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Abstract

We consider the problem of improving the human in-
stance segmentation mask quality for a given test image
using keypoints estimation. We compare two alternative ap-
proaches. The first approach is a test-time adaptation (TTA)
method, where we allow test-time modification of the seg-
mentation network’s weights using a single unlabeled test
image. In this approach, we do not assume test-time access
to the labeled source dataset. More specifically, our TTA
method consists of using the keypoint estimates as pseudo
labels and backpropagating them to adjust the backbone
weights. The second approach is a training-time general-
ization (TTG) method, where we permit offline access to the
labeled source dataset but not the test-time modification of
weights. Furthermore, we do not assume the availability
of any images from or knowledge about the target domain.
Our TTG method consists of augmenting the backbone fea-
tures with those generated by the keypoints head and feed-
ing the aggregate vector to the mask head. Through a com-
prehensive set of ablations, we evaluate both approaches
and identify several factors limiting the TTA gains. In par-
ticular, we show that in the absence of a significant domain
shift, TTA may hurt and TTG show only a small gain in per-
formance, whereas for a large domain shift, TTA gains are
smaller and dependent on the heuristics used, while TTG
gains are larger and robust to architectural choices.

1. Introduction

Human instance segmentation is an important task that
requires finding the image regions of different individuals
in a scene. This task has multiple applications ranging from
video conferencing [15, 7], matting [35, 42, 18], genera-
tion [28, 24], autonomous driving [38], robotics [32], ex-
tended reality [39], pedestrian tracking [26, 25, 41], etc. For
example, in extended reality applications, human instance
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Figure 1. From left to right: baseline, test-time adapted and
training-time generalized Mask-RCNN.

segmentation can be used to detect human contours. Along
with 3D information, the human contours can be used to
render virtual objects at arbitrary locations, which can then
enhance augmented reality experiences. For human-robot
interaction, segmentation of individuals is required for un-
derstanding spatial relationships that allows the robot to
plan movements and perform complex tasks. Since human
instance segmentation has multiple use cases, there has been
considerable effort in recent years to improve the perfor-
mance of such models.

Most methods for human instance segmentation are built
on top of general instance segmentation frameworks. Such
methods can be broadly divided into single-stage and multi-
stage methods. Single-stage methods [8, 33, 3] normally
use parallel branches for detection and segmentation. The
detection branch is used to localize each individual instance,
while the segmentation branch learns to annotate each pixel
based on the feature information densely. The output of the
detection branch and the segmentation branch are employed
to obtain masks for all the instances in the scene. Since
detection and segmentation operate independently of each
other, single-stage methods are considerably faster than
multi-stage counterparts. However, the segmentation step
does not utilize the localization information; thus, single-
stage methods perform poorer than multi-stage ones.

Two-stage methods [10, 23, 12] generally follow a se-
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quential approach of firstly detection and then segmenta-
tion. Multi-stage methods [4, 6] go a step further and repeat
this two-step method multiple times. The detection stage
normally crops out a region of interest that localizes a par-
ticular object. Subsequently, segmentation is applied for
different regions of interest to produce masks for different
instances in the scene. Since segmentation and detection
depend on each other during training or inference, segmen-
tation quality is much better compared to single-stage meth-
ods. Hence, in this paper, we opt for the popular two-stage
framework Mask-RCNN [12], which also carries a pose es-
timation head to aid human instance segmentation.

Compared to general instance segmentation, human in-
stance segmentation is relatively more challenging for a
couple of reasons. Firstly, there is large intra-class varia-
tion within the human category due to various outfits, poses,
and deformability of the human body. Secondly, the num-
ber of humans and their locations in a scene can be random,
which increases the complexity of model inference. Finally,
humans tend to interact with each other and other objects
causing occlusions and obstructions, resulting in unnatural
2D shapes and poses. To tackle such challenges, pose esti-
mation [5, 9, 16] has been used to enhance human instance
segmentation.

There have been different approaches to using pose
estimation for human segmentation. The most popular
method [36] follows a sequential approach, where humans
are firstly detected, and their corresponding poses are es-
timated. The sparse keypoints are then grouped, and the
generated heatmaps are used to segment the humans. Al-
though the proposed sequential approach is seminal, it has
the weakness of propagating the pose estimation errors to
the segmentation stage, which can negatively affect the per-
formance, especially for occluded humans. Alternatively,
there are methods [27, 12] that carry out a joint estimation
of pose and instance segmentation, which do not suffer from
propagation issues. We build on the latter framework, i.e.,
Mask-RCNN [12] in this paper. Specifically, we consider
how human pose estimation can be used to enhance the per-
formance of a human instance-segmentation model (trained
on a source dataset) on test images from a target dataset.
Our evaluations are done on the OCHuman [36] and CO-
COPersons [20, 36] datasets from which we draw conclu-
sions about the feasibility and extent of such improvement
using generalization, adaptation, or both.

Our main contributions are summarized as follows:

• We propose a test-time method for adapting a human
segmentation network to a single unlabelled test im-
age. It involves backpropagating keypoint pseudo-
labels to adjust the backbone weights. We devise
three keypoints head variants in addition to the Mask-
RCNN’s keypoints head. Two of the variants are trans-
former based, and all augment the pose estimates to

include keypoint visibility/occlusion indicators.

• We propose a training-time method for enhancing the
performance of a human segmentation network on
new domains. It involves augmenting the backbone
features with those generated by the keypoints head
and using the aggregate feature vector for segmenta-
tion. We show our method achieves competitive per-
formance despite its simplicity.

• We evaluate the performance of both methods and,
through ablations, identify factors that limit test-time
adaptation (TTA) gains. We show that for a small do-
main shift, TTA may hurt performance, and training-
time generalization (TTG) delivers only a small gain.
For a large domain shift, TTA gains are small and de-
pendent on the heuristics used, while TTG gains are
more prominent and relatively insensitive to architec-
tural details.

2. Related Work

Non-Adaptive Instance Segmentation: Non-adaptive In-
stance segmentation methods generally have enhanced ar-
chitectures either through single-stage approaches [8, 33, 3]
or multi-stage approaches [10, 23, 12]. Single-stage meth-
ods have a distributed approach where they produce feature
maps for the whole image and then extract the feature maps
for each instance to produce the corresponding masks. For
example, InstanceFCN [8] generates instance-specific scor-
ing maps and outputs instance masks using an assembly
module that contains operations like repooling and mask-
voting. In similar spirit, CondInst [30] dynamically gen-
erated convolutions conditioned on each instance to pro-
duce instance-specific segmentation masks. On the other
hand, YOLACT [3] is an efficient method that has parallel
branches for generating fixed number of prototype masks
and mask coefficients. Multi-stage methods generally have
a two step procedure where firstly objects are detected us-
ing bounding boxes. Then, features are extracted from the
region of interest to produce the desired masks. Mask R-
CNN [12] is a popular two-stage instance segmentation
framework that has an additional head for predicting seg-
mentation masks for each region extracted from the bound-
ing box. In this paper, we focus specifically on the Mask
R-CNN architecture. QueryInst [10] is also a recent query-
based multi-stage framework that uses sequences of dy-
namic convolution and multi-head self-attention blocks to
produce more refined instance segmentation masks. More
comprehensive review of non-adaptive instance segmenta-
tion methods can be found in [11].
Adaptive Instance Segmentation: There have been very
few works on adaptive instance segmentation. Most of these
works target segmentation of biomedical entities like nuclei,



cells etc. For example, in [21], the authors propose a multi-
step procedure to tackle domain shift that includes inpaint-
ing of images, producing domain-invariant features and a
task reweighting scheme to remove source bias. In [22],
the authors extended the framework by adding a mech-
anism of feature similarity maximization. Li et al. [17]
also proposed domain adaptation for nuclei segmentation by
category-specific feature alignment and self-training using
pseudo-labels. In addition to augmented pseudo-labelling,
Hsu et al. [13] proposed to use a domain separation mod-
ule as well as a self-supervised consistency loss. Recently,
in [19], the authors propose domain adaptation for mitotic
cells by aligning pixel-level feature distributions and also
additional supervision through a semantic head. For adap-
tive human instance segmentation [29] is the only work
that is known to us. In this work, the authors propose to
jointly estimate pose and instance masks of clinicians by
adapting from a source dataset. Adaptation is carried out
by a feature normalization strategy and self-training proce-
dure where pseudo-labels are refined using geometric con-
sistency of augmentations.
Human Instance Segmentation: Human instance segmen-
tation involves segmenting humans with the aid of addi-
tional information like pose. Earlier works that used pose
to segment out human instances include Pose2Seg [36],
PersonLab [27] and Pose2Instance [31]. Pose2Seg is a
two-stage framework where keypoint heatmaps are initially
generated, which are then transformed and aggregated to
pass through a segmentation decoder and produce human
instance masks. Similarly, PersonLab detected keypoints
but then grouped into masks using a geometric embed-
ding descriptor. In Pose2Instance, the authors used the dis-
tance transform of keypoints as priors for human masks.
More recent works on human instance segmentation include
LSNet [37] and PosePlusSeg [1]. In LSNet, the authors use
pose attention module and keypoint sensitive combination
to aggregate information from multiple sampling points. In
the PosePlusSeg framework, the authors proposed a refine-
ment network for improved quality of poses and instances
obtained from separate heads. In this paper, we use a more
simpler approach where we have multiple heads for pose
estimation and instance segmentation but use pose estima-
tion task to select relevant features for adaptation and gen-
eralization. Additional works on human instance segmenta-
tion include ideas such as self-supervised consistency of hu-
man structures across videos [14], iterative refinement using
pose with shape prior and part attention [40], deformable
convolutions with geometric transformation between key-
point offsets [2].

3. Method
We first describe the task of human segmentation using

keypoints, and then we detail our TTA and TTG approaches.

Figure 2. High quality keypoints estimates can improve human
segmentation masks (left to right: baseline and TTA Mask-RCNN,
where the man’s mask spill-over has significantly been reduced).

Finally, we describe the heuristics and keypoints head vari-
ants we devised to enhance TTA and TTG gains.

3.1. Human Segmentation using Keypoints

Segmentation networks may perform poorly especially
if the test image exhibits a large domain shift with respect
to the training dataset, e.g., indoor vs. outdoor or daylight
vs. nighttime. For human instance segmentation, such a
domain shift may be due to severe occlusion of human sub-
jects. Figure 2 depicts a case where the baseline network’s
mask for the man significantly spills over to that of the
woman. Interestingly, despite the network’s poor segmen-
tation performance, it estimates the human keypoints fairly
well. This observation motivated us to devise methods for
enhancing human instance segmentation using keypoints
estimates. We consider two such methods, i.e., TTA and
TTG (c.f., Figure 3). Since we need pose estimates, we con-
sider (the rather common) architecture (e.g., Mask-RCNN)
where the network, in addition to its instance-segmentation
head, has a separate keypoints head, with a common back-
bone.

3.2. Test-time Adaptation

Figure 3 (top) depicts our test-time-adaptation method.
In this approach we assume availability of a fully trained hu-
man instance segmentation/keypoints estimation network,
i.e., m = {mb,mm,mk}, and a single unlabelled test
image. We also allow for test-time adaptation of network
weights using backpropagation, but not access to the source
dataset. These assumptions make our TTA setup very real-
istic, but simultaneously very challenging.

We give the steps of our TTA method in Algorithm 1. It
includes multiple rounds (e.g., 3) of weight adaptation, each
consisting of converting the keypoints estimates to pseudo-
labels, plugging them in the keypoints loss together with
the keypoint estimates, and backpropagating the resulting
self-supervised loss to adjust the backbone weights. While
our method works for any pseudo-label conversion method,



Figure 3. Test-time adaptation (top) and training-time generalization (bottom) frameworks for enhancing human segmentation using pose
estimates.

f , and keypoint loss, Lkey , we use simple candidates, i.e.,
for person bounding boxes scoring above 0.5, we take key-
points with a minimum probability of 0.05, and declare the
location in their 56×56 heat-maps with the highest value as
pseudo-labels. We use the multi-category cross-entropy as
our keypoint loss. Finally, adapted segmentation masks are
generated by running the mask head on the adapted feature
map.

Algorithm 1: TTA (test-time adaptation)
Given: Model m = {mb,mm,mk}, test-image xtgt

Step 1 (test-time): Adapt backbone to test image
Initialize n, i← 0, m0

b ←mb

For i < n
Estimate keypoints, i.e., yi

key = mk

(
mi

b(x
tgt)

)
Generate pseudo-labels, i.e., ỹi

key = f
(
yi
key

)
Update backbone, i.e., compute mi+1

b by back-
propagating self-supervized Lkey(y

i
key, ỹ

i
key)

Save adapted model, i.e, mTTA
b ←mn

b

Step 2 (test-time): Get TTA masks for test image
Infer TTA masks, i.e., yTTA

mask = mm

(
mTTA

b (xtgt)
)

3.3. Training-time Generalization

Figure 3 (bottom) shows our training-time generalization
method. We assume availability of a human segmentation
and pose estimation network, i.e., m = {mb,mm,mk}
(which does not need to be trained), and allow offline ac-
cess to the labelled source dataset. We do not, however, as-
sume the availability of any test images or knowledge about
the target domain. We do not allow test-time adaptation of
network weights either. These assumptions make our TTG

setup both realistic and challenging.
We give the steps of our TTG method in Algorithm 2.

Training-time generalization consists of splitting the key-
points head into two subnets, i.e., mk = mreg

k ◦ mfe
k , for

feature extraction and regression, respectively (the split de-
tails are given in the sequel). The mask head also needs to
be modified to accommodate the extra keypoints features.
The TTG model mTTG = {mb,m

TTG
m ,mk} is then trained

on the labeled source dataset using the original segmenta-
tion and pose losses. At test-time, the segmentation masks
are generated by running the TTG mask head on the aggre-
gated feature map.

Algorithm 2: TTG (training-time generalization)
Given: Model m = {mb,mm,mk}, source-dataset
X src = {(xsrc

i , tsrci )}
Step 1 (training-time): Train generalized model on

source dataset
Split keypoints head into feature-extractor & regressor

subnets, i.e., mk = mreg
k ◦m

fe
k

Modify mask head, i.e., mTTG
m to accommodate the

extra keypoints features, i.e., mfe
k ◦mb(x

tgt)
Train TTG model, i.e., mTTG = {mb,m

TTG
m ,mk} on

X src = {(xsrc
i , tsrci )}

Step 2 (test-time): Get TTG masks for test image xtgt

Infer TTG masks using aggregated features, i.e.,
yTTG
mask =mTTG

m

(
mb(x

tgt),mfe
k ◦mb(x

tgt)
)

3.4. Heuristics and Keypoints Head Variants

The performance of the TTA and TTG methods greatly
depends on the quality of the pseudo-labels and features



generated by the keypoints head, respectively. This moti-
vates us to devise three keypoints head variants besides the
Mask-RCNN’s original. In the following, we discuss each
variant and the heuristics behind it. Note that the input fea-
ture map from the backbone to all these heads is of dimen-
sion N × 256× 14× 14, where N is the number of person
bounding boxes.

• Mask-RCNN: mfe
k consists of 8 2d-convolutional lay-

ers, each with 512 output channels, a 3 × 3 kernel
size and a stride of 1. Hence, there are 512 extra
keypoints features. mreg

k consists of a 2d-transposed-
convolutional layer with 17 (i.e., number of keypoints)
output channels, a 4 × 4 kernel and a stride of 2, fol-
lowed by a bilinear upsampler to increase the key-
points heatmap resolution to N × 17× 56× 56.

• Variant1: While the Mask-RCNN keypoints head
estimates the keypoint positions, it does not predict
whether they are visible or occluded. This may hurt
the TTA performance, e.g., in Figure 4, the position of
the left person’s elbow has correctly been estimated,
however, not specifying it as occluded has caused parts
of the bouquet to be included in the TTA mask. To ad-
dress this all variants predict if a keypoint is visible or
occluded, e.g., Variant 2 is identical to Mask-RCNN
except that the 2D-transposed-convolutional layer has
51(= 3 × 17) outputs to allow two additional outputs
per location for visible/occluded prediction.

• Variant2: As Figure 5 shows, the keypoint estimates
from a convolutional head can be of very low qual-
ity, severely impacting the TTA/TTG gains. To en-
hance keypoint estimation (through global attention)
Variant2 uses transformers, i.e., mfe

k consists of a trans-
former decoder with 6 layers, 8 heads and 17 queries
of width 256, operating on the backbone feature map.
The input queries are trainable parameters, while the
output queries are mapped to keypoints and decoded
by a 3-layer MLP to N × 51 × 14 × 14 keypoints
heatmap (after reshaping). Hence, there are 51 extra
keypoints features. mreg

k consists of a bilinear upsam-
pler to increase the heatmap resolution to 56× 56.

• Variant 3: As will be shown (c.f., Table 1), while Vari-
ant 2 shows slightly better (i.e., 1%) APkey numbers
on the target datasets, it lags Mask-RCNN and Vari-
ant 1 on the source dataset by a large margin (4%).
This is because in Variant 2, the transformer output
queries are directly decoded to 14×14 heatmaps, with-
out using convolutional layers. Variant 3 gets around
this problem by using the last transformer layer’s value
projections, and attention weights to form a separate
15 × 14 × 14 feature map for each keypoint. Hence
there are (255 = 17 × 15) extra keypoints features.

Figure 4. Backpropagating the left person’s elbow pseudo-label,
without specifying it as occluded, degrades TTA performance by
inclusion of part of the bouquet as that person’s mask (left to right:
baseline and TTA for Mask-RCNN).

Figure 5. Keypoint estimates from a convolutional head can be of
very low quality.

mreg
k consists of two group 2D-convolutional and one

group 2D-transposed-convolutional layers that further
process keypoint feature maps, independently from
one another, followed by a bilinear upsampler to get
the 56× 56 heatmaps.

4. Experiments
This section consists of experimental details, TTA vs.

TTG comparison results and ablation studies.

4.1. Experimental Details

We report evaluation results on the COCOPersons [36]
and OCHuman [36] datasets. The COCOPersons dataset,
which consists of 60K images, is a refined split obtained
from MS-COCO [20]. In this split, non-person categories
as well as person categories with small annotations are re-
moved since they do not contain keypoint annotations. The
OCHuman dataset is highly challenging and mainly con-
sists of occluded humans, e.g., the average MaxIOU for
each person in COCOPersons is 0.08 while that of OCHu-
man is 0.67. Both these datasets contain 17 keypoints.

We use Mask-RCNN [12] for our TTA and TTG experi-
ments, though our methods apply to any architecture con-
sistent with Figure 3. More specifically, we use the de-
tectron2 [34] codebase with ResNet-50-FPN and ResNet-



Table 1. Keypoint head’s APkey (ResNet-50-FPN, 4 seeds). The
large difference (> 30%) between COCOPersons val and OCHu-
man val and test shows the large domain-shifts involved. Variant
2, despite a weaker performance on source generalizes better (1%)
to the target domains, thanks to using transformers.

Model COCO
Persons val

OCHuman
val

OCHuman
test

Mask-RCNN
64.85
(0.10)

32.21
(0.32)

31.91
(0.23)

Variant 1
64.87
(0.17)

32.19
(0.17)

31.83
(0.32)

Variant 2
59.90
(0.11)

33.45
(0.54)

32.91
(0.23)

Variant 3
63.94
(0.12)

32.30
(0.31)

31.67
(0.28)

101-FPN as backbones and the mask and keypoints losses
implemented therein. The three variants in this work differ
from the standard Mask-RCNN only in their keypoints head
as detailed in Section 3.

We train all models and variants offline on the CO-
COPersons train set. For baseline and TTG experiments,
we keep model weights frozen throughout evaluations on
COCOPersons val split and OCHuman val and test splits.
For TTA experiments, we reset the weights to their pre-
adaptation state before evaluating each test image. We then
adapt the model to the image n = 3 times with a TTA learn-
ing rate of 1e−3, after which we segment the image to get
the TTA person masks (c.f. Algorithm 1). This process is
repeated for each test image in the dataset. We report APkey

and APmask mean and standard deviation across multiple
runs (4 and 3 seeds for ResNet50-FPN and ResNet-101-
FPN, respectively).

4.2. TTA vs. TTG Results

Table 1 gives APkey numbers for Mask-RCNN and its
variants. The large drop, i.e., more than 30%, in Mask-
RCNN’s APkey when moving from COCOPersons val to
OCHuman val and test attests to the significant domain shift
between these datasets. Variant 1 uses the same keypoints
head as Mask-RCNN, hence its numbers are similar. For the
source dataset, i.e., COCOPersons val, Variant 2 is lagging
Mask-RCNN and Variant 3’s APkey by 4% to %5, however
it shows around 1% advantage over the target datasets, i.e.,
OCHuman val and test. This is likely due to Variant 2 not
using convolutional layers and directly decoding keypoint
tokens into spatial heatmaps. Figure 6 depicts the keypoints
estimates from the three variants for a test image. As both
Table 1 and Figure 6 suggest, use of transformers does not
improve the quality of keypoint pseudo-labels, which is a
major factor limiting TTA gains.

Table 2 gives APmask numbers for various models over
the source dataset, i.e., COCOPersons val. Note that while
TTG improves APmask by around 1% percent, TTA de-
grades it by about the same amount. TTG improves APmask

by using extra, i.e., keypoint, ground-truth labels for train-

Figure 6. Keypoints pseudo-label quality is a major limiting factor
for TTA. From left to right: Variant 1, 2 and 3.

Table 2. APmask on COCOPersons val (ResNet-50-FPN, 4 seeds).
Without a large domain-shift TTA hurts performance and TTG
shows only a small gain (1%).

Model Baseline TTA TTG

Mask-RCNN
60.11
(0.12)

58.59
(0.25)

61.25
(0.12)

Variant 1
60.22
(0.25)

58.62
(0.15)

61.45
(0.10)

Variant 2
59.55
(0.04)

58.55
(0.04)

60.80
(0.15)

Variant 3
60.12
(0.15)

59.02
(0.24)

60.97
(0.03)

ing the segmentation head. TTA hurts APmask because
there is not enough domain shift between COCOPersons
train and val to justify adjusting the model’s already op-
timized weights based on a single unlabelled test image.

Tables 3 and 4 give APmask numbers for the target
datasets, i.e., OCHuman val and test. Here the domain shift
is large enough (i.e., more than 40% drop in APmask) to en-
able TTA to improve various variants’ performances using a
single unlabelled image. The largest gain is around 1% and
corresponds to Variant 2, due to this variant’s slightly higher
APkey . It is noteworthy that TTA has little, if any bene-
fit, for Mask-RCNN as it does not distinguish between the
visible and occluded keypoints as discussed earlier. More
importantly though, the TTG gains are significantly higher
than those offered by TTA, e.g., 3.77% for TTG compared
to TTA’s 1.05% for Variant 2 on OCHuman val. Further-
more, the TTG gains for all variants are similar, i.e., TTG
APmask numbers are within a standard deviation from one
another. This is because TTG does not use the keypoint esti-
mates directly; it instead uses the keypoint features that are
richer in information, e.g., implicitly infer keypoints’ vis-
ibility/occlusion. It also reconfirms that TTG gain comes
from using the extra keypoint ground-truth labels for train-
ing the segmentation head and not from the details of the
keypoint head architecture.

Tables 5, 6 and 7 give our results for ResNet-101-FPN
backbone, and show very similar trends, i.e., in the ab-
sence of a significant domain shift, TTA may hurt and TTG
show only a small gain (c.f., Table 5), whereas with a large



Table 3. APmask on OCHuman val (ResNet-50-FPN, 4 seeds).
With a large domain-shift TTA improves all variants, however
TTA gains are smaller than TTG, and more sensitive to keypoint
head’s architecture.

Model Baseline TTA TTG

Mask-RCNN
17.74
(0.25)

17.66
(0.15)

21.48
(0.10)

Variant 1
17.93
(0.19)

18.00
(0.19)

21.56
(0.17)

Variant 2
18.15
(0.27)

18.79
(0.28)

21.51
(0.51)

Variant 3
18.41
(0.29)

18.44
(0.29)

21.20
(0.14)

Table 4. APmask on OCHuman test (ResNet-50-FPN, 4 seeds).
Same trends as Table 3, i.e., TTA gains are smaller and more
heuristic dependent than TTG.

Model Baseline TTA TTG

Mask-RCNN
17.48
(0.15)

17.51
(0.15)

21.30
(0.18)

Variant 1
17.42
(0.33)

17.69
(0.22)

21.09
(0.07)

Variant 2
17.92
(0.21)

18.50
(0.11)

20.93
(0.08)

Variant 3
17.99
(0.06)

18.04
(0.12)

20.64
(0.21)

Table 5. APmask on COCOPersons val (ResNet-101-FPN, 3
seeds). Same trends as ResNet-50-FPN, i.e., without a large
domain-shift, TTA hurts and TTG gives a small gain (1%).

Model Baseline TTA TTG

Mask-RCNN
60.87
(0.10)

59.22
(0.21)

61.73
(0.09)

Variant 1
60.93
(0.10)

59.14
(0.10)

61.82
(0.02)

Variant 2
60.71
(0.15)

59.49
(0.06)

61.69
(0.12)

Variant 3
61.15
(0.10)

59.70
(0.28)

61.81
(0.19)

Table 6. APmask on OCHuman val (ResNet-101-FPN, 3 seeds).
Same trends as with ResNet-50-FPN, i.e., TTG gains are larger
and less dependent on pose head’s architectural nuances.

Model Baseline TTA TTG

Mask-RCNN
19.21
(0.36)

19.58
(0.23)

22.67
(0.35)

Variant 1
19.10
(0.40)

19.45
(0.40)

22.60
(0.23)

Variant 2
19.32
(0.38)

20.30
(0.17)

22.51
(0.32)

Variant3
19.77
(0.18)

20.46
(0.25)

22.50
(0.15)

enough domain shift, TTA gains are smaller and more de-
pendent on the heuristics used, while TTG gains are larger
and less sensitive to model variations (c.f., Tables 6, 7).

Table 8 compares the TTG APmask for Variant 2 against
some of the existing methods in the literature as described
in Section 2 (numbers are cited from the referenced papers).

Table 7. APmask on OCHuman test (ResNet-101-FPN, 3 seeds).
Same trends as with ResNet-50-FPN, i.e., TTG gains are larger
and more consistent across various variants.

Model Baseline TTA TTG

Mask-RCNN
18.76
(0.02)

18.97
(0.28)

21.95
(0.54)

Variant 1
18.71
(0.27)

18.93
(0.23)

22.42
(0.22)

Variant 2
18.92
(0.19)

19.92
(0.11)

22.09
(0.58)

Variant 3
19.68
(0.05)

20.26
(0.28)

22.27
(0.38)

Table 8. Comparison of TTG APmask for Variant 2 against meth-
ods from the literature.

Model Backbone COCO
Persons val

OCHuman
val

OCHuman
test

Mask-RCNN [12] ResNet-50-FPN 53.2 16.3 16.9
Pose2Seg [36] ResNet-50-FPN 55.5 22.2 23.8
CondInst [30] ResNet-50-FPN 54.8 20.3 20.1
YOLACT [3] ResNet-101-FPN 50.2 13.2 13.5

Variant 2 (ours) ResNet-50-FPN 60.8 21.5 20.9
Variant 2 (ours) ResNet-101-FPN 61.7 22.5 22.1

Table 9. TTA APmask on OCHuman val with different learning
rates (ResNet-50-FPN, 4 seeds).

Model Lr
0.5e-3 1e-3 2e-3 4e-3

Variant 2
18.49
(0.29)

18.75
(0.29)

18.92
(0.21)

18.57
(0.38)

While an apple to apple comparison is difficult due to the
nuances in each paper setup, we observe that our simple
TTG method provides a competitive performance especially
noting that we report average values across multiple seeds.
This reconfirms our observation that TTG gains are less de-
pendent on the heuristics used and more robust to architec-
tural variations.

4.3. Ablation Studies

In this section we report several ablation studies that shed
light on some of the factors limiting the performance of
test-time adaptation. Tables 9, 10 and 11 give the TTA
APmask for Variant 2 on OCHuman val when sweeping
the adaptation learning-rate, min-person-score (i.e., thresh-
old for rejecting all keypoints for a detected person) and
min-keypoint-prob (i.e., threshold for rejecting an individ-
ual keypoint), respectively. As the tables show, our choices
for these parameters (i.e., 1e−3, 0.5 and 0.05, respectively)
lie within the relevant sweet-spots, however, since we do not
assume any knowledge about the target domain, we cannot
use the optimal values (as Table 9 indicates a learning-rate
of 1e−3 is not optimal) and have to rely on judgment calls
which is an important limiting factor. For example as Fig-
ure 7 shows, increasing the min-person-score from 0.5 to
0.8 removes some of the false-positives from the volleyball
scene, but also causes some true-positives to be missed in
the ice-skating scene.

We note that dynamic selection of hyper-parameters such



Table 10. TTA APmask on OCHuman val with different min-
person-score (ResNet-50-FPN, 4 seeds).

Model Min. Person Score
0.5 0.6 0.7 0.8

Variant 2
18.78
(0.25)

18.70
(0.27)

18.74
(0.26)

18.70
(0.31)

Table 11. TTA APmask on OCHuman val with different min-
keypoint-prob (ResNet-50-FPN, 4 seeds).

Model Min. Keypoint Prob.
0.05 0.1 0.2 0.4

Variant 2
18.75
(0.30)

18.54
(0.25)

18.29
(0.25)

18.08
(0.30)

Figure 7. Increasing the min-person-score from 0.5 to 0.8 removes
some false-positives from the volleyball scene (first and second
from left, respectively), but also causes some true-positives to be
missed in the ice-skating scene (third and fourth).

Figure 8. Dynamic selection of hyper-parameters, based on the test
image, may improve TTA gain significantly, but is impractical in
the absence of prior knowledge about the target domain. From
left to right: baseline and test-time-adapted Mask-RCNN for TTA
learning rates of 0.5e−3, and 4e−3, respectively. For this test
image a learning rate of 0.5e−3 greatly cleans up the spill-over
of the man’s mask. A larger learning rate of 4e−3 degrades the
performance by shrinking the woman’s mask.

as TTA learning-rate, depending on the test image at hand,
may significantly improve the TTA performance, e.g., for
the particular image shown in Figure 8, a learning rate of
0.5e−3 greatly cleans up the spill-over of the man’s mask.
Whereas a larger learning rate of 4e−3 degrades the per-
formance by shrinking the woman’s mask. We also note
that such dynamic hyper-parameter selection is impractical
in the absence of prior knowledge about the target domain
(i.e., another TTA limiting factor).

Table 12 reports numbers for the scenario where the
backbone is only partially adaptable (i.e., stage 5 of ResNet-

Table 12. TTA APmask on OCHuman val with backbone fully or
partially adapted (ResNet-50-FPN, 4 seeds).

Model Lr
0.5e-3 1e-3 2e-3 4e-3

Variant 2 w. backbone
fully adapted

18.49
(0.29)

18.75
(0.29)

18.92
(0.21)

18.57
(0.38)

Variant 2 w. backbone’s
last-stage adapted

18.34
(0.37)

18.57
(0.39)

18.85
(0.28)

18.83
(0.35)

Table 13. APmask on OCHuman val with both TTG and TTA
(ResNet-50-FPN, 4 seeds). Applying TTA on top of TTG has min-
imal gain, if any, as TTG already uses keypoint features.

Model Baseline TTG TTG+TTA

Mask-RCNN
17.74
(0.25)

21.48
(0.10)

21.37
(0.22)

Variant 1
17.93
(0.19)

21.56
(0.17)

21.77
(0.27)

Variant 2
18.15
(0.27)

21.51
(0.51)

21.70
(0.41)

Variant 3
18.41
(0.29)

21.20
(0.14)

20.96
(0.43)

50-FPN). As the table shows, for smaller learning rates the
partially adapted backbone yields smaller TTA gains com-
pared to the fully-adaptable one. However for the large
learning-rate of 4e−3 it retains more of the gain which is
consistent with being partially adaptable, hence more regu-
larized.

Finally, Table 13 gives APmask numbers for the case
where a TTG model is test-time adapted. We note that TTA
gains, if any, are even smaller as TTG already takes advan-
tage of the features generated by the keypoints head.

5. Conclusion
We compared two approaches for enhancing human seg-

mentation masks using keypoints estimation. First was test-
time adaptation (TTA), where we allowed test-time adjust-
ments of network weights based on the unlabeled test im-
age without access to the labeled source dataset. It worked
by back-propagating keypoints estimates, as pseudo-labels,
to adjust the backbone weights. The second approach was
training-time generalization (TTG), where we allowed of-
fline access to the labeled source dataset but no test-time
alteration of weights. We further did not assume the avail-
ability of any test images. Our TTG method worked by
augmenting the backbone features with that of the keypoints
head and using it to infer masks. We also devised three addi-
tional pose-head variants to improve keypoint pseudo-label
quality, using keypoint visibility/occlusion prediction, and
use of global-attention (i.e., transformers).

We evaluated both approaches and, through ablations,
identified factors limiting the TTA gains, i.e., we showed
that without a large domain shift, TTA hurts performance,
and TTG shows only a small gain. In contrast, for a large
domain shift, TTA gains are smaller and more heuristics de-
pendent, while TTG’s are larger and more robust.
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