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Guidance Through Surrogate: Toward a Generic
Diagnostic Attack
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Abstract— Adversarial training (AT) is an effective approach to
making deep neural networks robust against adversarial attacks.
Recently, different AT defenses are proposed that not only main-
tain a high clean accuracy but also show significant robustness
against popular and well-studied adversarial attacks, such as
projected gradient descent (PGD). High adversarial robustness
can also arise if an attack fails to find adversarial gradient
directions, a phenomenon known as “gradient masking.” In this
work, we analyze the effect of label smoothing on AT as one of the
potential causes of gradient masking. We then develop a guided
mechanism to avoid local minima during attack optimization,
leading to a novel attack dubbed guided projected gradient attack
(G-PGA). Our attack approach is based on a “match and deceive”
loss that finds optimal adversarial directions through guidance
from a surrogate model. Our modified attack does not require
random restarts a large number of attack iterations or a search
for optimal step size. Furthermore, our proposed G-PGA is
generic, thus it can be combined with an ensemble attack strategy
as we demonstrate in the case of auto-attack, leading to efficiency
and convergence speed improvements. More than an effective
attack, G-PGA can be used as a diagnostic tool to reveal elusive
robustness due to gradient masking in adversarial defenses.

Index Terms— Adversarial attack, gradient masking, guided
optimization, image classification, label smoothing.

I. INTRODUCTION

ADEFENSE can cause gradient masking if it does not
allow an adversarial attack to calculate useful gradient

directions to deceive a model. Papernot et al. [1] found that
gradient masking alone is not a robust way to devise a
well-rounded defense since adversarial perturbations can be
discovered for such models using alternative means, e.g.,
a smooth version of the same model or from a substitute
model. In this manner, the same attack can be used to fool
the model by intelligently estimating perturbation directions to
which the model remains highly sensitive even after deploying
the defense.

We hint toward the presence of gradient masking in the
recent state-of-the-art defense mechanisms (feature scattering

Manuscript received 30 June 2021; revised 12 February 2022 and
7 May 2022; accepted 19 June 2022. (Corresponding author:
Muzammal Naseer.)

Muzammal Naseer and Salman Khan are with the Computer Vision Depart-
ment, Mohamed Bin Zayed University of Artificial Intelligence, Abu Dhabi,
United Arab Emirates, and also with the College of Engineering and Computer
Science, The Australian National University, Canberra, ACT 2601, Australia
(e-mail: muz.pak@gmail.com).

Fatih Porikli is with Qualcomm, San Diego, CA 92121 USA.
Fahad Shahbaz Khan is with the Computer Vision Department, Mohamed

Bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab
Emirates, and the Computer Vision Laboratory (CVL), Linköping University,
581 83 Linköping, Sweden.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3186278.

Digital Object Identifier 10.1109/TNNLS.2022.3186278

(FS) [2], adversarial mixup (AvMixup) [3], and mixup
inference [4]). These defenses show excellent robustness
in the more challenging white-box setting, where all net-
work parameters, model architecture, and training details are
known. Specifically, single-step [5], [6] as well as iterative
optimization-based [7]–[10] attacks find it difficult to calculate
useful gradient directions in order to launch a successful
attack. We note that these defenses use label smoothing [11],
[12] as a regularization measure to create smooth loss surfaces.
While learning smooth loss surfaces is a preferable property of
robust models [13], the existence of large contagious regions
of adversarial examples [5], [14] means the smoothness is
only achieved in the small neighborhood of the training
manifold. We demonstrate that label smoothing can, thus,
cause gradient masking, thereby leading to inflated estimates
of model robustness.

In this work, by studying the masking behavior of label
smoothing, we characterize a new category of gradient mask-
ing which may not be intentionally caused by shattered,
randomized, or vanishing gradients. Instead, we suggest the
specific “loss surface” induced by a loss function and/or the
training algorithm can also lead to gradient masking. This
means a white-box attack would not be much successful even
with all the knowledge about the training process and network
parameters. We found that since such masking is quite subtle,
it may not be caught by the diagnostic behaviors identified by
Athalye et al. [15]. Subsequently, we propose a new attack
approach (G-PGA) based on the adversarial directions from a
surrogate model that acts as a useful test for existing defenses.
Our approach utilizes a novel contrastive “match and deceive”
loss to find harmful directions using guidance from the teacher
to deceive the source model (Fig. 1).

Contributions: The main contribution of this work is to
study label-smoothing as a case study to highlight the mask-
ing behavior of recent popular defenses. We complement
our findings with a strong attack method that generalizes
across various defense mechanisms to unveil the gradient
masking effect. The salient aspects of our approach are as
follows.

1) Relation of Label Smoothing With Gradient Masking:
We analyze the effect of label smoothing on adversarial
training (AT). To this end, we develop an AT algo-
rithm, called mask-AT, that combines random initializa-
tion and label smoothing with a single-step adversarial
attack to achieve masking without losing clean accu-
racy. Our mask-AT highlights label smoothing as the
common root cause of elusive robustness of the recent
defenses [2], [3].
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Fig. 1. We analyze the effect of gradient masking on popular defenses
and propose a guidance-based attack algorithm, called G-PGA. Our approach
seeks guidance from a masking-free surrogate model to find useful attack
directions, which, in turn, can be used to diagnose gradient masking.

2) Guiding Mechanism: We develop a guiding mechanism
that allows finding useful gradient directions during
attack optimization. The idea is to exploit gradient
information from a masking-free surrogate model to
distill and strengthen the adversarial noise. This way
attack optimization avoids being stuck to local min-
ima by observing the correct gradient direction. The
masking-free surrogate provides healthy gradient direc-
tions [15], e.g., naturally or adversarially trained models
(Madry [7] or trades [13]).

3) Match and Deceive Loss: Our guided attack called
G-PGA is based on a novel “match and deceive” loss
function. The purpose of this loss is to exploit surro-
gate information based on the principles of rescaling
and redirection, achieved by normalized cross-entropy
(CE) and contrastive directional objectives, respectively
(Section IV).

II. RELATED WORK

A. Adversarial Training

Robust training [7], [13], [16]–[19] constitutes find-
ing adversarial examples by maximizing the model loss
and then updating model parameters to correctly classify
them. Many robust training methods are proposed, including
Madry et al. [7] that solved the maximization step with an
iterative and computationally expensive attack. Recently, [20]
reduced the training cost significantly with a single-step
attack [5] combined with better initialization and early ter-
mination. Zhang et al. [13] proposed to control the tradeoff
between clean and adversarial accuracy. Adversarial robust-
ness was further improved in [21] by focusing on the misclas-
sified examples during training. Carmon et al. [22] proposed
to train on extra unlabeled data that lead to higher robustness
with a lower drop in clean accuracy. Zhang and Wang [2]
find adversaries by maximizing optimal transport distance
and achieving high robustness when combined with label
smoothing. Similarly, [3] further enhances the adversarial
robustness with minimal loss in clean accuracy. They interpo-
late between clean and adversarial samples as well as labels
with different smoothing factors. Another line of defense uses
input processing [23]–[25] to mitigate the adversarial effect.

For example, [4] exploits mixup [26]-based processing along
with AT to achieve higher robustness.

B. Gradient Masking
Previous work from Athalye et al. [15] noted three

causes for obfuscated gradients, namely, shattered gradients,
stochastic gradients, and vanishing/exploding gradients. For
the first problem, they propose Backward Pass Differentiable
Approximation (BPDA), Expectation Over Transformation
(EOT) attack for the stochastic/randomized defense and
reparametrization and stable optimization for the third
category. Furthermore, they reported a number of tests to
characterize gradient masking, such as one-step attacks must
perform inferior to iterative attacks and black-box attacks
should perform lower than white-box attacks. However, the
identified behaviors do not form a complete set of possible
indicators for gradient masking. In this article, we study
state-of-the-art defense approaches [2], [3] and note that
although they generally pass the tests prescribed by [15],
they are still potentially suffering from gradient masking.
This is demonstrated by our extensive experiments that show
a significant drop in their performance under our attack.

C. Adversarial Attacks
A number of adversarial attacks [27]–[36] have been pro-

posed to evaluate the robustness of deep neural networks.
Among them, projected gradient descent (PGD) [7] and Carlini
and Wagner (CW) [30] attacks are computationally feasible
and the most popular ones. However, these attacks fail to
faithfully estimate the robustness of recent defenses [2], [3]
even when they are adaptive to the defense [4]. This has led
to the development of new attacks, where [37] introduced a
sampling strategy to enhance the performance of PGD and
CW, while [38] proposed an auto-attack based on parameter-
free objectives along with evaluating the model on an ensemble
of attack strategies. Auto-attack depends on a large number
of queries, and extra information, such as identifying, which
input samples are misclassified by a model and then adapting
to the new attack settings for those input samples. In real-
world settings, this information may not be available to the
attacker.

D. Our Differences
Our proposed guiding mechanism is generic in its nature.

When used as a stand-alone attack, it performs equivalent
to state-of-the-art auto-attack [38] while being significantly
less computationally expensive. It does not require a large
number of queries or random restarts. It also does not depend
upon extra information, such as misclassification indication
for a given sample. Our proposed method complements the
current attacks. When our guided mechanism is combined with
existing approaches [38]–[40], it allows faster convergence
and enhances the performance of an attack, as shown in
combination with attack strategies proposed by auto-attack in
Section V.

III. GRADIENT MASKING DURING ATTACK

OPTIMIZATION: CASE STUDY

It is well-known that gradient masking [15], [41] can
cause optimization difficulties during adversary generation,
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resulting in inflated robustness. Pang et al. [42] show that
only moderate use of label smoothing (6) helps in boost-
ing adversarial robustness but excessive label smoothing can
decrease the robustness. We note that recent state-of-the-art AT
methods [2], [3] use higher label smoothing during training.
Therefore, an important question is: when does label smooth-
ing causes gradient masking? Here, we analyze the effect of
label smoothing on adversarial robustness as a case study,
highlighting the need to diagnose such behaviors [43]–[45].

Proposition 1: Consider a model trained using a regular CE
loss (�ce) with label smoothing outputs logits a ∈ R

N . Then,
the gradients used to update the model are relatively weaker,
i.e., ∂�ce(a, ŷ)/∂ai < ∂�ce(a, y)/∂ai for δ ∈ (0, 1] where
y ∈ R

N denote the one-hot encoded labels and ŷ denotes
its smoothed version. As a result, smooth loss surfaces are
learned close to the training data manifold, thereby suppressing
gradients used to craft adversaries in local neighborhoods. This
phenomenon causes gradient masking and leads to inflated
robustness of the learned model in small neighborhood of the
training data [1].

Sketch Proof: For a model being trained with CE loss �ce

and one-hot encoded ground-truth labels y, the gradients are
given by

∂�ce(a, y)
∂ai

= σ(ai)− yi (1)

where

σ(ai) = exp(ai)∑
j exp(a j)

. (2)

In comparison, the gradients for the same model trained with
smoothed labels ŷ are given by

∂�ce(a, ŷ)
∂ai

= σ(ai)− ŷi (3)

where

ŷi =
⎧⎨
⎩

(1− δ), if yi = 1
δ

N − 1
, if yi = 0

(4)

where N is the total number of classes. The above-mentioned
expression shows if δ ∈ (0, 1], then whether yi = 0 or yi = 1,
the difference with predicted probability score for a class will
always be less than the case when nonsmooth labels are used.
Hence

∂�ce(a, y)
∂ai

>
∂�ce(a, ŷ)

∂ai
. (5)

Label smoothing leads to smooth loss surfaces during model
training. However, the existence of large contagious regions
of adversarial pockets in the data manifold [5], [14] means
that such smoothness is only achieved close to the training
data manifold. Thus, the gradient directions computed from
the same model even for the case of white-box adversaries
and do not disclose directions to which the model still remains
susceptible.

A. Case Study

We design an AT algorithm to showcase how an attack
fails in the presence of gradient masking. This masking is

Algorithm 1 Mask-AT
1: A batch of benign samples {xi , yi}ni=1, a model f para-

merterized by θ , perturbation budget ε, scaling parameter
η, label smoothing factor δ and CE loss �ce.

2: for i = 1 to n do
3: x̃i = xi + µ(η · ε) : µ ∼ Uniform(−1, 1) � Take a

random step
4: x̃i = clip(FGSM(x̃i ), xi − ε, x i + ε) � Generate

adversary
5: end for
6: θ = θ −∇�ce( f (x̃), ŷ(δ)) � Update the model parameters

introduced by label smoothing and we call the resulting AT
algorithm as mask-AT. Mask-AT is based on a single-step
adversarial attack known as Fast Gradient Sign Method
(FGSM) [5] combined with larger random initialization and
label smoothing. Our AT (Algorithm 1) takes a large random
step in the input space by adding a uniform noise to a given
sample and then adversarial examples are computed by taking
a single-adversarial step using FGSM. Model parameters are
updated by minimizing the empirical loss (CE) with smooth
labels on these adversarial examples. We observe that such
simple AT shows better robustness against well-studied iter-
ative attacks, such as PGD, while maintaining a high clean
accuracy (Fig. 2). This behavior resonates well with the recent
state-of-the-art defenses, including FS [2] and AvMixup train-
ing [3]. Thus, our experiment sheds a light on how gradient
masking introduced by label smoothing can play a significant
part in achieving high adversarial robustness.

B. Mask-AT Training

To study the effect of label smoothing, we train a ResNet18
on CIFAR10 using Mask-AT (Algorithm 1). Models are
trained using SGD optimizer for 200 epochs with batch-size
60. Pixel values are scaled to [−1,+1]. Learning rate is set
to 0.1 and decreased by a factor of 10 at epochs 60 and 90.
Perturbation budget, ε, is set to 8/255 during training. Label
smoothing [2] is performed as

ŷ =
(

1− δ − δ

N − 1

)
∗ y + δ

N − 1
(6)

where δ is label smoothing factor, N represents number of
classes, and y ∈ R

N is the one-hot encoded label. Applying
(6) to y reduces the confidence of true class to 1− δ.

C. Mask-AT Evaluation

We evaluate ResNet18’s robustness against PGD attack [7]
with 20 iterations and step of (2/255).

D. Analysis and Observations

We dissect each component of Mask-AT (Algorithm 1) in
order to better understand the role of label smoothing, random
initialization, and attack iterations. Results presented in Fig. 2
can be analyzed as follows.

1) Effect of Random Initialization: We set δ = 0, i.e.,
no label smoothing is applied. We perturb the input
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Fig. 2. Analysis on Gradient Masking: Clean versus adversarial accuracy (% Top-1) of ResNet18 on CIFAR10 is reported against PGD attack with 20 iterations.
PGD successfully highlights true robustness in the absence of gradient masking, e.g., when models are trained on FGSM: (a) or using Madry’s method [7]
(d). However, PGD erroneously indicates very high robustness of models trained on FGSM adversaries with label smoothing (b) and (c). Thus, with the help
of label smoothing only, adversarial robustness of Mask-AT (Algorithm 1) increases from zero to around 75% while maintaining the clean accuracy [plot
(c) η = 6 and δ = 0.75]. This signifies how the use of a certain component during AT (such as label smoothing in this case) can paralyze an attack and
shows fake robustness. A solution to this problem is to guide the attack optimization (Section IV). (a) Effect of η with δ = 0. (b) Effect of δ with η = 4.
(c) Effect of δ with η = 6. (d) Effect of δ with η = 4.

sample with uniform noise before running the FGSM
attack during training (Algorithm 1). The strength of
uniform noise is controlled by η. The higher the η,
the larger the random step taken before the attack.
We observe in Fig. 2(a) that model clean accuracy
increases by increasing η but at the same time, its adver-
sarial robustness decreases. This signifies that training a
model with no label smoothing on adversaries computed
using FGSM does not make the model robust and it also
does not introduce any gradient masking as PGD [7]
successfully exposes weak robustness. This behavior,
however, changes as we introduce label smoothing dur-
ing training.

2) Effect of Label Smoothing: We now fix the value of η
in the next experiment, as shown in Fig. 2(b) and (c),
and start increasing the label smoothing factor, δ (6).
We observe that the higher the value of δ, the higher the
robustness of the model against PGD attack. This is an
abnormal behavior such that the robustness of ResNet18
trained using Algorithm 1 at η = 6 goes from 0% to 75%
just by increasing label smoothing, δ.

3) Effect of Attack Iterations: Finally, we study if such gra-
dient masking effect continues with iterative attack train-
ing as well. We fix the value of η and train the model
by running ten attack iterations, rather than on FGSM.
This is equivalent to Madry et al. [7]. We observe that
the masking effect caused by the combination of label
smoothing and random noise reduces significantly. This
indicates that such masking phenomena prevail in mod-
els trained with label smoothing and single-step attacks,
such as [2] and [3].

E. Outcome and Motivation for Guided Optimization

Our experimental analysis [Fig. 2(a)–(d)] shows interesting
insights about gradient masking. We observe that the same
attack (PGD) works perfectly well when there is no gradient
masking effect. For example, PGD works as expected when
models are trained using FGSM with no label smoothing or
Madry’s method (with or without label smoothing) but it fails
on models trained using FGSM combined with large random
initialization and label smoothing. Such uncertainty in attack
optimization leads to elusive robustness [2]–[4] and there is

a need for the adversarial attack that performs consistently.
We provide a complimentary approach to the previous attack
solutions [15], [38] by proposing to guide optimization using
gradient direction from a surrogate model thus avoiding local
minima due to gradient masking.

IV. GUIDED PROJECTED GRADIENT ATTACK

In this section, we develop a guiding mechanism based
on a new “match and deceive” loss that can quickly expose
gradient masking with a small number of attack iterations. This
leads us to a novel attack named guided projected gradient
attack (G-PGA) attack. (Algorithm 2).

A. Need for External Guidance

A white-box adversary is created using the full knowledge
of model architecture, pretrained weight parameters, training
loss along with any randomness used to perturb the input
samples during training. Consider a model f parameterized by
θ is adversarially trained using a given training mechanism,
train f (e.g., [2], [3]). If train f leads to gradient masking
(as shown in Section III) then white-box adversaries will be
less effective against the trained model.

We observe that the guidance from the loss function can
play a key role in launching a successful attack. For example,
the adversary is more effective when computed using CE
loss for over-confident models but becomes less effective on
models trained using aggressive label smoothing (Section III).
Since the guidance available in the white-box settings (with
gradient masking) is nonconducive to finding reliable attack
directions, the attack needs to look “elsewhere” for better
guidance. To this end, we propose to introduce a surrogate
model in the attack pipeline which is used to find optimal
attack directions on the source network.

A naive strategy would be to use a surrogate model, h, para-
meterized by φ trained using a masking-free method (trainh)
(e.g., naturally training using CE or AT using [7], [13]) with a
similar architecture as model f . Adversaries can be computed
against model h and then transferred to the model f . The
problem with this approach is that these adversaries contain
gradient noise specific to the model parameters φ trained
using a given approach (trainh) leading to suboptimal results

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: QSIO. Downloaded on July 15,2022 at 05:15:46 UTC from IEEE Xplore.  Restrictions apply. 



NASEER et al.: GUIDANCE THROUGH SURROGATE: TOWARD A GENERIC DIAGNOSTIC ATTACK 5

Fig. 3. G-PGA is based on match and deceive loss which uses information provided by the surrogate model to redirect and attentively rescale the logits of
the under attack model in order to overcome gradient masking and find optimal adversarial direction.

for the model f (see Section VI for analytical insights). Note
that the adversaries created using model, h, are considered
black-box to the model f , if train f �= trainh even when
f and h share similar architecture.

B. Match and Deceive Loss

Our proposal is to use masking-free information from the
surrogate model, h, as a guide to finding an optimal adversarial
direction for the model f . The objective is to avoid the
white-box setting with potential optimization difficulties and
the black-box scenario, as both lead to weaker adversaries.
We achieve this guiding mechanism (Fig. 3) as follows.

1) Redirection: During the attack, redirect the optimizer
with a supervisory signal that matches the adversarial
directions from the output space of model f , with
the surrogate model h. Here, the intuition is that if h
is masking-free then the optimizer should move along
the adversarial direction defined by h. Redirection is
achieved using a contrastive directional loss (7).

2) Rescaling: Attentively rescale the logit space outputs of
the under-attack model using the guidance of logits from
the surrogate model. Rescaling allows us to incorporate
masking-free information from the surrogate into the CE
loss. This is achieved by a normalized CE loss (9).

1) Contrastive Directional Loss: Consider a benign input
sample x, an adversarially perturbed sample x̃, then con-
trastive directional loss �cd minimizes the similarity between
the output vectors f (x) ∈ R

k and f (x̃) ∈ R
k in the

k-dimensional logit-space, a desirable property for an optimal
adversary to maximally perturb the input. It simultaneously
maximizes the similarity between f (x̃) and h(x̃) ∈ R

k , which
provides better adversarial gradient direction considering h is
adversarially trained and masking free. The �cd loss is defined
as

�cd = − log
exp(S( f (x̃), h(x̃)))

exp(S( f (x), f (x̃)))+ exp(S( f (x̃), h(x̃)))
(7)

where S(·) represents the cosine similarity between two given
vectors, i.e., S(a, b) = ((a�b)/(‖a‖‖b‖)).

Algorithm 2 Guided Projected Gradient Attack
1: A benign sample x, a classifier f , a surrogate model h,

perturbation budget ε, number of attack iterations T , step
size κ .

2: g0 = 0; x̃ = x, t ← 0;
3: repeat
4: t ← t + 1;
5: Forward pass x, x̃ through f and h and compute f (x),

f (x̃) and h(x̃).
6: Compute contrastive directional loss �cd (Eq. 7) using

f (x), f (x̃) and h(x̃).
7: Compute normalized cross-entropy loss �nce (Eq. 9)

using f (x̃) and h(x̃).
8: Compute the match and deceive loss Lmd (Eq. 10).
9: Backward pass and compute gradients gt = ∇xLmd .

10: Use gradients to update perturbation estimate,

x̃t+1 = x̃t + κ · sign(gt).

11: Project the adversary within allowed perturbation bud-
get, ε

x̃t+1 = clip(x̃t+1, x − ε, x + ε).

12: until t ≤ T

2) Normalized Cross-Entropy: As f (x̃) and h(x̃) represent
the logit response for the perturbed sample x̃, then guidance
through logit rescaling is defined as

I
(

f (x̃), h(x̃)
) = f (x̃) ◦ h(x̃)

‖ f (x̃)‖2
(8)

where ◦ denotes Hadamard product. Adversarial perturbation
can be created by maximizing the following normalized CE
loss:

�nce = −
k∑

j=1

y j log
(
σ(I( f (x̃), h(x̃)) j)

)
(9)

where k represents the number of classes, σ is a softmax
function, and y ∈ R

k is the corresponding one-hot encoded
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Fig. 4. L1 magnitude averaged over 10k CIFAR10 test samples (higher is
better). Left: our attack increases the gradient information vital for creating
effective adversaries. Right: L1 distance (higher the better) between adversar-
ial and clean features (extracted before the logit layer).

ground-truth vector. The �nce loss promotes both f (x̃) and
h(x̃) to agree on the misclassification of the perturbed sample
with a similar confidence.

The final match and deceive loss is given as follows:
Lmd = �nce − �cd. (10)

The above loss is maximized to obtain optimal adversaries in
our proposed guided attack.

C. Gradient Analysis

For the sake of brevity, we consider u = f (x̃), v = f (x),
and z = h(x̃). Let us assume their corresponding normalized
versions are denoted as u′ = u/‖u‖, v′ = v/‖v‖ and z′ =
z/‖z‖. Then, the loss function �cd can be written in terms of
dot-product as follows:

�cd = − log
exp(u′ · z′)

exp(v′ · u′)+ exp(u′ · z′) . (11)

In the following, we compute the gradients of contrastive
directional loss function. Since, our goal is to learn the
adversarial image x̃, we are mainly interested in the gradi-
ents (∂�cd/∂u) and (∂�cd/∂ z) involving the base model and
surrogate model, respectively. These gradients are given by
(proof in the Appendix)

∂�cd

∂u
= − (z′ − v′) exp(v′ · u′)(I − u′ · u′�)

‖u‖(exp(v′ · u′)+ exp(u′ · z′)) (12)

∂�cd

∂ z
= − u′ exp(v′ · u′)(I − z′ · z′�)
‖z‖(exp(v′ · u′)+ exp(u′ · z′)) . (13)

Fig. 4 shows the empirical analysis for the gradient infor-
mation provided by the match and deceive loss. We run
PGD, CW, and G-PGA (our) attacks for 20 iterations against
the mask-AT model and compare the average magnitude of
gradients across attacks. We also show the feature distortion
caused by the three attacks on CIFAR10. Our results show that
the proposed loss can provide stronger gradients with guidance
from the surrogate model.

V. EVALUATIONS

A. Experimental Protocols

We evaluate the effect of guided attack optimization on
different AT methods, including Madry et al. [7], trades [13],
FS [2], AvMix [3], and mask-AT (Algorithm 1). Pre-
trained model (CIFAR10) for FS is publicly available. Rest
of the models are reproduced using open source code

Fig. 5. Perturbations found using our attack break MI [4] without adapting
to the defense. Top-1 (%) accuracy is reported on 1k CIFAR10 test samples
with WideResNet (lower is better). MI is performed with a combination of
predicted and other labels as in [48].

bases [2], [3], [13]. We used open source implementation of
attacks, including auto-attack [38], FAB [40], and square
attack [39]. Training and evaluation are performed on four
commonly used datasets: CIFAR10, CIFAR100, Street View
House Numbers (SVHN), and ImageNet and we report Top-
1 test set accuracy (%). All experiments are conducted using
NVIDIA Tesla-V100 with PyTorch library [46]. The adver-
sarial perturbations are l∞ bounded and clearly mentioned in
each experiment. We now evaluate our proposed attack under
two settings: 1) standalone efficiency of G-PGA; 2) effect of
G-PGA in ensemble of attacks; and 3) effect of guidance to
noisy gradient estimation.

B. Standalone Efficiency of G-PGA

We compare our attack strength with baseline methods,
including PGD [7] and CW. CW attack is based on a
margin loss [30] used by FS [2] and AvMix [3] in PGD
attack in a restricted perturbation setting. Step size is set
to 2/255 for all the attacks. All experiments in Table I
are conducted on WideResNet. Following insights emerge
from our experiments: 1) Our attack performs significantly
better than PGD and CW while having 50% fewer iterations.
It decreases the robustness of FS [2], AvMix [3] and mask-AT
significantly (<2%) as the number of classes increases, e.g.,
on the CIFAR100 dataset (Table I) and 2) Madry et al. [7]
and trades [13] are least affected by the masking effect of
label smoothing but our attack remains stronger against these
defenses.

Breaking Mixup-Inference (MI): Mixup [26] is another way
to smooth model output predictions. Pang et al. [4] proposed
to break the locality of adversarial examples by exploiting
the global linear behavior of the model after Mixup training
(natural or adversarial). They propose to mix an adversarial
sample before inference to reduce attack strength. However,
our proposed perturbations (Algorithm 2) significantly reduce
the effect of such dynamic inference which reflects our attack’s
strength (see Fig. 5). It is important to note that the attack is
not adapted specifically to MI defense i.e. we are able to break
the model without any knowledge about the MI defense.

C. Effect of G-PGA in Ensemble of Attacks

Croce and Hein [38] deploy multiple attacks, including
modified versions of PGD [7], FAB [40], and query-based
square [39] attack. Our proposed attack is computationally
less expensive, e.g., 85% less costly to run on CIFAR100 in
comparison with the cheaper version of auto-attack [38] (see
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TABLE I

EVALUATION (% TOP-1 ACCURACY) OF AT MECHANISMS (Lower Is Better). OUR PROPOSED ATTACK (G-PGA, ALGORITHM 2) EFFICIENTLY EXPOSES
ANY ELUSIVE ROBUSTNESS WITHIN A FEW ATTACK ITERATIONS

TABLE II

OUR PROPOSED ATTACK, G-PGA, SIGNIFICANTLY ENHANCES ATTACK SUCCESS RATE ALONG WITH CONVERGENCE WHEN USED IN COMBINATION

OF ATTACKS PROPOSED BY [38]. THESE RESULTS COMPLIMENT GUIDED OPTIMIZATION PROVIDED BY G-PGA. “Q” REPRESENTS NUMBER OF

QUERIES SENT TO THE MODEL TO ESTIMATE GRADIENTS. TOP-1 (%) ACCURACY IS REPORTED (Lower Is Better)

Table IV) but it performs on par to [38] without the need
for large number of iterations, random restarts or thousands
of queries. However, the guiding mechanism we presented is
generic in its nature. Therefore, it can be used in combination
with other attacks as proposed by [38]. Hence, we study
the effect of G-PGA in combination to each of the four
untargeted attacks proposed by [38], including PGD variants
based on CE and DLR loses [38], FAB [40], and query-based
square attack [39]. We observe in Table II that our guided
mechanism enhances the efficiency of each component of
auto-attack while decreasing their computational cost. To high-
light an example, when combined with G-PGA, square attack
decreases the accuracy of the model trained using [2] on
CIFAR100 from 24% to 1% within only 1k queries.

D. Effect of G-PGA Against No Label Smoothing

Here, we evaluate different defenses that are not dependent
on label smoothing during training. These defense methods,
such as Madry et al. [7] and trades [13], do not suffer from
masking so the performance simple PGD [7], auto-attack [38]
and G-PGA is equivalent. Results are presented in Table V.
We note simple attacks, such as PGD [7], are effective against
defenses that do not suffer from the masking effect, however,
our guided attack can expose true robustness even when the
model suffers from the gradient masking effect, thus leading

to more reliable robust evaluation. This further highlights that
when large label smoothing (δ = 0.5) is used with iterative
AT [7], [13], it does not introduce gradient masking but can
reduce the adversarial robustness of a model. As an example,
adversarial robustness of trades [13] reduces from 52.8 at δ =
0.0 (Table V) to 51.9 at δ = 0.5 (Table I).

We further validate our approach on the large-scale
ImageNet [49] dataset. Our approach consistently pro-
duces favorable results while being computationally efficient
(Tables III and IV). We evaluated publicly available adversar-
ially trained models [47] on a subset of ImageNet (5k samples)
against different attacks. The surrogate model used in our
G-PGA attack is simply a naturally trained ResNet50 model
which is also publicly available [46]. These results show the
generalizability of our method across datasets and different
surrogate models as well.

E. Guidance to Noisy Gradient Estimation

One strong feature of our proposed guidance is the mask-
ing free attack optimization. We empirically validate this
hypothesis by observing if our method allows finding useful
adversarial directions for query-based adversarial attacks when
the gradient estimation becomes unreliable from the original
model (Fig. 6). In this case, the attacker has access to
only the model’s output and needs to estimate the gradients.
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Fig. 6. Guidance to Noisy Gradient Estimation: Boundary-based attack FAB [40] (top row) and query-based square attack [39] (bottom row) failed to estimate
adversarial direction when adversarially trained models are protected by a dynamic defense. The original (under attacked) model perturbs the incoming input
sample x (clean or adversarial) with uniform noise (x+µ(η ·ε), where η = 1, ε = 8) during inference. We use 5000 queries for the square attack and the FAB
attack ran for 100 iterations. Note that under-attacked defenses are trained on adversarial examples with the same perturbation budget of ε = 8. Therefore,
such dynamic defense causes a minimal drop in clean accuracy, however, these attacks failed mainly because of noisy and suboptimal gradient estimation.
Our guiding mechanism allows the same attacks [39], [40] (top and bottom row, respectively) to estimate the optimal adversarial direction with the help of
the surrogate model and quickly breaks the original model. Top-1 (%) accuracy is reported on the test sets of each dataset (lower is better). Results are the
average of five runs.

TABLE III

EFFECTIVENESS OF G-PGA ON ImageNet: WE EVALUATE
ADVERSARIALLY TRAINED RESNET50 MODELS FROM [47] AGAINST

DIFFERENT ATTACKS INCLUDING G-PGA (OURS). NOTE THAT

EVALUATION PERTURBATION BUDGET FOR EACH MODEL

IS THE SAME AS ITS TRAINING PERTURBATION BUDGET,
E.G., RESNET50 TRAINED ON ε = 2.0 IS EVALUATED

WITH THE PERTURBATION BUDGET OF ε = 2.0.
THE SURROGATE MODEL USED IN G-PGA IS

A NATURALLY TRAINED RESNET50. G-PGA
PERFORMS FAVORABLY IN COMPARISON

WITH AUTO-ATTACK WHILE BEING

COMPUTATIONALLY EFFICIENT
(TABLE IV)

TABLE IV

COMPUTATIONAL TIME (MINUTES, Lower Is Better) IS NOTED ON
A TESLA-V100. ATTACKS RAN ON l∞ ADVERSARIALLY TRAINED

MODELS AT ε = 8. WIDERESNET IS USED FOR CIFAR10,
CIFAR100, AND SVHN DATASETS WHILE RESNET50 IS USED

FOR IMAGENET-5K. RESULTS ARE REPORTED USING THE

TEST SAMPLES FOR EACH DATASET WITH

A BATCH SIZE OF 100

Auto-attack [38] also relies on query-based square [39] and
boundary-based FAB [40] attacks to estimate the gradients.
However, defending against such attacks [39], [40] by injecting
noise into the input image or the model’s output has been
motivated and well-studied in [50] and [51]. These defenses
protect the model by corrupting either the input image [50]
or the model outputs (logits) [51] with the random noise and
thereby corrupting the gradient estimation. Since input and
output signal from the model is corrupted at each query during

TABLE V

PERFORMANCES COMPARISON OF DIFFERENT ATTACKS INCLUDING PGD,
AA-FULL, AND G-PGA AGAINST DIFFERENT DEFENSES. NO LABEL

SMOOTHING IS USED DURING TRAINING OF THESE DEFENSES

THAT IS δ = 0. TOP-1 (%) ACCURACY IS REPORTED ON THE

TEST SETS OF EACH DATASET (Lower Is Better.)

attack optimization, therefore such practical attacks [39], [40]
struggle to adapt to the deployed defense and cannot find
optimal adversarial directions.

As demonstrated in Table II, FAB attack can reduce the
robustness of FS [2] to 40.84% but fails when FS is further
protected with random noise defenses [50], [51] (Fig. 6). The
same observations can be made for the square attack. These
findings are consistent across different datasets (CIFAR10,
CIFAR100, and SVHN) and training approaches (mask-AT
(ours), FS [2], Madry et al. [7], and trades [13]) (Fig. 6).

Our proposed guidance compliments these attacks to adapt
to such dynamic defenses and fools the under attacked model
within a few queries [39] or iterations [40] (Fig. 6). The
results of this new experiment shed light on how the masking
free guidance through a surrogate model allows an attack to
avoid being stuck in a nonoptimal solution even when gradient
estimation from the under-attacked model is suboptimal.

VI. ABLATIVE ANALYSIS

A. Attention Visualization of Adversarial Features

Ilyas et al. [52] showed that adversarial examples can be
explained by the features of the misclassified class labels.
We visualize the adversarial features produced with and with-
out our proposed guidance by observing the attention maps
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Fig. 7. Attention Visualization of Adversarial Features: Adversarial examples can be explained by the adversarial features imprinted on the original image
within a certain perturbation budget [32], [52]. We visualize the presence of the true class features in the input samples using [53]. We observe that adversaries
generated by a failed attack (PGD) still contain the features of true class as indicated by the attention maps. G-PGA, on the other hand, successfully maximizes
adversarial features and minimizes the presence of true class features as indicated by the dispersed attention. This validates the effectiveness of our approach.

Fig. 8. Quantify Attention Dispersion: Our attack approach, G-PGA, minimizes the presence of the features of true class within an allowed perturbation budget
(Fig. 7). We quantify this by measuring the L1 difference (higher is better) between attention maps of the true class produced by [53] between adversarial
and the clean images. We observe that in comparison with PGD, G-PGA produces a large difference for the models suffering from gradient masking. This
highlights that our proposed guidance can successfully reveal gradient masking by minimizing the features of the true class during attack optimization. Results
are reported on the test set of each dataset and averaged across the total number of samples.

Fig. 9. Accuracy (%) of ResNet18 on CIFAR10 trained using mask-AT (algorithm 1, η = 6, δ = 0.75) against different attacks. It clearly demonstrates the
fooling ability of match and deceives w.r.t. black-box (weak) and white-box (inefficient due to gradient masking) attacks. Results are reported by running
PGD attack with 20 iterations with step-size of (2/255) (lower is better). In black-box setting, adversaries are computed on ResNet18 trained using trades [13]
with (a) β = 0, (b) β = 1, and (c) β = 6. Finally, plot (d) demonstrates the effectiveness of each component of match and deceive loss (10). (a) Effect of
model h (β = 0). (b) Effect of model h (β = 1). (c) Effect of model h (β = 6). (d) Effect of model h (β = 0).

of the true class using [53]. If an attack is stuck in local
minima, then its adversarial features will be weak. Fig. 7
shows attention maps of the adversarial images of a failed
attack (PGD) which are closer to the clean images (without any
adversarial feature/noise). This means that the attack failed to
suppress the features of true class during optimization. On the
other hand, attention is dispersed on the adversarial images
generated using our guided attack (G-PGA), which indicates
that G-PGA successfully maximizes the adversarial features
while minimizing the true class features. We quantify this by
measuring the L1 distance between attention maps of the clean
and adversarial images generated with and without guidance.
Our G-PGA creates more attention dispersion (Fig. 8).

B. Optimal Surrogate

We use the trades [13] framework to find the effective
surrogate model. Trades introduces a tradeoff parameter, β.

When β = 0, trades converge to natural training. When β
is increased, the model becomes adversarially stronger at the
expense of clean accuracy. We train ResNet18 using [13] at
β ∈ {0, 1, 6} and use them as surrogate models to observe the
surrogate effect on another ResNet18 trained using mask-AT
(Algorithm 1 with η = 6 and δ = 0.75). G-PGA successfully
provides the required guidance to overcome gradient masking
using surrogate information from naturally (β = 0) as well
as adversarially trained models (Fig. 9). However, for fixed
iterations, surrogate information at β = 1 is the most effective.
We further analyze guidance provided by different training
methods. Fig. 10 shows that models trained using trades [13]
have better black-box transferability and provide faster con-
vergence when used in our attack. However, our approach
can successfully exploit surrogate information from naturally
trained models as well but requires more attack iterations
(Fig. 10). In light of this experiment (Fig. 9), we use the
surrogate model trained using [13] at β = 1. Our analysis
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Fig. 10. Robustness of (FS [2]) in terms of Top-1 accuracy (%) on CIFAR10
dataset. WideResNet is used in the experiment. NT represents natural training.
Trades is trained at β = 1. Left plot shows black-box robustness of FS against
adversarial attack (PGD, ten iterations, step size 2/255) transferred from
models trained using different training methods. Right plot shows white-box
robustness of FS when the different training mechanism used as a surrogate
in our proposed attack (Algorithm 2, ten iterations).

Fig. 11. We evaluate the performance of different metrics within our proposed
contrastive loss [�cd, (7)]. Our proposed objective performs significantly better
than L1 or L2 measures with �cd (lower is better). Results are on CIFAR10
test set. (a) Effect of model h (β = 0). (b) Effect of model h (β = 1).

TABLE VI

EFFECT OF DIFFERENT SURROGATE MODELS ON G-PGA. LARGE

CAPACITY MODELS SUCH WIDERESNET HELPS MORE AS SURROGATE

BUT ALSO DIFFICULT TO ATTACK. EVALUATIONS (% TOP-1) ARE
PRESENTED AGAINST FS [2] DEFENSE ON CIFAR-10 TEST

SET. NIN REPRESENTS “NETWORK IN NETWORKS” MODEL

(Fig. 9) shows that the surrogate model trained via trades
(β = 1) is the optimal condition for better guidance but not the
necessary condition for an effective guided attack (Table III).

1) Different Surrogate Models: Our guided mechanism is
not constrained by the same architecture as an original and
surrogate model that is G-PGA can achieve guidance from a
totally different architecture than the original (under-attacked)
model. We present this analysis in Table VI.

2) Different Contrastive Directional Losses: When the orig-
inal model hides gradients or provides noisy gradient estima-
tion then contrastive directional loss pushes the optimizer to
move along the adversarial direction defined by the masking
free surrogate model. This is demonstrated by our results as
well (Tables I and II and Fig. 6). We compare our proposed
formulation (7) with L1 and L2 losses in contrastive directional
loss (Fig. 11). Our proposed objective provides favorable
results in contrastive directional loss.

VII. CONCLUSION

Gradient masking is a recurring phenomenon in the evalu-
ation of adversarial robustness. Our work sheds light on the

elusive robustness caused by the label smoothing. We design
an AT algorithm that artificially increases model robustness
by hiding gradients with the help of label smoothing. We then
propose a new attack (G-PGA) based on the concept of guided
optimization that exposes gradient masking within a few attack
iterations. Our attack approach is based on a novel redirection
and rescaling mechanism that uses guidance from a surrogate
teacher model on a given target model. G-PGA finds useful
adversarial directions that ultimately help to skip local minima
during attack optimization. The redirection is achieved with a
contrastive directional loss, while rescaling is performed using
a normalized CE objective. We hope our findings can act as a
guide on the future use of label smoothing in AT and devising
diagnostic tools to catch masking.

APPENDIX

PROOF OF GRADIENTS

Here, we provide proof for the gradients formulae of �cd

∂�cd

∂u
= − (z′ − v′) exp(v′ · u′)(I − u′ · u′�)

‖u‖(exp(v′ · u′)+ exp(u′ · z′)) (14)

∂�cd

∂ z
= − u′ exp(v′ · u′)(I − z′ · z′�)
‖z‖(exp(v′ · u′)+ exp(u′ · z′)) . (15)

Proof:

∂�cd

∂u
= ∂u′

∂u
· ∂�cd

∂u′
(16)

∂�cd

∂u′
= ∂

∂u′

[
− log

exp(u′ · z′)
exp(v′ · u′)+ exp(u′ · z′)

]

= −
(

exp(v′ · u′)+ exp(u′ · z′)
exp(u′ · z′)

)

× ∂

∂u′

(
exp(u′ · z′)

exp(v′ · u′)+ exp(u′ · z′)
)

= − 1

exp(u′ · z′)(exp(v′ · u′)+ exp(u′ · z′))
× (exp(v′ · u′)+ exp(u′ · z′)) ∂

∂u′
exp(u′ · z′)

− exp(u′ · z′) ∂

∂u′
(exp(v′ · u′)+ exp(u′ · z′))

= − 1

exp(u′ · z′)(exp(v′ · u′)+ exp(u′ · z′))
× (z′ exp(u′ · z′)(exp(v′ · u′)+ exp(u′ · z′))
− z′ exp(2 · u′ · z′)− v′ exp(u′ · z′) exp(v′ · u′))

= − (z′ − v′) exp(v′ · u′)
exp(v′ · u′)+ exp(u′ · z′) (17)

∂u′

∂u
= ∂

∂u

(
u
‖u‖

)

= ‖u‖ − u ∂
∂u‖u‖

‖u‖2
= 1

‖u‖ −
u ∂

∂u

√
u · u�
‖u‖2

= 1

‖u‖ (I − u′ · u′�). (18)

Then

∂�cd

∂u
= − (z′ − v′) exp(v′ · u′)(I − u′ · u′�)

‖u‖(exp(v′ · u′)+ exp(u′ · z′)) . (19)
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Since, z = h(x̃) also depends on the adversarial input, we can
calculate (∂�cd/∂ z) as follows:

∂�cd

∂ z
= ∂ z′

∂ z
· ∂�cd

∂ z′
(20)

∂�cd

∂ z′
= ∂

∂ z′

[
− log

exp(u′ · z′)
exp(v′ · u′)+ exp(u′ · z′)

]

= −
(

exp(v′ · u′)+ exp(u′ · z′)
exp(u′ · z′)

)
∂

∂ z′

×
(

exp(u′ · z′)
exp(v′ · u′)+ exp(u′ · z′)

)
,

= − 1

exp(u′ · z′)(exp(v′ · u′)+ exp(u′ · z′))
× (exp(v′ · u′)+ exp(u′ · z′)) ∂

∂ z′
exp(u′ · z′)

− exp(u′ · z′) ∂

∂ z′
(exp(v′ · u′)+ exp(u′ · z′))

= −u′(exp(v′ · u′)+ exp(u′ · z′))− u′ exp(u′ · z′)
exp(v′ · u′)+ exp(u′ · z′)

= − u′ exp(v′ · u′)
exp(v′ · u′)+ exp(u′ · z′) (21)

which completes the proof.
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