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a b s t r a c t 

Dictionary learning (DL) for classification aims to learn a codebook from training samples to enhance the 

discriminative capability of their coding vectors. But how to determine appropriate features that can best 

work with the learned dictionary remains an open question. Recently, several joint feature and dictio- 

nary learning method have been proposed and achieved impressive performance. The purpose of these 

methods is to achieve low classification errors by implicitly assuming the costs for all misclassifications, 

regardless of the original labels, are the same. However, in real applications, this assumption may not 

hold as different kinds of mistake could produce different losses. Motivated by this concern, we propose 

a cost-sensitive joint feature and dictionary learning (CS-JFDL) method, in which the features are concur- 

rently learned with the dictionaries. Our method considers the separate misclassification cost objectives 

during the feature and dictionary learning stages to achieve a minimum overall recognition loss. Thus, 

the derived feature and dictionary attain cost-sensitive constraints throughout the learning process. Ex- 

tensive experimental results on both image based face recognition and image set based face recognition 

demonstrate that the proposed algorithm is better than many state-of-the-art methods. 

© 2020 Elsevier B.V. All rights reserved. 

1

 

v  

d  

m  

D  

i  

u  

e  

p  

c  

i

 

i  

t  

f  

t  

l  

d  

t  

d  

o  

H  

a  

a  

t  

s  

m  

c  

(  

t  

g  

(  

s  

a  

b  

e  

t

 

h

0

. Introduction 

Face recognition is an important research topic in computer

ision and pattern recognition community over the past two

ecades. Up to now, there have been a number of face recognition

ethods have been proposed and successfully applied [1–9] .

espite achieved great progress, there are still many challenging

n face recognition scenarios, when face samples are captured in

nconstrained environments such as varying poses, illuminations

xpressions and resolutions. In such situations, the recognition

erformance of many methods will be heavily affected and signifi-

antly degraded. Hence, it is necessary to learn robust and discrim-

native feature representation before perform face identification. 

Recently, dictionary-based methods have attracted increasing

nterest and achieved competitive performance on face recogni-

ion [10–20,59] , because of its robust discriminant representation

or the variations of expression, illumination and pose informa-

ion within face samples that can be implicitly encoded into the

earned dictionaries. Due to face images usually lie on a low-

imensional manifold, it is necessary to find the most discrimina-
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ive representations in a low dimensional space, researchers have

eveloped a series of joint feature and dictionary learning meth-

ds and reported more competitive performance [11–14,20,21] .

owever, most of these dictionary-based face recognition methods

ttempt to pursuit a minimum recognition rate and implicitly

ssume that the costs for all misclassification errors, regardless of

he original labels, are the same. Although this assumption is rea-

onable, however, it is not practical, since different types of errors

ay cause different amounts of losses. For instance, in an access

ontrol system, it may be inconvenient to misclassify a permitted

gallery) person as an impostor and deny access, but it may lead

o a serious security breach if an impostor is misrecognized as a

allery person and authorized to access. Thus, the false acceptance

misrecognizing an impostor as a gallery subject) may not be as

erious as the false rejection (misrecognizing a gallery subject

s an impostor) or even the false identification (misrecognizing

etween two gallery subjects). We can see that the three kinds of

rrors mentioned above are different and it is not a good choice

o adopt error rate as the final measure criterion. 

Inspired by the above considerations, we propose a robust cost-

ensitive joint feature and dictionary learning method (CS-JFDL),

n which the discriminative projection matrix is simultaneously

earned with the structured dictionary. The basic idea is shown

n Fig. 1 . We show that the jointly learned discriminative features

nd class-specific dictionaries are complementary each other, thus
nsitive joint feature and dictionary learning for face recognition, 
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Fig. 1. Overview of the proposed CS-JFDL method. 
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more discriminative information for classification can be obtained.

To achieve a minimum overall recognition cost, our method con-

siders the cost information during the feature learning and dictio-

nary learning stages. This makes the features and dictionary we

learn cost-sensitive, which further improves the recognition per-

formance when they are combined. Specifically, the cost-sensitive

dictionary can produce cost-sensitive sparse coding while encour-

aging the samples from the same class to have similar sparse codes

and those from different classes to have dissimilar sparse codes. 

The rest of paper is organized as follows. Section 2 gives

the related works. Our algorithm is described in Section 3 , and

the optimization procedure of CS-JFDL is explained in Section 4 .

Section 5 presents our classification scheme. Comparative experi-

ments analysis is provided in Section 6 . Section 7 gives the con-

clusion. 

2. Related work 

2.1. Feature learning 

Learning useful and computationally convenient feature repre-

sentation from complex, redundant, and highly variable visual data

is essential in many computer vision tasks such as pedestrian de-

tection [22] , image classification [23,31] , action recognition [24] ,

and visual tracking [25] . Many feature learning methods have been

proposed in recent years [24–26,60,61] . Recently, feature learn-

ing has also been exploited for face recognition and a lot of fea-

ture learning-based face recognition approaches have been devel-

oped [7,27–29] . Cao et al. [27] presented a learning-based feature

representation method by applying the bag-of-word framework. Lu

et al. [6] proposed a compact binary face descriptor feature learn-

ing method for face representation and recognition. Since face im-

ages are sensitive to the variations of illumination, occlusion and

posed, it is desirable to learn robust and discriminative features

for face image. 

2.2. Dictionary learning 

Dictionary learning has recently made significant improve-

ment to a variety of recognition tasks for its excellent represen-

tation power [16–19,30] . Given a set of training samples Y =
[ Y 1 , Y 2 , . . . , Y c ] = [ y 1 , y 2 , . . . , y n ] ∈ R m ×n from c different subjects,

the basic model of dictionary learning is typically posed as the

minimization of the following optimization problem: 

‖ Y − DX ‖ 

2 
F + λ‖ X ‖ 1 

s.t. ‖ d j ‖ 2 = 1 , ∀ j (1)

where ‖ Y ‖ F denotes the Frobenius norm defined as ‖ Y ‖ F =√ ∑ 

i, j ‖ Y i, j ‖ 2 , D = [ d 1 , d 2 , . . . , d K ] ∈ R m ×K is the sought dictio-

nary, K is the number of atoms in the learned dictionary, X =
Please cite this article as: G. Zhang, F. Porikli and H. Sun et al., Cost-se
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 x 1 , x 2 , . . . , x n ] ∈ R K×n is the sparse representation matrix of input

amples Y , λ is a scalar constant. Each dictionary item d j is l 2 nor-

alized. In this case, Eq. (1) can solved by using the algorithm pro-

ided in [41] . 

.3. Cost-sensitive learning 

Cost-sensitive learning is an interest topic in computer vi-

ion and pattern recognition areas [32–40] . In such settings, the

cost” information of different samples is introduced to charac-

erize their importance to reflect different amounts of losses. It

ims to minimize total cost rather than total error . Face recog-

ition is generally a cost-sensitive learning problem and many

uccessful cost-sensitive face recognition algorithms have been

eveloped [35–40] . Zhang et al. [38] formulated face recognition

roblem as a multiclass cost-sensitive learning task and proposed

wo cost-sensitive classification methods. By using the cost infor-

ation, Lu et al. [36,37] proposed four cost-sensitive discriminative

ubspace learning algorithms. Zhang et al. [40] presented a cost-

ensitive dictionary learning algorithm for face recognition, while

gnoring the contribution of features during the learning process. 

. Proposed methods 

The purpose of CS-JFDL is to simultaneous learn a cost-sensitive

iscriminative projection matrix and a cost-sensitive dictionary to

roject each testing sample into a discriminative space, and then

ncode the sample over the learned dictionary. 

In order to exploit the “cost” information of different samples

uring the dictionary learning process, we formulate the CS-JFDL

odel as 

min 

D , P, X 
J = R (D , P , X ) + λ1 G (P ) + λ2 H(X ) + λ3 ‖ X ‖ 1 

.t. P P T = I. (2)

here D is the learned discriminative dictionary, P ∈ R d × m is the

ost-sensitive feature projection matrix, d is the dimension of the

earned feature space, R ( D , P , X ) is the reconstruction error, ‖ X ‖ 1 is
he sparsity penalty, G ( P ) is the cost-sensitive discriminative pro-

ection term, H ( X ) is the cost-sensitive term imposed on the sparse

epresentation coefficient matrix, λ1 , λ2 , λ3 are mixing parameters

o balance the importance of different terms. 

.1. Cost-sensitive discriminative projection term 

We expect that the learned projection contains discriminative

nd cost-sensitive information. Therefore, to increase the discrim-

native power of projection P , we constrain the samples from the

ame class to be similar and the samples from different classes to

e significantly dissimilar, such that discriminative information can

e discovered when learning projection matrix. We construct an

ntrinsic graph and a penalty graph to describe the geometrical in-

ormation of the training data. The weight of the intrinsic graph is

efined by 

 

1 
i j = 

{
1 , if i ∈ S + 

k 1 
( j) or j ∈ S + 

k 1 
(i ) 

0 , otherwise 
(3)

here S + 
k 1 

(i ) represents the index set of the k 1 nearest neighbors

f y i in the same class. 

Similarly, the weight of the penalty graph is defined by 

 

2 
i j = 

{
1 , if j ∈ S −

k 2 
(i ) or i ∈ S −

k 2 
( j) 

0 , otherwise 
(4)

here S −
k 2 

(i ) represents the index set of the k 2 nearest neighbors

f y i from the other classes (not the class that y i belongs to).

ere, graphs W 

1 and W 

2 are used to characterize the intra-class
nsitive joint feature and dictionary learning for face recognition, 
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Algorithm 1 Algorithm of CS-JFDL. 

Input: training data Y = [ y 1 , . . . , y n ] , Intrinsic graph W 

1 
i j 

, penalty 

graph W 

2 
i j 

, parameters λ1 , λ2 , λ3 and σ , iteration number T . 

Output: Cost-sensitive discriminative projection matrix P , 

cost-sensitive dictionary D , coding coefficient matrix X . 

Step 1: Initialization 

Randomly initialize each column in D 

0 with unit l 2 norm. 

Initialize each column x s , 1 ≤ i ≤ s as 
(
(D 

0 ) T (D 

0 ) + λI 
)−1 (

D 

0 
)T 

y s , where y s is the s -th training samples (regardless of 

label). 

Step 2: Local optimization 

For t = 1 , 2 , . . . , T , repeat 

Solve P t iteratively with fixed D 

t , X 

t−1 via Eq. (A.1). 

Solve X 

t with fixed P t , D 

t−1 via Eq. (A.9). 

Solve D 

t with fixed P t , X 

t via Eq. (A.11). 

Step 3: Output 

Output P = P t , D = D 

t , X = X 

t . 
ompactness and inter-class separability of the training data,

espectively. 

In order to make the features cost-sensitive, we build a cost

atrix C , where C p,q denotes the cost value of classifying the p th

lass sample as the q th class. The diagonal elements in C are zeros

ecause there is no loss for a correct classification. In our paper,

he cost matrix is assumed to be specified by the user. Therefore,

e pay attention to how to learn cost-sensitive feature and dic-

ionary to increase the classification accuracy. To maximize both

he intra-class compactness ad inter-class separability, we formu-

ate the cost-sensitive discriminative projection term with the fol-

owing equivalent 

 (P ) = G 1 (P ) − G 2 (P ) 

= 

N ∑ 

i, j=1 

∑ 

i ∈ S + 
k 1 

( j ) or j ∈ S + 
k 1 

(i ) 

1 

2 

cost(y i , y j ) ‖ P y i − P y j ‖ 

2 
2 

−
N ∑ 

i, j=1 

∑ 

i ∈ S −
k 2 

( j ) or j ∈ S −
k 2 

(i ) 

1 

2 

cost(y i , y j ) ‖ P y i − P y j ‖ 

2 
2 (5) 

here cost(y i , y j ) = C � y i ,� y j 
, and � y i is the label of y i . Denoting

 i, j = C � y i ,� y j 
, the G 2 ( P ) can be expressed as follows: 

 2 (P ) = tr 

( 

1 

2 

N ∑ 

i, j=1 

(P y i − P y j ) 
2 E 

2 
i j W 

2 
i j 

) 

= tr 

( ∑ 

i 

P y i B 

2 
ii F 

2 
ii y 

T 
i P 

T −
∑ 

i, j 

P y i E 

2 
i j W 

2 
i j y 

T 
j P 

T 

) 

= tr 
(
P Y B 

2 
� F 2 Y 

T P T − P Y E 

2 
� W 

2 Y 

T P T 
)

= tr 
(
P Y L 2 Y 

T P T 
)

(6) 

here L 2 = B 

2 
� F 2 − E 

2 
� W 

2 , � denotes the element-wise mul-

iplication, and B 

2 , F 2 are diagonal matrices, whose entries are col-

mn (or row, since E 

2 and W 

2 are symmetric) sums of E 

2 and W 

2 ,

n which B 

2 = 

∑ 

j � = i E 

2 
i j 
, F 2 = 

∑ 

j � = i W 

2 
i j 

. 

.2. Cost-sensitive sparse coding term 

For obtaining the cost-sensitive sparse codes with the learned

ictionary, we formulate the third term in Eq. (2) as follows 

(X ) = ‖ Q � X ‖ 

2 
F (7)

here Q = [ q 1 , q 2 , . . . , q n ] ∈ R K×n is the penalizing matrix of in-

ut samples Y , and K is the number of dictionary atoms. We call

 i is the cost-sensitive adaptor whose k th element is given by

 

k 
i 

= δ(C � y i ,� d k 
) , i = 1 , . . . , K, where C � y i ,� d k 

indicates the cost of mis-

lassifying the sample of class � y i as class � d k , and δ( · ) is a dis-

rete impulse function and defined as 

(ρ) = 

{
1 , ρ = 0 

σρ, ρ � = 0 

(8) 

here σ is a cost constant. For example, assuming D =
 d 1 , d 2 , . . . , d 6 ] and Y = [ y 1 , y 2 , . . . , y 6 ] , where y 1 , y 2 , d 1 , d 2 are

rom class 1, y 3 , y 4 , d 3 , d 4 are from class 2, and y 5 , y 6 , d 5 , d 6 are

rom class 3, Q can be expressed as follows: 

 ≡

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

δ(C 1 , 1 ) δ(C 1 , 1 ) δ(C 2 , 1 ) δ(C 2 , 1 ) δ(C 3 , 1 ) δ(C 3 , 1 ) 
δ(C 1 , 1 ) δ(C 1 , 1 ) δ(C 2 , 1 ) δ(C 2 , 1 ) δ(C 3 , 1 ) δ(C 3 , 1 ) 
δ(C 1 , 2 ) δ(C 1 , 2 ) δ(C 2 , 2 ) δ(C 2 , 2 ) δ(C 3 , 2 ) δ(C 3 , 2 ) 
δ(C 1 , 2 ) δ(C 1 , 2 ) δ(C 2 , 2 ) δ(C 2 , 2 ) δ(C 3 , 2 ) δ(C 3 , 2 ) 
δ(C 1 , 3 ) δ(C 1 , 3 ) δ(C 2 , 3 ) δ(C 2 , 3 ) δ(C 3 , 3 ) δ(C 3 , 3 ) 
δ(C 1 , 3 ) δ(C 1 , 3 ) δ(C 2 , 3 ) δ(C 2 , 3 ) δ(C 3 , 3 ) δ(C 3 , 3 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(9) 
Please cite this article as: G. Zhang, F. Porikli and H. Sun et al., Cost-se
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here row represents the dictionary atoms and column represents

he training samples. Each column is the cost penalty coefficient

or an input image. 

The “cost” penalizing matrix Q can make the sparse codes to

ave cost-sensitivity in sparse feature space. It aims to encourage

he sample from the same class have very similar sparse codes (i.e.,

ncouraging cost-sensitive in the results codes). This regularization

erm would penalize the non-zero entries whose corresponding

toms have different labels with the input samples. 

.3. Discriminative reconstruction error term 

To further enhance the discrimination of the learned dictionary,

n the reduced subspace, we not only require the whole dictionary

 can properly reconstruct the input samples Y , but also require

he sub-dictionary D i can well reconstruct samples from class i ,

nd other sub-dictionary D j , j � = i is ineffectively to reconstruct

amples from class i . We rewrite X i as X i = [ X 

1 
i 
; . . . ; X 

j 
i 
; . . . ; X 

c 
i 

] ,

here X 

j 
i 

is the representation coefficients of Y i over D j , D j is the

ub-dictionary of the j th class in D . Thus, the reconstruction error

erm can be redefined as 

 (D , P , X ) = ‖ P Y − DX‖ 2 F + 

c ∑ 

i =1 

‖ P Y i − D i X 

i 
i ‖ 2 F + 

c ∑ 

i =1 

c ∑ 

j =1 , j � = i 
‖ D j X 

j 
i 
‖ 2 F . 

(10) 

here D = [ D 1 , D 2 , . . . , D c ] is the structured dictionary, Y i denotes

raining samples of class i . 

By incorporating Eq. (5) , Eq. (7) and Eq. (10) into Eq. (2) , the

S-JFDL model is formulated as: 

min 

D , P, X 
J = R (D , P , X ) − λ1 tr 

(
P Y L 2 Y 

T P T 
)

+ λ2 ‖ Q � X ‖ 

2 
F + λ3 ‖ X ‖ 1 , 

s.t. P P T = I. (11) 

. Optimization 

The objective function in Eq. (11) is not convex for D , P , and X

imultaneously, it is convex to one of them when the other two are

xed. We adopt an iterative learning framework to jointly learn-

ng the cost sensitive projection P , the sparse representation X and

ost sensitive dictionary D . The complete optimization procedure is

resented in Algorithm 1 and the detailed optimization process is

rovided in Appendix. Since the optimization model is non-convex,

t is not guaranteed to converge to the global minimum. Fig. 2
nsitive joint feature and dictionary learning for face recognition, 

https://doi.org/10.1016/j.neucom.2020.01.101


4 G. Zhang, F. Porikli and H. Sun et al. / Neurocomputing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; February 9, 2020;1:17 ] 

Fig. 2. The convergence of CS-JFDL on the AR dataset. 
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shows an example to illustrate the convergence behaviour of CS-

JFDL. It seems that the objective function of our method can obtain

stable performance in a few iterations. 

The computational complexity of CS-JFDL comes from three

parts: projection updating, sparse coding and dictionary learning.

Suppose that the training set Y contains N samples with m dimen-

sion and dictionary D contains k atoms, the feature dimension is

m . P ∈ R d × m is the feature projection matrix, where d is the di-

mension of low-dimension space. In the proposed algorithm, we

use the feature-sign search algorithm [43] for learning coding co-

efficients with the � 1 sparsity function, so the complexity of update

coding coefficients for each sample is approximately O (mk 2 + k 3 ) .

So the total time complexity of updating coding coefficients is

NO (mk 2 + k 3 ) . The time complexity of updating dictionary atoms

is �1 k i O (2 mN ), where k i is the number of dictionary atoms in

D i . For projection updating, the time complexity is approximately

O ( m 

3 ). Therefore, the overall time complexity of CS-JFDL is approx-

imately t(NO (mk 2 + k 3 )+) 
∑ 

1 k i O (2 mN) + O (m 

3 ) , where t is the

total number of iterations. 

5. Classification strategy 

When we get P and D , coding vector for each projected sample

can be obtained by solving the following formulation 

ˆ x = arg min 

x 

{‖ P y − Dx ‖ 

2 
2 + α1 ‖ x ‖ 1 

}
(12)

where α1 is a constant. Once ˆ x is obtained, the reconstruction

residual for each class is calculated by 

r i = ‖ P y − D i ̄δi ( ̂  x ) ‖ 

2 
2 , f or i = 1 , . . . , c (13)

where δ̄i (·) is the characteristic function which chooses the co-

efficients corresponding to the i th class. The decision rule is: if

r j (y) = min i r i (y) , y is assigned to class j . 

Given a query sample of gallery class 3 from AR dataset [44] .

Fig. 3 (a) displays the coding coefficients of the query image over

dictionary D . From Fig. 3 (a), we can see that the obtained ab-

solute value of the coding coefficients of the query image have

cost-sensitivity, i.e., the coding coefficients of small cost subjects

(gallery) are significantly greater than the large cost subjects (im-

postor). The reconstruction residuals of the query image on each

class are displayed in Fig. 3 (b). We can observe that our approach

gets the smallest residual in class 3 and the residuals of other

gallery classes are smaller than impostor classes. i.e., even if the
Please cite this article as: G. Zhang, F. Porikli and H. Sun et al., Cost-se

Neurocomputing, https://doi.org/10.1016/j.neucom.2020.01.101 
ample is misclassified, the query image will also be classified to

ther gallery classes for achieving a minimum loss. 

We randomly select another query sample from the impostor

lasses. The sparse codes of the query sample are displayed in

ig. 4 (a). It can be seen that the query sample can be well rep-

esented as a sparse liner combination of the atoms from impostor

lasses, and the coding coefficients from gallery classes near zero.

ig. 4 (b) presents the reconstruction residuals. Note that, the resid-

als in impostor subjects are greater smaller than those of gallery

lasses. This implies that even if the query image is classified in-

orrectly, it can still be classified to other impostor subjects with

reater probability, and then result in a lower cost. 

. Experiments 

We evaluate our proposed algorithm CS-JFDL by using two typ-

cal applications including image based face recognition and image

et based face recognition. In the first setup, we adopt four widely

pplied face datasets including AR [44] , FERET [45] , LFWa [46] and

RGC [47] . For image set based face recognition task. Three video

ace recognition benchmark datasets, including Honda/UCSD [48] ,

MU Mobo [49] and YouTube Celebrities (YTC) [50] are used to

valuate the proposed CS-JFDL. 

.1. Image based face recognition 

The AR dataset consists of 40 0 0 color images of 126 people (70

ale and 56 female), which includes different lighting conditions,

xpressions, and facial disguise. The frontal view images without

cclusion are used in our experiments, and each image is cropped

nd resized into 64 × 64 pixels. 

The FERET dataset includes 1199 subjects with a total of 14,051

mages, captured under various lighting, facial expressions, and

ose. We select a subset of the FERET dataset which contain 200

ndividuals (each one has seven images), and only involves frontal

iew with different expressions and illumination for our experi-

ents. Each image is cropped and resized to the size of 64 × 64

ixels. 

The LFWa [46] dataset is an aligned version of LFW [51] ,

hich including different expression, illumination, pose misalign-

ent and occlusion. We choose 143 subject with no less than 11

amples per subject (4174 images in total) to perform the experi-

ent. 

The FRGC dataset contains 12,776 training images, 16,028 con-

rolled target images and 8014 uncontrolled query images, includ-

ng 222 individuals, each 36–64 images. The controlled images

ave good image quality, while the uncontrolled images display

oor image quality. We choose 36 images of each subject and crop

ach image to the size of 60 × 60 pixels. 

.1.1. Experimental settings 

Let C GI , C IG and C GG be the different costs caused by a false re-

ection, a false acceptance and a false identification, respectively.

or convenience of our discussion, we use C GI = (C GI / C GG ) , C IG =
(C IG / C GG ) and C GG = 1 . This setting will not influence the experi-

ent results. 

The training and the testing set each contains N G samples with

 gallery classes and N I samples with L impostor classes randomly

elected from the entire dataset. The experiments are run10 times

or each dataset and take the average result as the final recogni-

ion rate. Parameters M, N G , N I , L , C GI , C IG and C GG are specified in

able 1 . 

In all of our experiments, we set parameter σ = 2 and it al-

ays works well. The tuning parameters λ1 , λ2 and λ3 are eval-

ated by five-fold cross validation on the training data. There are

hosen from {0.0 0 01, 0.0 01, 0.0 05, 0.01, 0.1, 1, 2, 5}. Since there
nsitive joint feature and dictionary learning for face recognition, 
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Fig. 3. (a) The sparse codes of the query image from gallery class 3. (b) The reconstruction residuals on each class. 

Fig. 4. (a) The sparse codes of the query image from imposter class. (b) The reconstruction residuals on each class. 

Table 1 

Experiments settings. 

Datasets M N G N I L C IG : C GI : C GG 

AR 30 7 7 50 20:2:1 

FERET 70 3 3 110 20:2:1 

LFWa 70 5 5 70 20:2:1 

FRGC 40 15 15 30 20:2:1 
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(  
re multiple parameters to be tuned and it is generally difficult to

nd them simultaneously. Consequently, we first fix parameters λ2 

nd λ3 , and test the recognition performance of our method, then

elect the appropriate value for parameter λ1 . Similarly, we fix pa-

ameters λ2 , λ3 and seek the optimal value for λ2 . Parameter λ3 

s determined using the same way. For AR [44] , FERET [45] and

RGC [47] datasets, we empirically set λ = 1 , λ = 1 and λ =
1 2 3 

Please cite this article as: G. Zhang, F. Porikli and H. Sun et al., Cost-se

Neurocomputing, https://doi.org/10.1016/j.neucom.2020.01.101 
 . 005 , and set λ1 = 1 , λ2 = 1 and λ3 = 0 . 001 on LFWa dataset [46] .

he number of dictionary atoms in CS-JFDL is set as the number of

raining samples for each class. We construct intrinsic graph W 

1 
i j 

nd penalty graph W 

2 
i j 

with correlation similarity. The Euclidean

istances among the training samples are used as initial neighbor

etric. We set k 1 = 5 , k 2 = 20 . Specifically, we use α1 = 0 . 001 for

lassification. For all the baseline approaches, we usually use their

riginal settings, and for those that do not have open source, we

arefully implement them following the paper. 

.1.2. Results and analysis 

Comparisons with SoA Cost-Blind Methods: We compare our ap-

roach with some state-of-the-art dictionary learning algorithms,

ncluding Discriminative K SVD (D-K SVD) [10] , Label Consistent

-SVD (LC-KSVD) [16] , Fisher discrimination dictionary learning

FDDL) [18] , Latent dictionary learning (LDL) [17] , Dictionary learn-
nsitive joint feature and dictionary learning for face recognition, 
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Table 2 

Comparison of cost-blind methods on AR and FERET datasets ( cost : total cost, err : total 

error %, ( err GI ): false rejection %, ( err IG ): false acceptance %). 

Method AR FERET 

cost err err GI err IG cost err err GI err IG 

SRC [3] 246 6.35 10.12 2.84 168 7.14 12.18 1.65 

D-KSVD [10] 317 8.86 11.23 3.67 215 9.78 16.73 2.02 

LC-KSVD [16] 193 5.53 9.52 2.13 130 6.65 11.19 1.13 

FDDL [18] 158 5.21 9.83 1.62 114 5.91 11.04 0.94 

LDL [17] 148 4.98 9.27 1.51 108 5.46 10.37 0.90 

JDDRDL [14] 214 5.78 10.77 2.39 135 6.53 11.46 1.21 

DSRC [13] 252 6.16 10.52 2.94 175 7.05 14.07 1.71 

CS-JFDL 102 4.40 8.98 0.88 69 4.82 10.82 0.32 

Table 3 

Comparison of cost-sensitive methods on AR and FERET datasets ( cost : total cost, err : total 

error %, ( err GI ): false rejection %, ( err IG ): false acceptance %). 

Method AR FERET 

cost err err GI err IG cost err err GI err IG 

CS-LDA [37] 195 6.35 11.43 2.29 112 7.23 17.32 0.58 

CS-KLR [38] 176 6.22 10.86 2.00 100 7.06 16.71 0.43 

SCS-C [39] 245 8.06 12.33 2.62 144 9.72 15.76 0.85 

CS-LDA + CS-NN 186 6.17 11.22 2.10 94 7.04 18.15 0.46 

CSDL [40] 145 5.93 12.80 1.27 97 6.79 16.38 0.42 

CS-JFDL 102 4.40 8.98 0.88 69 4.82 10.82 0.32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

a  

s  

l  

f  

t  

t  

d  

t  

m

 

c  

a  

c  

w  

s  

m  

p  

n  

t  

n  

u  

t  

C  

f  

W  

b

 

t  

f  

f

 

 

ing for SRC (DSRC) [13] and Joint Discriminative Dimensionality Re-

duction and Dictionary Learning (JDDRDL) [14] . CS-JFDL, DSRC and

JDDRDL use the original images for training set (i.e., learn dictio-

naries using the original raw pixels as the initial image representa-

tion) and set the feature dimension after projection as 300. All the

other methods use the 300-dimensional Eigenface feature. 

We measure the total cost (cost), total error rate (err), error rate

of false rejection ( err GI ) and error rate of false acceptance ( err IG ).

Table 2 reports the average results of different algorithms on AR

and FERET datasets. From Table 2 , we can observe that CS-JFDL has

much smaller total cost than cost-blind dictionary learning meth-

ods. It is evident that CS-JFDL achieves this by exploiting cost in-

formation of samples during the feature and dictionary learning

stage, our CS-JFDL will lead to lower total cost. In addition, CS-JFDL

also achieves the best recognition performance and outperforms

other two joint feature and dictionary learning methods (DSRC and

JDDRDL). The main reason may be that we introduce an intrinsic

graph and a penalty graph during the feature learning process such

that the learned feature space contains more discriminative infor-

mation which is useful to classification. 

Comparison with SoA Cost-Sensitive Methods: We compare

our method with some cost-sensitive feature learning method:

Cost-Sensitive Linear Discriminant Analysis (CS-LDA) [37] and

Cost-Sensitive classification methods: cost-sensitive kernel logis-

tic regression (CS-KLR) [38] Sparse Cost-Sensitive Classifier (SCS-

C) [39] and Cost-Sensitive Dictionary Learning method (CSDL) [40] .

Due to extracting cost information in both the feature learning

and classification phases can further reduce the total cost [37] .

Thus, for a fair comparison, we combine CS-LDA with cost-sensitive

nearest neighbor (CS-NN) [38] in this experiment (CSLDA + CS-

NN). CSLDA is used for feature learning, and CS-NN is applied for

classification. For CSDL, we adopt the discriminative reconstruc-

tion error for dictionary learning just as our approach provided

in Section 3.3 . We perform PCA to learn a linear subspace with-

out cost information, and then performed dictionary learning on

these PCA features for face recognition. For CS-LDA, CS-KLR, SCS-C

and CS-LDA + CS-NN, we follow the setting of the corresponding

papers. 
Please cite this article as: G. Zhang, F. Porikli and H. Sun et al., Cost-se
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Recognition results of different cost-sensitive methods are listed

n Table 3 . It can be seen that most of cost-sensitive methods

chieve much lower cost and our method CS-JFDL achieves the

mallest total cost. Compare with CSDL, CS-JFDL obtains much

ower total cost, this indicates that in the reduced cost-sensitive

eature space, learn the cost-sensitive dictionary can further reduce

he total cost. CS-LDA +CS-NN achieves lower cost than CS-LDA,

his clearly indicates that CS-LDA can present a low lost feature

istribution for a cost-sensitive classifier to decrease misclassifica-

ion cost. In spite of that our method still achieves better perfor-

ance in terms of the total cost. 

Joint Learning vs Separate Learning of Feature and Dictionary: The

ost-sensitive feature learning and cost-sensitive dictionary can

lso be learned in an independent manner, i.e., we first learn the

ost-sensitive projection matrix from the training data, and then

e learn the cost-sensitive dictionary in the reduced cost-sensitive

paces. Denote the independent feature and dictionary learning

ethod as CSFL + CSDL. To show the effect of CS-JFDL, we com-

are our CS-JFDL with CSFL + CSDL. Table 4 lists the average recog-

ition results. The joint learning manner CS-JFDL achieves lower

otal cost than independent manner, which indicates that simulta-

eously learning the features and dictionary is optimal, since some

seful information for dictionary learning may be lost in the fea-

ure learning stage in independent manner. We can also see that

SFL + CSDL is better than CSDL, this indicates that cost-sensitive

eatures indeed improves the performance of dictionary learning.

hen the cost-sensitive features and dictionary we learn are com-

ined, the total cost can be further decreased. 

Influence of Difference of Learning terms: We investigate the con-

ributions of different terms in our CS-JFDL model. We define the

ollowing two alternative baselines to study the importance of dif-

erent terms in our CS-JFDL models: 

(1) CS-JFDL-1: learning the model without cost-sensitive dis-

criminative projection term G ( P ). 

(2) CS-JFDL-2: learning the model without cost-sensitive term
H ( X ). 

nsitive joint feature and dictionary learning for face recognition, 
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Table 4 

Comparison of different feature and dictionary learning strategies. 

Method AR FERET 

cost err err GI err IG cost err err GI err IG 

CSDL [40] 145 5.93 12.80 1.27 97 6.79 16.38 0.42 

CSFL + CSDL 127 5.45 10.36 1.12 84 6.13 12.74 0.39 

CS-JFDL 102 4.40 8.98 0.88 69 4.82 10.82 0.32 

Table 5 

Comparison of CS-JFDL with different terms. 

Method AR FERET 

cost err err GI err IG cost err err GI err IG 

CS-JFDL-1 121 4.83 9.76 1.10 77 5.45 11.41 0.37 

CS-JFDL-2 129 5.21 10.45 1.17 85 5.89 13.22 0.40 

CS-JFDL 102 4.40 8.98 0.88 69 4.82 10.82 0.32 
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Table 5 shows performance comparisons of CS-JFDL when λ1 

r λ2 are set as 0 to learn the model, respectively. We can see

hat cost-sensitive term H ( X ) is more important than discrimina-

ive projection term G ( P ) in final performance. Moreover the high-

st recognition rate can be obtained when both H ( X ) and G ( P ) are

sed together to learn the model. 

In order to further evaluate CS-JFDL, we apply it in more chal-

enging face recognition tasks LFWa [46] and FRGC [47] . For LFWa

ataset, we follow the same protocol used in [17] , histogram of

niform-LBP is extracted by partitioning a face image into 10 × 8

atches and the dimension is reduced to 10 0 0. For FRCG dataset,

CA is employed to reduce the dimension as 200. Table 6 sum-

arizes the experimental results. Similar to the results on AR and

ERET datasets, it is evident that CS-JFDL achieves this by extract-

ng features that can prevent high-cost errors ( err IG ). CS-JFDL err IG 
s lower than other methods err IG on LFWa and FRGC datasets. The

esults indicate that CS-JFDL can preferentially decrease the high-

ost errors, which leads to lower total cost. Especially, CS-JFDL also

btains the competitive classification accuracy. 

.1.3. Parameter analysis 

In this section, we first evaluate the performance of CS-JFDL

ersus different number of gallery classes ( M ) on AR and FERET

atasets. For AR dataset, M varies from 10 to 60 at intervals of

0, and on FERET dataset, M varies from 10 to 70 at intervals of

0. For the sake of simplicity, we only compare our approach with

ome advanced learning methods. Fig. 5 shows the recognition re-

ults of different methods on these two datasets. We can clearly

ee that our proposed CS-JFDL consistently outperforms other dic-

ionary learning methods under different number of M and obtains

he smallest total cost. 

We then verify the effect of CS-JFDL under different feature di-

ensions. Fig. 6 (a) shows the total cost of CS-JFDL under different
Table 6 

Comparisons on LFWa and FRGC datasets. 

Method LFWa 

cost err err GI e

SRC [3] 1130 27.32 29.53 1

LC-KSVD [16] 1098 25.56 33.73 1

FDDL [18] 1003 22.53 29.50 1

LDL [17] 932 21.8 26.74 1

JDDRDL [14] 1075 25.16 29.33 1

CSDL [40] 802 22.73 31.54 8

CS-JFDL 699 20.48 28.89 6

Please cite this article as: G. Zhang, F. Porikli and H. Sun et al., Cost-se
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imensions on the AR dataset. It can be observed that CS-JFDL can

chieve the smallest total cost when the feature dimension reaches

80. 

Then we investigate the accuracy of CS-JFDL with different dic-

ionary size. Fig. 6 (b) shows the total cost of our method with dif-

erent dictionary size on the AR dataset. We see that with the in-

rease of the number of dictionary size, the performance of CS-

FDL also increases. 

For discussing the influence of parameter σ , we evaluate CS-

FDL with different σ on AR and FERET datasets. We varies σ from

 to 12. The experiments are repeated 10 times. Fig. 7 shows the

otal cost and classification error of CS-JFDL on different datasets.

rom Fig. 7 we can see that the total cost varies only within a

mall range, and the recognition error varies with a large change

elatively with the increase of σ . Thus, in order to obtain a smaller

ost, in all experiments, we set σ = 2 . 

.1.4. Discussion 

From the above experimental results, we see that our CS-JFDL

ethod achieves better performance and consistently outperforms

he CSDL [40] . The main reason can be summarized as follows: 

• CSDL considers feature learning and dictionary are two inde-

pendent problems. Thus, CSDL fails to capture the relationship

between the features and the dictionary. Furthermore, this will

result in loss of key discriminative information for classifica-

tion during the learning process and the learned dictionary may

not be optimal. While our method adopts a novel joint learning

technique to build discriminative features and structured dictio-

naries simultaneously such that the learned features and dictio-

nary are complementary to each other. 

• Our method puts the cost information into use during the fea-

ture learning phase, while CSDL just applies a cost-blind dimen-

sionality reduction, i.e. principal component analysis (PCA), as

the prior before dictionary learning. 

.1.5. Learning the cost matrix 

In this paper, we assume that the cost matrix is given by

he user and can reflect user’s security consideration. However,

n many cases, how to select appropriate measure and provide

lear cost ratios is difficult for the users. Thus, refining the cost

atrix given by users or learning a cost matrix via the interac-

ion with users is desired for a cost-sensitive system. However,
FRGC 

rr IG cost err err GI err IG 

2.56 829 13.16 14.54 7.06 

2.04 624 9.95 12.18 5.23 

1.16 662 10.11 11.87 5.67 

0.42 634 9.07 11.21 5.47 

2.08 733 10.33 12.54 6.43 

.02 421 10.27 11.56 2.85 

.84 284 8.31 9.88 1.62 

nsitive joint feature and dictionary learning for face recognition, 
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Fig. 5. Comparison of different methods under different number of gallery subjects on (a)AR dataset, (b) FERET dataset. 

Fig. 6. Total cost of our CS-JFDL versus different feature dimensions and different number of atoms on the AR dataset. (a) feature dimension, (b)dictionary size. 

Fig. 7. The top row shows total cost of CS-JFDL versus different σ . The bottom row 

shows classification error versus different σ . 
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o the best our knowledge, there is not a good method to learn

he cost matrix, and it is still an open and challenging problem.

hang et al. [32] exploited an efficient way to learn the cost ma-

rix, where only one classifier is needed to be trained for obtaining

esults for all parameter settings. In this paper, we only focus on

ow to develop a appropriate algorithm to reduce the final classifi-

ation losses. In addition, Designing cost matrix is time-consuming.

herefore, learning cost matrix is not the key point in our paper. If

eaders are interested in it, please refer to [32] . In order to facili-

ate research in the area, a Matlab implementation of our method

ill be made available. 

.2. Image set based face recognition 

Applying the proposed classification scheme in Section 5 , our

ethod can be extended to handle image set classification [53–58] .

iven a testing video Y te = [ y te 
1 

, y te 
2 

, . . . , y te 
N te 

] , where y te 
j 

is the j th

1 ≤ j ≤ N te ) frame of this video and N te is the number of image

rames in this video, we first apply the learned feature projection

atrix P to project each frame y te 
j 

to a feature and predict its la-
nsitive joint feature and dictionary learning for face recognition, 
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Table 7 

Comparison on Honda/UCSD dataset with different frames. 

Method 50Frames 200Frames 

cost err err GI err IG cost err err GI err IG 

MMD [53] 401 19.22 20.5 7.89 23 2.56 2.11 1.5 

MDA [54] 227 9.23 10.53 4.50 45 1.28 1.0 1.05 

CHISD [55] 224 8.97 9.47 4.50 116 3.85 3.0 2.63 

SANP [56] 174 6.92 7.00 3.68 94 3.33 2.5 2.11 

LMKML [57] 150 5.89 6.50 3.16 23 0.77 0.53 0.5 

PML [58] 102 4.36 4.74 2.00 0 0 0 0 

SFDL [20] 81 4.10 4.01 1.58 0 0 0 0 

CS-JFDL 44 4.10 4.50 0.53 0 0 0 0 

Table 8 

Comparison on CMU MoBo dataset with different frames. 

Method 50Frames 200Frames 

cost err err GI err IG cost err err GI err IG 

MMD [53] 256 5.83 6.67 2.78 207 4.86 5.56 2.22 

MDA [54] 315 7.64 8.89 3.33 153 3.47 3.89 1.67 

CHISD [55] 198 4.17 4.44 2.22 126 2.78 3.06 1.39 

SANP [56] 176 3.89 4.17 1.94 106 2.64 2.78 1.13 

LMKML [57] 156 3.75 4.17 1.67 123 2.5 2.78 1.39 

PML [58] 172 3.47 3.89 1.94 84 2.22 3.06 0.83 

SFDL [20] 131 3.19 3.61 1.39 71 1.94 2.32 0.71 

CS-JFDL 60 3.33 4.72 0.28 29 1.81 2.5 0.11 

Fig. 8. Total cost with different number of image frames on YTC dataset. 
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els by using the smallest reconstruction error corresponding to

ach sub-dictionary D i (1 ≤ i ≤ c ), as described in Eq. (15) . After

etting all the labels of frames, we perform a majority voting to

ecide the label of the given image set. For testing efficiency, we

se the l 2 norm ‖ x ‖ 2 instead of l 1 norm ‖ x ‖ 1 and derive the deci-

ion: 

 abel (y te 
j ) = arg min 

i 

{‖ P y te 
j − D i δi (D 

† y te 
j ) ‖ 

2 
2 

}
(14)

here D 

† = (D 

T D + α2 I) 
−1 D 

T is the pseudoinverse of D 

Then, we adopt the majority voting strategy to classify the

hole testing video (image set): 

 abel (Y 

te ) = arg min 

i 
H i (15)

here H i is the total number of votes from the i th class. 

In this section, we use Honda/UCSD [48] , CMU Mobo [49] , and

outube Celebrities (YTC) [50] datasets to evaluate the perfor-

ance of CS-JFDL. The Honda/UCSD dataset includes 59 face videos

nvolving 20 individuals with large pose and expression variations.

he average lengths of these videos are approximately 400 frames.

he CMU MoBo dataset includes 96 videos from 24 individuals. For

ach subject, there four videos corresponding to different walking

atterns. For each video, there are around 300 frames. The YTC

ataset includes 1910 videos of 47 celebrities from YouTube. Most

ideos contain noisy and low-quality image frames. The number of

rames in a video varies from 8 to 400. 

For face videos in the Honda, Mobo and YTC datasets, all im-

ge frames are detected using the face detector method proposed

n [52] and then resize them to 30 × 30 intensity image. Thus each

ideo is represented as an image set. For each image frame in all

hese three datasets, we only perform histogram equalization but

o further pre-processing and the image features are raw pixel val-

es. 

On Honda, MoBo, and YTC datasets, we randomly select train-

ng and testing sets 10 times, then compute and compare the av-

rage recognition performance. For the Honda dataset, one video

er subject is randomly selected for training, while the remain-

ng as testing. Specifically, In the training set, we use 10 video se-

uences as the gallery subjects and the rest 10 video sequences as

he impostor subjects, and select N G frames from each image set

or training. The rest videos corresponding to each chosen subject

re used as the testing set. For the MoBo dataset, we randomly

elect one face video per person for training and the use the rest

ideos for testing. In the training set, half of them are selected as

he gallery subjects and the remaining half as the impostor sub-

ects and each image set select N G frames for training. For the YTC

ataset, we equally divide the whole dataset into five folds, and

ach fold contains 9 videos for each person. In each fold, we ran-

omly select 20 gallery subjects and 20 impostor subjects. In the

raining set, 3 face videos for each person are used for training,

nd each image set select N G frames. In the testing set, the remain

 face videos for each person are used for testing, and each im-

ge set also select N G frames. C GI , C IG , and C GG are specified as the

ame in Table 1 . 

In our experiments, the feature dimension of P is specified as

00. We fix λ1 = 1 , λ2 = 2 , λ3 = 0 . 05 , α2 = 0 . 001 , k 1 = 5 and k 2 =
0 respectively. The number of atoms per subject are set as 20, 25

nd 35 on Honda/UCSD, CMU MoBo and YTC, respectively. 

Comparison with SoA Image set Based approaches: we com-

are CS-JFDL with several image set based recognition approaches,

ncluding Manifold-to-Manifold Distance (MMD) [53] , Manifold

iscriminant Analysis (MDA) [54] , Convex Hull based Image

et Distance (CHISD) [55] , Sparse Approximated Nearest Point

SANP) [56] , Local Multi-Kernel Metric Learning (LMKML) [57] , Pro-

ection Metric Learning (PML) [58] , and Simultaneous Feature and

ictionary Learning (SFLD) [20] . The settings of these approaches
Please cite this article as: G. Zhang, F. Porikli and H. Sun et al., Cost-se
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re basically the same as [20] . For Honda/UCSD and CMU MoBo

atasets, we randomly select 50 and 200 frames for training, re-

pectively. Table 7 and Table 8 list the experimental results of dif-

erent methods on Honda, and MoBo datasets. We observe that our

S-JFDL achieves the lowest total cost and consistently outperforms

ther methods on all the experiments. The main reason is that our

ethod can exploit more discriminative information in the learned

eature subspace and the learned structured dictionary can extract

ore person-specific information. 

We also evaluate the performance of CS-JFDL on YTC dataset

hen videos contain different number of image frames. We ran-

omly select N G frames from each image set for training and use

nother N G frames for recognition. Note that if there is an image

et that do not have enough image frames, we use all of the frames

n the image set instead. Fig. 8 shows the experimental results of

ifferent methods with varying image frames. One can see that

S-JFDL achieves smaller cost than the other approaches. This in-

icates that our method is effective for image set recognition in

erms of the total cost. 
nsitive joint feature and dictionary learning for face recognition, 
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7. Conclusion 

We presented a novel cost-sensitive joint feature and dictionary

learning method (CS-JFDL). By jointly learning the discriminative

projection matrix and the structured dictionary, our method ex-

tracts more discriminative information for classification. In addi-

tion, we introduce the cost information of samples into the fea-

ture and dictionary learning stage and enforce the cost-sensitive

requirement throughout the entire learning process. Unlike most

existing dictionary learning algorithms which do not consider the

cost information, our method achieved lower total cost than tra-

ditional dictionary learning methods. Extensive experimental eval-

uations show that CS-JFDL achieves superior performance on both

image based face recognition and image set based face recognition

tasks. 
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Appendix A. Optimization 

In this appendix, the optimization procedure of Eq. (11) is pro-

vided. 

Step 1: Learn the cost-sensitive discriminative projection . 

In order to learn projection P , we fix D and X . Let V = DX, V i =
DX 

i 
i 
, then Eq. (11) can be expressed as 

min 

P 
J = ‖ P Y − V ‖ 

2 
F + 

c ∑ 

i =1 

‖ P Y i − V i ‖ 

2 
F − λ1 tr 

(
P Y L 2 Y 

T P T 
)
, 

s.t. P P T = I. (A.1)

We can see that Eq. (A.1) is non-convex, and we can have a

local minimum of it as follows. Since P P T = I, we get 

‖ P Y − V ‖ 

2 
F = tr 

(
P ϕ(P ) P T 

)
(A.2)

and 

c ∑ 

i =1 

‖ P Y i − V i ‖ 

2 
F = tr 

(
P ϕ(P i ) P 

T 
)

(A.3)
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here ϕ(P ) = (Y − P T V )(Y − P T V ) T , ϕ(P i ) = 

∑ c 
i =1 (Y − P T V i )(Y −

 

T V i ) 
T . Then Eq. (A.1) can be rewritten as 

in 

P 
J = t r 

(
P ϕ(P ) P T 

)
+ t r 

(
P ϕ(P i ) P 

T 
)

− λ1 t r 
(
P Y L 2 Y 

T P T 
)
, 

= tr 
(
P (ϕ(P ) + ϕ(P i ) − λ1 Y L 2 Y 

T ) P T 
)
, 

s.t. P P T = I. (A.4)

In the current iteration t , to obtain the above minimization, we

xploit ϕ(P (t−1) ) and ϕ(P i, (t−1) ) to approximate ϕ( P ) and ϕ( P i ) in

q. (A.4) , where P (t−1) is the projection obtained in iteration t − 1 .

e use Eigen Value Decomposition (EVD) technique to get 

 U , �, U ] = EV D 

(
ϕ(P (t−1) ) + ϕ(P i, (t−1) ) − λ1 Y L 2 Y 

T 
)

(A.5)

here � is diagonal matrix formed by the eigenvalues of

(ϕ(P (t−1) ) + ϕ(P i, (t−1) ) − λ1 Y L 2 Y T ) . Then set P as the matrix of

igenvectors in U corresponding to the first d eigenvalues, i.e., let

 (t−1) = U (1 : d, :) . Nevertheless, by this means the update of P

robably too big, and the optimization of the whole objective func-

ion in Eq (11) may be unstable. Thus, we update P gradually in

ach iteration and denote 

 (t) = P (t−1) + o(U (1 : d, :) − P (t−1) (A.6)

here o is a small positive constant to control the change of P in

terations. 

Step 2: Learn the sparse coding matrix . 

To learn X , we fix P and D , then Eq. (11) can be rewritten as 

in 

X 
J = 

c ∑ 

i =1 

(‖ P Y i − DX i ‖ 

2 
F + ‖ P Y i − D i X 

i 
i ‖ 

2 
F + 

c ∑ 

j =1 , j � = i 
‖ D j X 

j 
i 
‖ 

2 
F ) 

+ λ2 ‖ Q � X ‖ 

2 
F + λ3 ‖ X ‖ 1 (A.7)

We compute X i sequentially by fixing other coefficient matrices

 j ( j � = i 1 ≤ i ≤ c ). Thus Eq. (A.7) can be simplified as 

in 

X i 
J = ‖ P Y i − DX i ‖ 

2 
F + ‖ P Y i − D i X 

i 
i ‖ 

2 
F + 

c ∑ 

j =1 , j � = i 
‖ D j X 

j 
i 
‖ 

2 
F 

+ λ2 ‖ Q i � X i ‖ 

2 
F + λ3 ‖ X i ‖ 1 (A.8)

Following [15,20,42] , we optimize each x is in X i . We define x is 
s the coding coefficient of the s -th sample in the i th class. For

btaining x is , we fix other coding coefficients x it ( t � = s ) for other

amples and rewrite Eq. (A.8) as 

in 

x is 
J = R (D , P , x is ) + λ2 x 

T 
is diag(q is ) 

2 x is + λ3 

c ∑ 

z=1 

| x (z) 
is 

| (A.9)

here 

 (D , P , x is ) = ‖ P y is − Dx is ‖ 

2 
2 + ‖ P y is − D i x 

i 
is ‖ 

2 
2 + 

c ∑ 

j =1 , j � = i 
‖ D j x 

j 
is 
‖ 

2 
2 

(A.10)

here diag ( q is ) is a diagonal matrix with ( z, z )-th element as

he z th entry of q is and x (z) 
is 

is the ( z, z )-th component of x is .

q. (A.9) can be solved using feature sign search algorithm [43] af-

er certain formulation based on [15,20] . 

Step 3: Learn the dictionary . 

By fixing P and X , we can learn D , Eq. (11) can be rewritten as

in 

D 
J = 

c ∑ 

i =1 

(‖ P Y i − DX i ‖ 

2 
F + ‖ P Y i − D i X 

i 
i ‖ 

2 
F + 

c ∑ 

j =1 , j � = i 
‖ D j X 

j 
i 
‖ 

2 
F ) 

(A.11)

We update D class by class sequentially. When updating D i , the

ub-dictionaries D j , j � = i associated to other classes will be fixed.
nsitive joint feature and dictionary learning for face recognition, 
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hus Eq. (A.11) can be further rewritten as 

in 

D i 
J = ‖ P Y i − DX i ‖ 

2 
F + ‖ P Y i − D i X 

i 
i ‖ 

2 
F + 

c ∑ 

j =1 , j � = i 
‖ D j X 

j 
i 
‖ 

2 
F . (A.12)

Which essentially a quadratic programming problem and can be

irectly solved by the algorithm presented in [41] (update D i atom

y atom). Notice that each atom in the dictionary should have unit

 2 norm. 
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