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Abstract

In this paper, we present our innovations on self-supervised monocular depth estimation.
First, we enhance self-supervised monocular depth estimation with semantic information
during training. This reduces the error by 12% and achieves state-of-the-art performance.
Second, we enhance the backbone architecture using a scalable method for neural architec-
ture search which optimizes directly for inference latency on a target device. This enables
operation at more than 30 FPS. We demonstrate these techniques on a smartphone powered
by a Snapdragon® Mobile Platform.1
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1. Introduction

Depth plays a key role in understanding the 3D world and is of great importance to a wide
variety of applications, such as self-driving/ADAS, AR/VR, robotics, and mobile image
processing. However, conventional learning-based depth estimation methods require a large
amount of high-quality ground-truth annotations and/or stereo data, which are expensive
to collect and pose considerable limitations.

Recently, self-supervised learning has been gaining increasing popularity for training
deep neural networks, in areas such as classification (Chen et al., 2020), domain adap-
tation (Wang et al., 2020), and video segmentation (Xu and Wang, 2021). In fact, the
number of papers on self-supervised or unsupervised learning has increased from 85 to 127
in CVPR 2021 as compared to the previous year, which is a nearly 50% jump.2 Specifically,

∗ Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
1. Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.
2. CVPR 2021 paper statistics: https://github.com/hoya012/CVPR-2021-Paper-Statistics.
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self-supervision has emerged as a new paradigm for training monocular depth estimation
models (Godard et al., 2019), which makes it possible to do away with collecting massive
ground-truth depth data and only train the network on unlabeled videos.

In this paper, we present our innovations on self-supervised monocular depth estimation,
which utilizes semantic information and Neural Architecture Search (NAS) during training.
More specifically, we exploit the commonalities between depth and segmentation and enable
the depth network to digest key semantic information to significantly improve depth esti-
mation accuracy with low complexity (Cai et al., 2021). To enable fast, real-time on-device
inference, we further optimize the depth estimation neural network using Distilling Opti-
mal Neural Networks (DONNA), a fast, efficient, and scalable NAS technique (Moons et al.,
2021). Real-time depth estimation is demonstrated on a Snapdragon-powered smartphone.

2. Our Approach

In this section, we describe in more detail our technologies and innovations that enable an
accurate and self-supervised monocular depth estimation algorithm running real-time on
mobile device.

2.1. Enhancing Self-Supervised Monocular Depth Estimation with Semantic
Information

We leverage our latest developed novel approach, X-Distill (Cai et al., 2021), to exploit
semantic segmentation information to improve the self-supervised training of monocular
depth estimation. More specifically, we allow the depth network to digest key, relevant
semantic information during training, in addition to learning from the photometric matching
of consecutive video frames. The accurate semantic segmentation information is provided
by our state-of-the-art segmentation network (Borse et al., 2021). It is noteworthy that our
method only modifies the training process and does not introduce additional computation
during inference time.

When evaluating on the KITTI Eigen split (Eigen and Fergus, 2015) benchmark, our
trained model achieves significantly smaller errors as compared to the state-of-the-art, e.g.,
reducing the squared relative error from 0.903 to 0.791 when using the same network ar-
chitecture of Godard et al. (2019). Furthermore, our trained model achieves similar perfor-
mance as compared to other much heavier state-of-the-art models while using significantly
less computation. For instance, as compared to PackNet (Guizilini et al., 2020), our model
has a similar squared relative error (ours: 0.791 vs. PackNet: 0.785) while using 96% less
computation (in GMACs).3

2.2. Enhancing Backbone Architecture Using Neural Architecture Search

Neural networks for dense prediction tasks like segmentation and depth estimation are gen-
erally too complex to run efficiently on memory-, compute-, and power-constrained edge
devices. Together with conventional approaches like quantization and model compression,
Neural Architecture Search is gaining popularity to optimize models for efficient edge in-
ference (Tan et al., 2019). While NAS research has made good progress (Cai et al., 2019;
Liu et al., 2018; Tan et al., 2019), existing solutions still fail to address all challenges, no-
tably lacking diverse search spaces, requiring high compute cost, not scaling efficiently, or

3. See Cai et al. (2021) for more detailed descriptions and evaluation of X-Distill.
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Table 1: Performance evaluation on the KITTI Eigen split. The encoder backbones are
indicated in the parentheses (e.g., ResNet50, DONNA). The frames-per-second
(FPS) numbers are measured when the model runs on the smartphone. The depth
estimation quality is measured with the squared relative error metric.

Model #Param On-Device FPS Sq Rel
Monodepth2 (ResNet50) 32M – 0.83

8-bit quantized 32M 23 0.83
X-Distill (ResNet50) 32M – 0.69

8-bit quantized 32M 23 0.71
X-Distill (DONNA) 3.7M – 0.75

8-bit quantized 3.7M 35 0.75

not providing reliable hardware performance estimates. Here, we utilize our latest NAS
research – DONNA, Distilling Optimal Neural Network Architectures (Moons et al., 2021),
that addresses these challenges. DONNA is a scalable method that finds optimal network
architectures in terms of accuracy and latency at low cost by making use of diverse search
space and direct hardware measurements. Architectures obtained by DONNA have been
shown to provide 20%+ lower latency compared to models obtained with other state-of-the-
art NAS techniques. We use DONNA to optimize the backbone of the depth estimation
neural network, thereby further lowering the model compute and memory requirements,
and enabling real-time depth estimation on a smartphone.

3. Implementation and Results

In this part, we provide implementation details on deploying the depth network on a smart-
phone and evaluate on-device performance in terms of both accuracy and inference speed.

3.1. Implementation

We run the monocular depth estimation network on a commercial mobile phone powered by
Qualcomm® AI Engine.4 For on-device processing, the trained depth estimation network
is quantized using the AI Model Efficiency Toolkit (AIMET).5

3.2. Results

Table 3.1 shows our evaluation on the KITTI Eigen split (Eigen and Fergus, 2015). We
compare three networks: 1) Monodepth2 (Godard et al., 2019) with ResNet50 (He et al.,
2016) backbone, 2) X-Distill (Cai et al., 2021) with ResNet50 backbone, and 3) X-Distill
with a backbone optimized via DONNA (Moons et al., 2021). By applying X-Distill, we
significantly reduce the depth estimation error from 0.83 to 0.69 (in squared relative error)
while using the same model architecture, as compared to the widely used Monodepth2. By
additionally leveraging a backbone found via DONNA as the depth network encoder, we
significantly reduce the model size by 88% while preserving the estimation quality.

4. Qualcomm AI Engine is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.
5. AIMET is a product of Qualcomm Innovation Center, Inc. It is available on https://quic.github.io/

aimet-pages/index.html.
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Figure 1: Sample visual results of monocular depth estimation captured on-device. The
second and third rows show the estimated depth maps of Monodepth2 (Godard
et al., 2019) and our approach, respectively. Sample regions where our method
considerably improves the estimation quality are highlighted. Note that the net-
work weights are quantized when running on the smartphone.

To efficiently deploy on device, the network weights are quantized to 8 bits using AIMET.
As shown in Table 3.1, our improvements on depth estimation quality over Monodepth2 are
well preserved through quantization. Sample visual results and comparisons captured from
the phone screen are shown in Fig. 1. Furthermore, when running on the smartphone, our
model with the DONNA backbone achieves a real-time inference speed of 35 FPS, while
the ResNet50-based network runs at a considerably slower rate of 23 FPS.

4. Conclusions

In this paper, we presented our real-time and accurate self-supervised monocular depth esti-
mation algorithm running on a commercial smartphone. To enable such a system, we lever-
aged our latest innovations. First, we applied our novel self-supervised training technique,
X-Distill, which effectively utilized semantic information during training to considerably
enhance the network’s accuracy. Second, we adopted an enhanced backbone architecture
optimized via our novel NAS solution, DONNA, which significantly reduced model size
and improved inference speed. By using these technologies, we can efficiently run a self-
supervised monocular depth estimation network on a Snapdragon-powered smartphone with
state-of-the-art accuracy and a real-time inference speed of 35 FPS.
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