2007.14672v1 [cs.CV] 29 Jul 2020

arxXiv

UNDER REVIEW-IEEE TPAMI

1

Stylized Adversarial Defense
Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan and Fatih Porikli

Abstract—Deep Convolution Neural Networks (CNNs) can easily be fooled by subtle, imperceptible changes to the input images. To
address this vulnerability, adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
In contrast to existing adversarial training methods that only use class-boundary information (e.g., using a cross-entropy loss), we
propose to exploit additional information from the feature space to craft stronger adversaries that are in turn used to learn a robust
model. Specifically, we use the style and content information of the target sample from another class, alongside its class-boundary
information to create adversarial perturbations. We apply our proposed multi-task objective in a deeply supervised manner, extracting
multi-scale feature knowledge to create maximally separating adversaries. Subsequently, we propose a max-margin adversarial training
approach that minimizes the distance between source image and its adversary and maximizes the distance between the adversary and
the target image. Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses,
generalizes well to naturally occurring corruptions and data distributional shifts, and retains the models accuracy on clean examples.

Index Terms—Adversarial Training, Style Transfer, Max-Margin Learning, Adversarial Attacks, Multi-task Objective.
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INTRODUCTION

Although deep networks excel on a variety of learning tasks,
they remain vulnerable to adversarial perturbations. These
perturbations are imperceptible to humans, but significantly
degrade the prediction accuracy of a trained model. Adver-
sarial training [1] has emerged as a simple and successful
mechanism to achieve robustness against adversarial per-
turbations. In this process, blind-spots of the model are first
found by crafting malicious perturbations and subsequently
included in the training set to learn a robust model.

In this paper, we interpret adversarial training from a
margin maximization perspective. We consider margin as
the shortest distance from a data-point to the classifiers
boundary in the decision and perceptual (feature) spaces.
Intuitively, the highest robustness can be achieved by learn-
ing a margin maximizing model that first crafts a max-
imally separated adversarial example and then readjusts
the boundary to correctly classify such perturbed samples.
However, in practice, this task turns out to be a nested max-
min optimization problem, whose solution is non-trivial
[2]. Therefore, we propose an alternate way to maximize
classifier margins. Our approach is motivated by the fact
that adversarial training maximizes a lower bound on the
classifier’s margin. Towards this goal, our main idea is to
identify a target image from a different class for guidance,
and create perturbations that can push the source image
towards the target in both feature and output spaces using
a multi-task objective function.

In the pursuit of creating highly deceptive adversaries,
we propose an attack based on multi-modal information
including classifiers boundary information, image style and
visual content. In this manner, the perturbations cause
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significant changes to the intermediate feature as well as
output decision space using a diverse multi-task attack
objective based on multiple supervisory cues. The existing
targeted attacks in the literature create adversaries by mov-
ing towards the least likely (or the most confusing) class
[3], [4], [5]. In this manner, only the class boundary infor-
mation is used to craft adversarial perturbations. Different
to those, we create targeted adversaries by pushing the
sample towards a randomly picked sample from a different
class such that its style and content representations are
also reshaped besides the output prediction. This is done
by incorporating multi-scale information from the feature
hierarchy in a deeply supervised manner [6].

Based on the proposed carefully crafted perturbations,
we develop our Stylized Adversarial Training (SAT) ap-
proach to achieve robustness. Specifically, we enforce a
margin-maximizing objective during adversarial training,
which minimizes the distance between clean and perturbed
images while maximizing the distance between clean image
and target sample (used to create adversaries). The model
thus learns corrective measures with respect to a reference
sample from a different class, thereby enhancing the model’s
robustness. Since our attack objective uses supervision from
the style and content of a target image from different class,
it forces the perturbations to lie close to the natural im-
age manifold. As a result, our adversarially trained model
performs significantly better than other adversarial training
approaches [1], [7], [8] on the clean images. Simultaneously,
our proposed defense shows strong robustness against
naturally occurring image degradations such as contrast
changes, blurring and rain, that cause distributional shifts.
We further demonstrate that the model trained with our
proposed scheme performs much better on the style transfer
task despite having less parametric complexity (see Fig. 1).

The major contributions of our work are:

e We propose to set-up priors in the form of fooling
target samples during adversarial training and pro-
pose a multi-task objective for adversary creation
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Fig. 1. A robust model trained with our proposed Stylized Adversarial Training (SAT) framework generalizes not only to adversarial noise but also
handles naturally occurring distributional shifts (e.g., contrast change in the above example), common corruptions (e.g., sensor noise) and performs

better stylization compared to a Naturally Trained (NT) model.

that seeks to fool the model in terms of image style,
visual content as well as the decision boundary for
the true class.

o Based on a high-strength perturbation, we develop a
margin-maximizing (contrastive) adversarial training
procedure that maps perturbed image close to clean
one and maximally separates it from the target image
used to craft the adversary.

e With extensive evaluation, we demonstrate that
transferring information from multi-task objectives
helps us perform favorably well against the strongest
adversarial training methods such as PGD based Ad-
versarial Training (PAT) [1], Trades [7] and Feature
scattering [5].

o Compared to conventional adversarial training, our
approach does not cause a drop in clean accuracy,
and performs well against the real-world common
image corruptions [9]. We further demonstrate ro-
bustness and generalization capabilities of the pro-
posed training regime when the underlying data
distribution shifts (Sec. 4.1).

2 RELATED WORKS

Adversarial Training: Training a model on adversarial ex-
amples can regularize it and increase its adversarial robust-
ness. Goodfellow et al. [10] proposed a computationally fast
adversary generation algorithm known as ‘Fast Gradient
Sign Method” (FGSM). FGSM suffers from label leakage
[11] that allows the model to overfit on FGSM’s generated
adversaries, hence hampering its adversarial generalization.
Tamer et al. [12] proposed to mitigate this issue by taking a
small random step before running FGSM. Their attack is
known as ‘Random Fast Gradient Sign Method” (REGSM).
Their method performs relatively better, but still suffers
under iterative attacks [1], [13]. Madry et al. [1] solved
the overfitting problem by adversarially training models
on iterative attack known as ‘Projected Gradient Descent’
(PGD). PGD is an untargetted, label-dependent attack and
models trained on PGD adversaries show significant robust-
ness to the strongest white-box attacks [11], [13]. However,
PGD gains robustness at the cost of a significant drop in
clean accuracy and lacks a clear mechanism to control the
accuracy-robustness trade-off. This is where Zhang et al. [7]
contributed and proposed a method to control the trade-
off with an untargetted, label-independent (unsupervised)

attack to create adversaries along with a surrogate clustering
loss to minimize the model’s empirical risk.

However, [1], [7] deploy iterative attacks which are
computationally expensive and less scalable to high-
dimensional datasets. Further, adversarial training done
using untargetted attacks whether computationally expen-
sive [1], [7] or efficient [14], [15] results in only a limited
robustness. To improve it, [8] proposed a faster attack that
operates in logit space in an unsupervised way to maximize
optimal transport distance. Combined with label smoothing,
their method produced state-of-the art results on SVHN,
CIFAR10 and CIFAR100. In this work, we propose a con-
ceptually simple and efficient adversarial training process,
exploiting a multi-task loss that helps us perform favorably
well against previous state-of-the-art methods.
Augmentation based Adversarial Training: Since tradi-
tional adversarial training results in a significant drop in
clean accuracy, augmentation based methods have been
proposed to overcome this limitation. [16] increased clean
accuracy of adversarially trained models by using augmen-
tation methods [17], [18]. Similarly, Zhang et al. [5] also
proposed to create adversaries using augmentation while
updating the model on these adversaries using perturbed
labels. However, these methods [5], [16], [17] generate ad-
versaries by mixing a sample with another which may or
may not come from the same class, therefore the inter-
class margins might not be enforced during training. In
comparison, we carefully craft adversaries by style transfer
followed by max-margin adversarial training, that results in
enhanced robustness.

Metric Learning Defenses: More recently, some adversarial
training efforts maximize the margin between clean and
adversarial examples of different class samples. Mustafa et
al. [19] proposed a contrastive loss function to maximize the
inter-class distances along the feature hierarchy of a deep
network. [2] dynamically selects the right perturbation bud-
get for each data point to better enforce margin constraints
during adversarial training. Triplet loss has also been ex-
plored to enforce margin constraints during training [20],
[21], [22]. Similar to these approaches, our proposed method
is model-agnostic and incorporates distance-based learning
scheme. However, different from the previous works, we
first transfer the style, content and boundary information
from a target sample to the input and then maximize the
distance between the target and the perturbed samples. In
this manner, our triplet creation is automatic and does not
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Fig. 2. Stylized Adversarial Training (SAT). Our style transfer module (left) crafts perturbations based on three complimentary cues, that include
content (L) and style (L) of the target image as well as the classifier boundary information (L..). Based on the generated perturbations, our
adversarial training approach seeks to minimize the distance between clean and adversarial examples of the same class and maximize the inter-

class distances (right).

need careful sample selection as in [22].

3 METHODOLOGY

Consider a classifier, F(.) that maps input samples, € R¢,
drawn from a dataset, X, to a discriminative space F(x) €
R™, where n represents the number of categories. Classifier
can learn this mapping by minimizing an empirical risk
defined on X. Further, suppose that F;(.) represents a
feature map at the [*" layer, and 7 denotes a transfor-
mation operation that keeps the output close to input i.e.,
lzo — T(xo)|| < € where € is the perturbation budget.
We present a generic training mechanism focused on ro-
bustifying neural networks by minimizing feature difference
between the original examples x, and the transformed
positive samples T (x,) and maximizing feature difference
between x,, and targeted class samples ;.. The contrastive
constraints can be achieved by minimizing the following
loss function:

Lo (X0, Trzo; T, F) = max{ || Fi(x,) — Fi(T (o))l p—
| Fi(xo) — fl(mt;éo)np +m,0}, (1)

where m represents the margin and || - ||, denotes p-norm.
The transformation, 7, plays a significant role in training
and should satisfy the following two properties:

e The transformation maps output close to the input
ie, T(x,) = xo.

e 7T should correlate with adversarial noise that fools
the network.

Next in Sec. 3.1, we elaborate our proposed stylized per-
turbation generation mechanism (7) that is central to our
proposed defense described in Sec. 3.2.

3.1 Transformation: Stylized Adversary Generation

The choice of transformation 7 is critical to the strength
of robustness achieved with adversarial training. Here, we

present our transformation mechanism, achieved with a
style transfer module (Fig. 2), that jointly utilizes the style,
content and class-boundary information to craft deceptive
perturbations. The overall objective for learning the adver-
sarial transformation is,

arg;nax L(F (T (o)), F (o)) ,
S.t., ||T(£Bo) - wo”oo S €, (2)

where, £ denotes any loss function and ¢ is the allowed
perturbation budget. The aim is to remain in the vicinity of
input sample x,, but maximally alter the predicted output
by the model F. The above objective is pursued in previ-
ous adversary generation methods as well, however, our
main difference is the way we incorporate target samples
(z¢£0) while crafting adversaries. Specifically, we extract
three types of information about the target sample including
class-boundary information, image style and visual content.
For example, in an effort to robustify the model, the ad-
versarial transformation should create adversarial examples
that contain style and texture of the samples from target
classes x;+g, within a given perturbation budget, ¢. The
following adversarial loss is minimized to learn the trans-
formation 7

v-Le + B Lee ) 3)

Cross—entropy loss

Logw = a-Lg +
——

Style loss  Content loss

where o, 7, 8 denote the hyper-parameters used for loss re-
weighting which are set via validation. Notably, the style
and content loss components are computed within feature
space while boundary information comes form the logit
space. We explain the individual losses below.

Style loss: The objective of the style loss L; is to transfer
the texture of the target image to fool the classifier, F.
Style transfer [23] can be achieved by minimizing the mean-
squared distance between the Gram matrices obtained from
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the feature maps at layer [ of the original and targeted
images, as follows:

L= ”Gf) - Gft;ﬁo”%v s.t., G' = ffTa 4)
where G' € R°*€ represents the Gram matrix, f € R°X (")
denotes the matrix formed by stacking together the channel-
wise features from F(x) € R®*"*® Here, h,w and ¢ denote
the height, width and channel dimensions of the feature
tensor from layer [, respectively.

Content loss: The objective of the content loss L, is to mix
the content of the target class image with that of the original
image. This is achieved by minimizing the mean-squared
distance between the feature representations of x, and x;,,
as follows:

Lo = |Fi(xo) = Fi(aezo)3- ®)

Boundary loss: The objective of this loss is to push the
transformed sample into the boundary of targeted class. For
this purpose, we use the regular cross-entropy loss. If ¥y
represents target label then boundary-based targeted attack
can be achieved by minimizing L..(Z,, yt).

3.2 Stylized Adversarial Training

We describe our robust training framework in Algorithm
1 that applies adversarial transformation to push clean
samples x, toward the targeted samples x;»y within a
predefined budget €, and then robustify the network with
adversarial training. The adversarial training procedure em-
ploys cross-entropy loss alongside the contrastive loss L,,
that seeks to maximize inter-class margins (Eq. 1).

Algorithm 1 SAT: A Robust Training Framework

Require: A classifier F, clean sample x, and their correspond-
ing labels y, targeted sample «;, and their corresponding
labels y;, margin loss L., cross-entropy loss Lc., w1, w2
and no. of iterations 7.

1: fort =1to T do
2: Forward pass z,,and x;», to F and compute adversar-
ial loss Laav» (Eq. 3);
3: Compute gradient noise, g: = Vg Lado;
4: Generate adversaries using;
T, = xo — € sign(gy); (6)

5: Forward pass &, through F;
6: Backpass and update the parameters of F to minimize
the combined loss:

L =wi L (T, Bo, Trto) + W2 - Lee(Zo, Y) (7)

7: end for
8: return Robust classifier, F.

Non-Adversarial 7: In order to emphasize on the sig-
nificance of transformation 7 in the SAT framework, here
we consider a non-adversarial transformation function. In
this case, 7 can be as simple as adding Gaussian noise to
the clean samples. Such a transformation is computationally
less expensive and has been studied before in [24], [25],
[26]. In this case, the perturbation generation process in
lines 2-4 of Algorithm 1 is simply replaced with adding
randomly sampled Gaussian noise in the image. We explore
the effect of non-adversarial transformation on adversarial

4

robustness and compare our training Algorithm 1 with a re-
cently proposed ‘Guided Cross-Entropy’ (GCE) [27] method
in Sec. 4.2. We note that in the non-adversarial scenario,
targeted samples are not playing any significant role other
than providing a reference to contrastive margin loss which
leads to a sub-optimal solution (see Sec. 4.2). This shows
the efficacy of proposed stylized perturbation generation
approach (Sec. 3.1).

4 EXPERIMENTAL PROTOCOL

We experiment on the widely used SVHN [29], CIFAR10,
and CIFAR100 datasets [30]. We show comparative studies
on the ResNet18 and WideResNet models. The models are
trained using SAT (Algorithm 1) using SGD optimizer. The
pixel values are normalized within [-1,+1] and, and label
smoothing [8] is used during training. Unless otherwise
mentioned, the perturbation budget € is set to 8 (out of 255).
NT and AT respectively denote naturally and adversarially
trained models. Our code and pretrained models are avail-
able at https://github.com/Muzammal-Naseer /SAT.

4.1 SAT: Defense Results and Insights

We thoroughly investigate the effect of our proposed ad-
versarial transformation (Sec. 3) to maximize adversarial ro-
bustness without compromising clean accuracy. Our analy-
sis is divided into the four categories: (a) Robustness against
constrained adversarial attacks (I, < 8), (b) Robustness
against unconstrained adversarial attacks, namely Rectan-
gular Occlusion Attacks (ROA) [31], which completely de-
stroy the image content within a given window size, (c)
Robustness against natural distributional shifts in data, and
(d) Robustness against common corruptions.

4.1.1 Robustness against constrained adversarial attacks

We compare our approach with the state-of-the-art methods
including Trades [7], Feature Scattering (FS) [8] and the
metric learning based Prototype Conformity Loss (PCL)
[19]. For a fair and direct comparison, we follow the same
threat models (attack settings) and network architectures as
recommended in the papers of the respective methods.

Comparison with Trades [7] is presented in Table 1. We
note that [7] offers a trade-off parameter ()\) to increase
robustness on the cost of losing clean accuracy. Our defense
not only achieves 24.1% higher robustness when compared
with best adversarial results from [7] (A = 6) against PGD
attack with 20 iterations but also improves clean accuracy
by 4.7% when compared with best clean results from [7]
(A = 1). Furthermore, our defense can withstand large
number of PGD attack iterations e.g. the drop in robustness
of our defense is only 2.5% when attack iterations increase
from 20 to 1000. As a result of our proposed max-margin
learning, class-wise latent features of our defense are well
clustered and separated as compared to [7] (see Figure 3).
This leads to significantly better robustness than Trades on
major attacks including PGD, CW, MIFGSM and DeepFool.
Comparison with FS [8] is presented in Tables 2 and 3. In
terms of worst-case robustness measure (CW attack with
100 iterations), our defense offers 11.2%, 10.0% and 8.8%
(Tables 2 and 3) robustness gain on CIFAR10, CIFAR100
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Model Defense Clean PGD CW MIFGSM DeepFool
20 1000 100 100 100
NT 945 | 00 00 00 0.0 12
Trades [/](A=1) | 913 | 265 - - - -
ResNet18 Trades[/] (A =5) | 817 | 506 50.1 493 521 63.0
SAT (ours) 921 | 691 668 625  72.8 66.0
NT 953 | 00 00 00 0.0 32
. Trades [/](A=1) | 88.6 | 491 489 483 535 69.0
WideResNet | . qes[/](A=6) | 849 | 566 564 537 585 72.0
SAT (ours) 933 | 807 782 718 828 88.3
TABLE 1

White-box attack scenario. Comparisons of our defense with Trades [7] on CIFAR10 test set under perturbation budget ¢ < 8. Models trained via
our proposed approach withstand PGD attack with 1000 iteration while providing high accuracy on clean samples. We used DeepFool [28] with
default settings and project the adversarial noise found by the attack on I ball to respect the perturbation budget.

Plane Plane
Car Car
Bird Bird
Cat Cat
Deer Deer
Dog Dog
Frog Frog
Horse Horse
Ship Ship
Truck Truck

Fig. 3. Latent space t-SNE visualization of intermediate features extracted from Trades [7] (left) and our SAT model (right) on CIFAR10 test set.
Compared to Trades [7], our SAT model forms distinct class-wise clusters.

Defense | Clean | FGSM PGD cw
10 20 40 100 10 20 40 100
NT 95.6 36.9 00 00 00 00 ] 00 00 00 0.0

PAT [1] 85.7 54.9 451 449 448 448 | 459 457 456 454
BL [3] 91.2 70.7 - 57.5 - 55.2 - 56.2 - 53.8
FS [8] 90.0 78.4 709 705 703 686 | 626 624 621 60.6
Ours 93.3 85.0 | 811 807 798 785 | 750 749 732 718
TABLE 2
White-box attack scenario. Comparison (%) of our approach with naturally trained (NT), Madry (PAT) [1], bilateral (BL) [3] and feature scattering

(FS) [8] methods on CIFAR10 test set under different threat models. Attacks ran for maximum of 100 iterations. Models trained using our approach
show significant robustness without losing noticeable clean accuracy.

Defense | Clean | FGSM PGD Cw Defense | Clean | FGSM PGD Cw

20 100 20 100 20 100 20 100
NT 97.2 53.0 0.3 0.1 0.3 0.1 NT 79.0 10.0 0.0 0.0 0.0 0.0
PAT [1] 93.9 68.4 479 46.0 | 48.7 47.3 PAT [1] 59.9 28.5 226 223 | 232 23.0
BL [3] 94.1 69.8 | 539 503 | - 489 BL [3] 682 | 608 | 267 253 | - 221
FS [8] 96.2 83.5 629 520 | 613 50.8 FS [8] 73.9 61.0 472 46.2 | 34.6 30.6
Ours 96.2 86.0 73.2 715 70.0 68.0 Ours 74.1 64.9 49.7 49.1 | 442 406

TABLE 3
White-box attack scenario. Comparison (%) is shown on SVHN (left) and CIFAR100 (right) test sets.

and SVHN datasets, respectively. We further observe that (Algorithm 1), FS [8] is dependant on optimal transport
our defense simultaneously improves clean accuracy while distance to increase model loss towards the unknown class.
achieving significant robustness gains. In contrast to SAT It does not leverage target image information and neither
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ROA (Gradient Search) ROA (Exhaustive Search)
Defense Clean
55 7x7  9x9 11x11 | 5x5 7x7 9x9 11x11
NT 96.0 | 56.0 423 273 13.0 [ 385 21.0 8.6 24
PAT [1] 86.8 | 472 297 154 7.0 338 237 79 3.0
Trades [7] | 849 | 498 305 16.1 7.1 39.2 28.0 88 3.2
FS [8] 90.0 | 66.5 562 443 326 | 49.1 422 223 125
Ours 933 | 747 654 542 426 | 564 51.0 311 231
TABLE 4

Adversarial robustness against unconstrained adversarial attack, ROA [

] at different window sizes. Our defense perform significantly better than

other training approaches.

(a) CIFAR10. Perturbation budget is 8/255 in £, norm.

Defense Clean | FGSM IFGSM CW MIFGSM PGD
PCL [19] 91.9 74.9 46.0 51.8 49.3 46.7
SAT (ours) | 92.3 84.7 83.5 81.2 83.8 83.5

(b) CIFAR100. Perturbation budget is 8/255 in £, norm.

Defense Clean | FGSM IFGSM CW MIFGSM PGD
PCL [19] 68.3 60.9 341 36.7 33.7 36.1
SAT (ours) | 72.5 | 65.2 483 475 49.2 48.0

(c) SVHN. Perturbation budget is 8/255 in £ norm.

Defense Clean | FGSM IFGSM CW MIFGSM PGD

PCL [19] 94.4 76.5 48.8 54.8 47.1 47.7

SAT (ours) | 95.3 85.7 67.8 653 68.0 66.8
TABLE 5

White-box: Comparison between PCL and our proposed defense
(SAT) under the threat model of PCL. SAT shows significantly better
robustness as compared to PCL.

Robustness against FGSM Robustness against PGD
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Fig. 4. White-Box analysis (%): Our proposed SAT handles the data
distributional shifts significantly better than FS [8] and Trades [7]. Mod-
els are evaluated on CINIC-10 [32] test set. PGD attack ran for 10
iterations. SAT’s state-of-the-art robustness to such distributional shifts
complements the strength of our proposed approach to enhance the
generalizability of deep neural networks.

it offers any mechanism to increase inter-class margins. FS
[8] does perform better than Madry [1] and Trades [7] but
its performance is sub-optimal when compared with our
defense approach.

Comparison with PCL [19]: The results in Table 5 indicate
that our defense demonstrates significant robustness gains
as compared to metric-learning based prototype conformity
loss (PCL) [19], boosting adversarial accuracy by 36.8%,
11.9% and 19.1% on CIFAR10, CIFAR100 and SVHN, respec-
tively. We further observe that alongside significant gains
for adverserial robustness, our approach also increases the
clean accuracy on all the evaluated datasets. We note that
PCL [19] enhances separation between class centers and is
dependent on PGD untargetted attack, while SAT increases
distance between the features of original and target samples,

which are responsible for adversarial perturbations.

4.1.2 Robustness against unconstrained attack

Here, we consider the unconstrained occlusion attack called
ROA [31] against our proposed adversarial training ap-
proach. We run the gradient and exhaustive search versions
of ROA on CIFAR10 dataset with four different window
sizes (ranging from 5x5 to 11x11). We observe that as the
window size is increased for ROA, the robustness of PAT
and Trades is matched with a model trained without ad-
versarial training (NT). In comparison, our defense shows
a higher robustness e.g., an relative increment of 84% and
620% more over FS and Trades respectively, at the window
size of 11x11 (see Table 4). This is attributed to the fact
that our training approach constructs a smooth loss surface
and requires large input distortions to deceive the model.
We empirically demonstrate such smoothness by analyzing
the intermediate features of PAT [1] and SAT in terms of
correlation loss (CL) between features of adversarial image
with respect to the clean image. Lower the correlation, better
the feature space as it indicates that model feature space
does not change significantly in response to the attack.
We ran 100 iterations of PGD attack and extract features
from the last layer before the logit layer. Correlation loss is
measured in terms Frobenius norm between covariance of
adversarial and clean features. The averaged correlation loss
of our method is 0.74 as compared to 8.8 from PAT [1] on
the CIFAR10 dataset. This further supports the robustness
of our proposed adversarial training (SAT) approach.

4.1.3 Robustness against natural distributional shifts

Generalization of deep networks goes beyond adversarial
robustness e.g. robustness to non-adversarial distributional
shifts. For example, [33] showed that models trained on
CIFAR10 suffer from accuracy drop when there are small
natural distributional shifts in the data. We evaluated ro-
bustness of adversarially trained models on CINIC-10 test
set (90k images). CINIC-10 is down-sampled from ImageNet
[34] and contains the same classes as in CIFAR10 but with
a significantly different distribution. Fig. 4 shows that SAT
outperforms both Trades [7] and feature scattering [8], and
generalizes well to the shift in underlying data distribution.
This is potentially because the SAT simulates distribution
shifts in style during its training procedure.

4.1.4 Robustness to Common Corruptions

Distributional shifts in the data can also come in the form
of natural corruptions [9]. Hendrycks et al. [9] simulated
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Corruption NT Trades[7] FS[8] SAT (Ours)
Brightness 93.7 80.6 88.3 92.1
Contrast 92.1 43.1 82.5 88.9
Defocus Blur 92.3 80.0 86.1 90.4
Elastic Transform  86.4 78.9 83.6 87.6
Fog 91.8 60.3 78.6 86.9
Gaussian Blur 91.4 78.0 85.4 89.7
Gaussian Noise 78.6 79.1 85.9 90.4
Glass Blur 71.7 77.9 80.9 82.6
Implus Noise 76.1 73.8 81.9 86.0
JPEG Compression 78.8 82.8 85.8 89.9
Motion Blur 89.6 76.5 84.1 88.3
Pixelate 88.3 82.7 86.1 90.1
Saturate 93.3 81.5 87.3 91.4
Shot Noise 81.9 80.4 86.2 90.8
Snow 86.3 80.4 84.0 89.0
Spatter 88.3 80.7 84.1 87.8
Speckle Noise 82.1 80.2 86.0 90.6
Zoom Blur 91.1 78.9 86.0 90.2
Mean 86.3 76.6 84.6 89.0
Variance 41.2 90.2 5.5 4.9
TABLE 6

Comparative analysis of robustness (%) to common corruptions is
shown. SAT showed significant improvement over majority of the
corruptions and did specially well against those that are most difficult
for naturally trained (NT) models such as glass blur, Gaussian noise
and impulse noise. Mean accuracy (higher is better) and variance
(lower is better) are reported.

Standard Deviation (0) = 0.01 Standard Deviation (0) = 0.05

—e— SAT with Non-Adversarial 7(x,)
—— GCE 80-

—e— SAT with Non-Adversarial 7(x,)
—— GCE

6 8 0

2 4 2 4
Purtabation Budget Purtabation Budget

Fig. 5. White-box analysis: Our approach with non-adversarial trans-
formation is compared against GCE [27]. Robustness is measured on
CIFAR-10 test set against PGD with 20 iterations and random restarts.
Models trained with our approach are significantly robust compared to
GCE method [27].

multiple such corruptions including snow, fog and glass
blur. We study 18 of such corruptions. Depending upon
the severity, each corruption is sub-divided into 5 levels
resulting in a total of 50k images for every corruption
type. Analysis of robust models on such distributional shifts
is presented in Table 6. Interestingly, theoretically robust
model, Trades [7] loses significant accuracy on such corrup-
tions as compared to naturally trained (NT) models. Feature
scattering performed better than Trades. We observe that,
compared with Trades [7] and FS [8], a naturally trained
model shows better robustness to these image corruptions.
Our proposed SAT, however, demonstrates improved gen-
eralization to common corruptions while simultaneously
providing adversarial robustness. Contrastive nature of our
adversarial training helps the model to adapt to such distri-
bution shifts which aligns with findings that discriminative
learning boosts domain adaptation and generalization [35].
Further, it is consistent with the experiments where random
sterilizations also help in boosting domain adaptation [36].

Standard Deviation (o) = 0.01 Standard Deviation (0) = 0.05

90 -
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—e— SAT with Non-Adversarial 7(x,)
=~ GCE

0 2 4 6 8 0
Purtabation Budget

4 6 8
Purtabation Budget

Fig. 6. Black-Box analysis: Our approach trained with non-adversarial
perturbations is compared against GCE [27]. Adversaries are generated
using MIFGSM with 10 iterations on CIFAR-10 test set. Our trained
models show high resistance to transferable attack as compared to GCE
[27].
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Fig. 7. White-box robustness analysis shows the effectiveness of differ-
ent losses introduced in Eq. 3. Results are reported for WideResNet on
CIFAR10 dataset.

4.2 Non-adversarial 7: Defense Results and Insights

In this section, we analyse the performance of training SAT
with non-adversarial transformation to establish empirical
evidence of adversarial robustness with non-adversarial
transformation. For this case, Gaussian noise is considered
and ResNet18 [37] is trained using our approach and GCE
[27] on CIFAR-10 training set. White-box robustness is mea-
sured against PGD [1] with 20 iterations. Black-box robust-
ness is evaluated by transferring adversaries from VGG19
[38] using momentum iterative fast sign gradient (MIFSGM)
[39] attack on the CIFAR-10 test set. From our experimenatl
results shown in Figures 5 and 6, we observe that, as the
transformation, 7, becomes better e.g. by increasing the
standard deviation (o) of Gaussian noise, our robustness
against PGD attack increases significantly. This suggests
that better transformation can lead to more robust models.
We further notice that the Gaussian transformation does
not have noticeable effect on GCE performance in terms
of robustness. It is interesting to note that our approach
maintains accuracy on clean examples while its robustness
improves with better transformation. This behavior com-
plements our design approach that takes into account the
relationship of original and transformed samples unlike
GCE [21] which only relies on minimizing the probability
of other classes with respect to the true class.

4.3 Ablation Study

We dissect our proposed adversarial training for WideRes-
Net architecture on CIFAR10 dataset to develop further
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Fig. 8. Style transfer using features of ResNet18 trained on CIFAR10 dataset. Robust features obtained using SAT produced more perceptually
appealing style transfer as compared to naturally trained (NT) feature space of ResNet18. Comparison is made under the same hyper-parameters
and number of iterations (100). (Top to bottom) 1st and 2nd rows show style and target images while 3rd and 4th rows show style transfer using NT

and SAT models, respectively.

insights, as follows:

Contribution of proposed losses: We show in Figure 7
that each loss proposed in Eq. 3 contributes towards SAT’s
robustness. Individually, the content loss demonstrates bet-
ter robustness compared to style loss while the classification
loss (CE) provides better robustness than content loss. One
potential reason for this behavior is that the style loss
encodes more abstract information about the target sample
compared to content and classification losses. Interestingly,
the combination of style and content losses could beat the
case when only CE loss is used. Overall, SAT performance
increases significantly when adversaries are computed us-
ing style, content and boundary information of the target
samples.

Convergence Analysis: Each SAT model is trained for
200 epochs. We set the initial learning rate to 0.1 and
decrease it by a factor of 0.1 at epochs 50 and 95. We observe
that robustness increases with the number of iterations as
shown in Table 7. We did not observe a noticeable gain in
training beyond 200 epochs.

Number of Epochs (—) 100 150 200 250
Robustness (—) 775 80.0 81.1 81.1
TABLE 7

Convergence analysis of SAT.

Computational Training Cost: As mentioned above,
SAT takes 200 epochs for convergence which takes around
11.6 hours of training time (see Table 8 for computational

80- —e— Trades —e— Trades

70- —e— FS 90- —— FS
60- —— SAT —— SAT
- 80-
%50~
£
5 40- 70-

<30
20-

Accuracy

60-

8 16 128 255 40 0 5 10 50 100
Purturbation Budget & Iterations

Fig. 9. Defenses are evaluated against large perturbation budget and
number of iterations. Left: accuracy drop is shown as perturbation
budget goes larger beyond the training regime. Right: performance of
each defense against larger number of iteration under (e < 8/255).

analysis). This cost is less than the adversarial training
approach of [1], Trades and FS. This is because SAT requires
only one attack iteration to compute adversaries. However,
it needs inference on clean, adversarial and target class
samples to update the model.

SAT (ours) Madry etal. [1] Trades[7] FS|[8]
11.6 23.6 29.2 29.4
TABLE 8

Training time (hours) on a Tesla V100.

4.4 Sanity Checks for Gradient Obfuscation

Gradient obfuscation or gradient masking refers to the phe-
nomenon where optimization based attacks fail thus leading
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MIFGSM PGD CW
Source
FS[8] SAT FS[8] SAT FS[8] SAT
NT 87.5 88.3 89.0 91.5 88.1 90.3
AT 80.8 81.6 80.0 83.5 79.5 82.4
TABLE 9

Black-box robustness evaluation. Adversaries are transferred from
naturally and adversarially [8] trained models with the same
architectures as of SAT and FS [8] (WideResNet). High accuracy on
black-box adversaries indicate model convergence on non-degenerate
solution that is without gradient masking.

to high but false adversarial robustness. Athalye et al. [40]
devise certain tests to evaluate if the defense is relying on
gradient masking. We perform the following sanity checks
on our defense to show that it does not rely on gradient
obfuscation:

e Robustness to Black-Box Attacks: If black-box at-
tack (where adversaries are transferred from another
model) are stronger than the white-box, this indicates
that white-box attack is weak and gradients are being
obfuscated. We evaluated SAT (Algorithm 1) under
different black-box attacks (Table 9) and the accuracy
of our defense remains higher than the white-box
attacks (Table 2).

o Iterative attack should be stronger than single-step:
Another test for gradient masking is that iterative
attacks like PGD with small step-size should be more
effective than single step attack like FGSM. In all of
our evaluations (Tables 1, 2, 3 and 5), PGD with step
size 2/255 is always a stronger attack than FGSM.

e Robustness should approach to zero for large enough
perturbation: Gradient masking occurs if defense
accuracy does not approach to zero for large enough
perturbation. Our defense also fulfills this sanity
check as its accuracy decreases (see Figure 9) and
follow the similar trends like feature scattering [5] on
larger perturbations.

4.5

Image style transfer works well for VGG features compared
with residual connection based models [41]. For the case of
residual networks, it has been noted that compared with
their naturally trained counterpart, features from adversari-
ally robust models generate more visually appealing images
for style transfer [41]. In our case, we observe (Figure 8) that
ResNet18 trained on CIFAR10 using SAT performs a better
style transfer, compared with a naturally trained ResNet18.
This indicates that our adversarial training approach learns
representations that can faithfully model the perceptual
space.

Improved Style Transfer with SAT

5 CONCLUSION

We propose to maximize inter-class margins by setting tar-
get class samples as priors to adversarial perturbations for
the original samples. Our framework pushes the clean im-
ages towards randomly selected targets by adding the style,
content and boundary information of the target image from
other classes in the form of adversarial perturbations within
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an allowed perturbation budget. Our framework naturally
fits within max-margin learning as it generates positive (ad-
versaries) and negatives (target samples) for clean images.
Adversarially trained models using our framework show
significant robustness against adversarial attacks (both in
white-box and black-box attack scenarios), naturally occur-
ring distributional shifts as well as on common corruptions.
Furthermore, robust features obtained via our proposed
approach can also be used for style transfer.
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