading images, displaying statistics, and
saving the results.

3. Datasets
We performed experimental validation on the widely used publicly available three synthetically generated noisy datasets

described below.

• Classical images: As a tradition, we first provide a comparison on 12 classical images. The noise of standard devia-
tions (std) of σn = 15, 25, 50, 70 are added to the image.



Original Noisy BM3D WNNM MLP
14.16dB 25.82dB 26.32dB 26.26dB

EPLL TNRD DnCNN-S irCNN Ours
Monarch image 25.94dB 26.42dB 26.78dB 26.61dB 27.21dB

Figure 2. Denoising quality comparison on a sample image with strong edges and texture, selected from classical image set for noise level
σn = 50. The visual quality, i.e. sharpness of the edges on the wings and small textures reproduced by our method is the best among all.

Original Noisy BM3D WNNM MLP
14.16dB 26.21dB 26.51dB 26.54dB

EPLL TNRD DnCNN-S irCNN Ours
Castle from BSD68 26.35dB 26.60dB 26.90dB 26.88dB 27.20dB

Figure 3. Comparison on a sample image from BSD68 dataset for σn = 50. Our network is able to recover fine textures on the castle

CBM3D DnCNN CBM3D DnCNN
29.65dB 30.52dB 31.68dB 32.33dB

irCNN Ours irCNN Ours
Fish from BSD68 30.40dB 31.23dB Vase from BSD68 32.21dB 32.76dB

Figure 4. Denoising performance for state-of-the-art versus the proposed method on sample color images from the dataset in [8], where the
noise standard deviation σn is 50. The image we recover is more natural, contains less contrast artifacts and is closest to the ground-truth.



Original Input (20.18 dB) CBM3D (29.37 dB)DnCNN (30.89 dB) irCNN (30.60 dB) Ours (31.04 dB)

Figure 5. A sample color image with rich textures, selected from [8]’s BSD68 dataset for σn = 25.

Table 1. Performance comparison between image denoising algorithms on widely used classical images, in terms of PSNR (in dB). The
best results are highlighted with red color while the blue color represents the second best denoising results.

Cman House Peppers Starfish Monar Airpl Parrot Lena Barbara Boat Man Couple Average

σn = 15

BM3D 31.91 34.93 32.69 31.14 31.85 31.07 31.37 34.26 33.10 32.13 31.92 32.10 32.372
WNNM 32.17 35.13 32.99 31.82 32.71 31.39 31.62 34.27 33.60 32.27 32.11 32.17 32.696
EPLL 31.85 34.17 32.64 31.13 32.10 31.19 31.42 33.92 31.38 31.93 32.00 31.93 32.138
CSF 31.95 34.39 32.85 31.55 32.33 31.33 31.37 34.06 31.92 32.01 32.08 31.98 32.318
TNRD 32.19 34.53 33.04 31.75 32.56 31.46 31.63 34.24 32.13 32.14 32.23 32.11 32.502
DnCNNS 32.61 34.97 33.30 32.20 33.09 31.70 31.83 34.62 32.64 32.42 32.46 32.47 32.859
DnCNNB 32.10 34.93 33.15 32.02 32.94 31.56 31.63 34.56 32.09 32.35 32.41 32.41 32.680
IrCNN 32.55 34.89 33.31 32.02 32.82 31.70 31.84 34.53 32.43 32.34 32.40 32.40 32.769
Our-agnostic 32.11 35.10 33.28 32.31 33.07 31.58 31.80 34.67 32.48 32.42 32.40 32.50 32.812
Our-specific 32.61 35.21 33.21 32.35 33.33 31.77 32.01 34.69 32.74 32.44 32.50 32.52 32.950

σn = 25

BM3D 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.90 29.61 29.71 29.969
WNNM 29.64 33.22 30.42 29.03 29.84 28.69 29.15 32.24 31.24 30.03 29.76 29.82 30.257
EPLL 29.26 32.17 30.17 28.51 29.39 28.61 28.95 31.73 28.61 29.74 29.66 29.53 29.692
MLP 29.61 32.56 30.30 28.82 29.61 28.82 29.25 32.25 29.54 29.97 29.88 29.73 30.027
CSF 29.48 32.39 30.32 28.80 29.62 28.72 28.90 31.79 29.03 29.76 29.71 29.53 29.837
TNRD 29.72 32.53 30.57 29.02 29.85 28.88 29.18 32.00 29.41 29.91 29.87 29.71 30.055
DnCNNS 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30.00 30.21 30.10 30.12 30.436
DnCNNB 29.94 33.05 30.84 29.34 30.25 29.09 29.35 32.42 29.69 30.20 30.09 30.10 30.362
IrCNN 30.08 33.06 30.88 29.27 30.09 29.12 29.47 32.43 29.92 30.17 30.04 30.08 30.384
Our-agnostic 29.87 33.34 30.94 29.68 30.39 29.08 29.38 32.65 30.17 30.27 30.08 30.20 30.505
Our-specific 30.26 33.44 30.87 29.77 30.62 29.23 29.61 32.66 30.29 30.30 30.18 30.24 30.624

σn = 50

BM3D 26.13 29.69 26.68 25.04 25.82 25.10 25.90 29.05 27.22 26.78 26.81 26.46 26.722
WNNM 26.45 30.33 26.95 25.44 26.32 25.42 26.14 29.25 27.79 26.97 26.94 26.64 27.052
EPLL 26.10 29.12 26.80 25.12 25.94 25.31 25.95 28.68 24.83 26.74 26.79 26.30 26.471
MLP 26.37 29.64 26.68 25.43 26.26 25.56 26.12 29.32 25.24 27.03 27.06 26.67 26.783
TNRD 26.62 29.48 27.10 25.42 26.31 25.59 26.16 28.93 25.70 26.94 26.98 26.50 26.812
DnCNNS 27.03 30.00 27.32 25.70 26.78 25.87 26.48 29.39 26.22 27.20 27.24 26.90 27.178
DnCNNB 27.03 30.02 27.39 25.72 26.83 25.89 26.48 29.38 26.38 27.23 27.23 26.91 27.206
IrCNN 26.88 29.96 27.33 25.57 26.61 25.89 26.55 29.40 26.24 27.17 27.17 26.88 27.136
Our-agnostic 27.03 30.48 27.57 26.01 27.03 25.84 26.53 29.77 26.89 27.28 27.29 27.06 27.398
Our-specific 27.25 30.70 27.54 26.05 27.21 26.06 26.53 29.65 26.62 27.36 27.26 27.24 27.457

σn = 70

BM3D 24.62 27.91 25.07 23.56 24.24 23.75 24.49 27.57 25.47 25.40 25.56 25.00 25.221
WNNM 24.86 28.59 25.25 23.78 24.62 24.00 24.64 27.85 26.17 25.58 25.68 25.18 25.517
EPLL 24.60 27.32 25.03 23.52 24.19 23.72 24.44 27.11 23.20 25.27 25.50 24.80 24.891
DnCNNS 25.37 28.22 25.50 23.97 25.10 24.34 24.98 27.85 23.97 25.76 25.91 25.31 25.523
Our-specific 25.83 29.19 25.90 24.28 25.66 24.59 25.12 28.25 25.06 26.00 26.02 25.78 25.974

• BSD68: Berkely Segmentation Dataset abbreviated as BSD68 ([12]) is composed of 68 images. We provide qualitative
and quantitative results for both grayscale images. To generate noisy test images, we corrupt the images by additive
white Gaussian noise with standard deviations (std) of σn = 15, 25, 50, 70.



Table 2. Performance comparison between our method and existing algorithms on the grayscale version of the BSD68 dataset ([8]). The
missing denoising results, indicated by “-”, occurs when the method is not trained to deal with the input noisy images.

Noise Methods
Level BM3D [3] WNNM [4] EPLL [16] TNRD [2] DenoiseNet [11] DnCNN [14] IrCNN [15] NLNet [6] MWCNN [13] NLRN [7] N3Net [10] Ours-Agnostic Ours-Specific

15 31.08 31.32 31.19 31.42 31.44 31.73 31.63 31.52 31.86 31.88 - 31.68 31.81
25 28.57 28.83 28.68 28.92 29.04 29.23 29.15 29.03 29.41 29.41 29.30 29.18 29.34
50 25.62 25.83 25.67 26.01 26.06 26.23 26.19 26.07 26.53 26.47 26.39 26.31 26.40
70 24.44 - 24.43 - - 24.90 - - - - 25.14 - 25.13

Table 3. The similarity between the denoised color images and the ground-truth color images of BSD68 dataset for our network and existing
algorithms measured by PSNR (in dB) reported for noise levels of σ=15, 25, and 50.

Noise Methods
Levels CBM3D MLP TNRD DnCNN IrCNN CNLNet Ours-agnostic Ours-specific

15 33.50 - 31.37 33.89 33.86 33.69 33.96 34.12
25 30.69 28.92 28.88 31.33 31.16 30.96 31.32 31.42
50 27.37 26.00 25.94 27.97 27.86 27.64 28.05 28.19

37.88dB 38.35dB 37.25dB 39.41dB
Noisy CBM3D WNNM NC TWSC

39.35dB 37.25dB 37.93dB 39.81dB 40.37dB
Noisy Image MCWNNM NI FFDNet CBDNet IERD (Ours)

Figure 6. A real noisy example from DND dataset ([9]) for comparison of our method against the state-of-the-art algorithms.

GT Noisy CBM3D DnCNN FFDNet CBDNet IERD (Ours) IERD+ (Ours)

Figure 7. A few challenging examples from SSID dataset ([1]). Our method can restore true colors and remove noise.

• CBSD68: Color Berkely Segmentation Dataset abbreviated as CBSD68 ([12]) is composed of 68 images. We provide
qualitative and quantitative results for both color images. To generate noisy test images, we corrupt the images by
additive white Gaussian noise with standard deviations (std) of σn = 15, 25, 50, 70.



4. Synthetic Grayscale Image Denoising
In this section, first we demonstrate how our method performs on classical images and then report results on the BSD68

and real datasets.

4.1. Classical Images

For completeness, we compare our algorithm to several state-of-the-art denoising methods using grayscale classical images
shown in Figure 2 and reported in Table 1.

In Table 1, we present the average PSNR for the denoised images. Our network is the best performer for almost all
classical images except “Barbara”. The reason for this may be the repetitive structures in the mentioned image, which makes
it easy for BM3D ([3]) and WNNM ([4]) to find and employ patches with high similarity to the noisy input, hence providing
better results.

Subsequently, we depict an example from the classical images. The visual quality of our recovered images, as shown in
Figure 2, is better than all others. This also illustrates that our network restores aesthetically pleasing textures. Small and
noticeable features restored by our network include the sharpness and the clarity of the subtle textures around the fore and
hind wings, mouth, and antennas of the butterfly. Furthermore, a magnified view of the results in Figures 2 for methods such
as [3, 15] and [6] show artifacts and failures in the smooth areas.

4.2. BSD68 Dataset

We present the average PSNR scores for the estimated denoised images in Table 2. The IRCNN ([15]) and DnCNN ([14])
network structures are similar, hence produce nearly similar results. On the other hand, our method reconstructs the images
accurately, achieving higher PSNR, then completing methods on all four levels of noise. Furthermore, the difference in PSNR
between our method and the state-of-the-art techniques at higher noise levels is higher.

For a comprehensive evaluation, we demonstrate the visual results on a selected grayscale image from [12] dataset in
Figure 3. In our results; the image details are more similar to the ground-truth details, and our quantitative results are
numerically higher than the others. Our method outperforms the second-best method by several orders of magnitude (PSNR
is computed in the logarithmic scale). Also, note that the denoising results of other CNN based algorithms are comparable to
each other.

4.3. Synthetic Color Image Denoising

For noisy color images, we train our network with the noisy RGB input patches with the corresponding clean ground-truth
patches. We only modify the first and last convolution layer of the grayscale network to input and output three channels
instead of one channel, keeping all other parameters same as the grayscale network.

We present the quantitative results in Table 3 and qualitative results in Figures 4 and 5 against benchmark methods
including the latest CNN based state-of-the-art color image denoising techniques. It can be observed that our algorithm
attains an improved average PSNR on all three different noise levels for the color version of the BSD68 dataset ([12]). As
shown, our method restores true colors closer to their authentic values, while others fail and induce false colorizations in
certain image regions. Furthermore, a close look reveals that our network reproduces the local texture with much fewer
artifacts and sufficiently sharp details.

5. Real Image Denoising
We present more example on real image denoising from SSID [1] and DnD [9].

5.1. DnD

Figure 6 shows an image with bricks. The close shows that all other methods have some artifacts while our methods
artifacts, which can be seen in the right bottom corner. It can be noted that our PSNR is higher among the competing
methods.

5.2. SSID

Our second real image denoising example contains two pictures, as shown in Figure 7. Our IERD and IERD+ have no
visual inconsistency and have smoothed the noise while the artifacts are visible for all other methods. The granular structures
are present for state-of-the-art methods such as CBDNet and FFDNet, which employ specific techniques to remove the real
noise.



6. Summary
In synthetic images case, we have provided ample examples and have shown that our network outperforms classical

state-of-the-art denoising algorithms that are intended for use on natural images. Furthermore, we have compared against
the current convolutional neural networks, both visually and numerically. Our network gain is about 0.1dB on BSD68
dataset ([8]) and results are visually pleasing.

For the time being, our approach is only applicable to Gaussian noise removal. However, we would like to train our model
with different noise types such as Poisson, astronomical etc. and examine its performance on these specific noise types. It
should be noted that other state-of-the-art methods, for example, BM3D ([3]), WNNM ([4]) are only applicable to Gaussian
noise and may not be readily adapted to handle different noise types.

All CNN approaches performance on images with regular and repeating structures such as “Barbara” is relatively less in
terms of PSNR compared to classical denoising methods. This phenomenon is due to the design of traditional denoising
methods to exploit the regular and repeating structures. To overcome this issue, either block-matching scheme can be in-
corporated into our CNN approach or relying on consolidating the outcome of various denoising algorithms with our CNN
approach.
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